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Abstract. We study the interaction of small-scale internal
wave packets with a large-scale internal solitary wave us-
ing high-resolution direct numerical simulations in two di-
mensions. A key finding is that for wave packets whose con-
stituent waves are short in comparison to the solitary wave
width, the interaction leads to an almost complete destruction
of the short waves. For mode-1 short waves in the packet, as
the wavelength increases, a cutoff is reached, and for larger
wavelengths the waves in the packet are able to maintain their
structure after the interaction. This cutoff corresponds to the
wavelength at which the phase speed of the short waves up-
stream of the solitary wave exceeds the maximum current in-
duced by the solitary wave. For mode-2 waves in the packet,
however, no corresponding cutoff is found. Analysis based
on linear theory suggests that the destruction of short waves
occurs primarily due to the velocity shear induced by the soli-
tary wave, which alters the vertical structure of the waves
so that significant wave activity is found only above (below)
the deformed pycnocline for overtaking (head-on) collisions.
The deformation of vertical structure is more significant for
waves with a smaller wavelength. Consequently, it is more
difficult for these waves to adjust to the new solitary-wave-
induced background environment. These results suggest that
through the interaction with relatively smaller length scale
waves, internal solitary waves can provide a means to de-
crease the power observed in the short-wave band in the
coastal ocean.

1 Introduction

Internal waves are commonly observed in stably stratified
fluids such as the Earth’s atmosphere and oceans. They ex-
ist in a variety of environmental conditions, including those
with background shear currents, and on different length and
timescales. The interaction between internal waves and other
physical processes results in energy exchange between the
waves and the background environment (Sarkar and Scotti,
2017). Based on linear wave theory, Cai et al. (2008) studied
internal waves in a shear background current, and found that
in addition to the velocity shear across the pycnocline, the
vertical structure of the horizontal velocity profile also had
a significant influence on the evolution of internal waves. The
interaction between mode-1 internal tides and mesoscale ed-
dies was examined in Dunphy and Lamb (2014). The authors
found that the interaction, essentially the bending of the paths
followed by the wave energy, produced hot and cold spots
of energy flux. These took the form of beam-like patterns,
and resulted in the scattering of energy from the incident
mode-1 to modes-2 and higher. The above-mentioned studies
were not dependent on the presence of boundaries. Motivated
by the fact that internal waves have reflection properties
that are different from classical Snell’s law, Grisouard and
Thomas (2015) investigated the interaction between near-
inertial waves and ocean fronts, and found that inertial waves
could travel with two distinct characteristics at a front, one
flat and one tilted upward, implying the existence of critical
reflections from the ocean surface.

The interaction between internal waves of different length
scales also occurs naturally (Sun and Pinkel, 2012). When
the disparity in length scales between the participating waves
is large, the relatively smaller length scale wave essentially
plays the role of the disturbance to the “background flow”
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induced by the relatively larger length scale wave, as they
interact with each other. Previous literature has considered
wave–wave interaction in a variety of contexts. For exam-
ple, using ray theory for linearized waves and the principle
of wave action conservation, Broutman and Young (1986)
studied the interaction of short high-frequency progressive
internal waves and long progressive near-inertial waves, and
found that there was a net energy transfer from the iner-
tial wave field to the short internal waves. Lamb (1998) in-
vestigated the interaction between two mode-1 internal soli-
tary waves (ISWs), and showed that the interaction of soli-
tary waves did not correspond to soliton dynamics, since
energy exchange was observed and small-amplitude trailing
waves of possibly higher modes were generated. More re-
cently, Stastna et al. (2015) examined the interaction between
mode-1 and mode-2 internal solitary (solitary-like in cases
when the mode-2 wave was breaking) waves, and demon-
strated that the interaction yielded a nearly complete disinte-
gration of the relatively smaller mode-2 wave. In particular,
the majority of kinetic energy carried by the mode-2 wave
was lost and the disturbance to the flow field after the col-
lision no longer had a mode-2 structure. When the length
scales of participating waves are similar, Sutherland (2016)
found that nonlinear self-interaction might occur, which re-
sulted in energy being transferred to superharmonic distur-
bances. These disturbances were a superposition of modes
such that the amplitude was largest where the change in back-
ground buoyancy frequency with depth was largest.

In this work, we study the interaction of small-scale
mode-1 internal waves initialized from linear waves with an
ISW initialized from the exact Dubreil–Jacotin–Long equa-
tion, using high-resolution direct numerical simulations in
two dimensions. Internal waves that are short in terms of
wavelength compared to the fluid depth are generally less
documented in the nonlinear wave literature. In fact, the
derivation of the model equations of most weakly nonlin-
ear theories, such as the Korteweg–de Vries equation and its
variations, assumes large horizontal scales and thus filters out
short waves (Lamb and Yan, 1996). Nevertheless, such waves
occupy a non-negligible portion of the Garrett–Munk spec-
trum of internal waves in the oceans (Thorpe, 2005), and it
is important to understand their behaviour in order to fully
describe internal wave dynamics.

The remainder of the paper is organized as follows: the-
oretical descriptions of internal waves are introduced in
Sect. 2. The problem is formulated in Sect. 3. The simula-
tion results are presented in Sect. 4. A key finding is that for
waves that are short in comparison to the ISW width, the in-
teraction leads to an almost complete destruction of the short
waves; for mode-1 short waves, however, there is a cutoff de-
termined by the wavelength of short waves, and waves longer
than this cutoff maintain their structure after interaction. We
show that this is a key difference from mode-1–mode-2 in-
teraction, which is examined in Stastna et al. (2015). The en-
ergy transfer during the interaction is discussed in Sect. 5,

and a summary concluding the findings of this study is given
in Sect. 6.

2 Internal wave theories

In the classical linear theory, the horizontal structure of inter-
nal waves is usually described by the travelling wave ansatz
exp(ik[x− cp(k)t]) where k is the horizontal wave number
and is related to the wavelength λ by the formula k = 2π/λ,
and cp is the phase speed. The vertical structure is described
by solutions of the eigenvalue problem often referred to as
the Taylor–Goldstein (TG) equation (Kundu et al., 2012),
which is given by

φzz+

(
N2(z)

(cp−U)2
+

Uzz

cp−U
− k2

)
φ = 0,

φ(0)= φ(H)= 0, (1)

where U = U(z) is the background horizontal velocity, N is
the buoyancy frequency defined by

N2(z)=−
dρ̄
dz
g, (2)

with ρ̄ being the (dimensionless) undisturbed density pro-
file in the background and H is the height of the water col-
umn. If there are no critical layers (i.e. cp−U 6= 0 for all z),
for physically relevant N(z), the TG equation has an infi-
nite set of discrete eigenvalues cp which decrease as k in-
creases and as the mode number increases. The correspond-
ing eigenfunction φ(z) characterizes the vertical structure of
the velocity field (e.g. the wave-induced horizontal velocity
is proportional to φz). It also determines the mode number of
internal waves according to the formula “one plus the num-
ber of zeros that the eigenfunction has in the interior of the
water column”. Note that the TG equation simplifies consid-
erably when there is no background shear flow. An exam-
ple of a single pycnocline buoyancy frequency profile, to-
gether with the corresponding vertical structure functions for
mode-1 waves of particular horizontal wave numbers in the
absence of a shear current, is given in Fig. 1.

Due to the nonlinear nature of fluid flows, purely linear
waves are a mathematical idealization. For large-amplitude
waves or on timescales long enough for nonlinear effects to
manifest themselves, results predicted by the linear theory
do not agree with measurements. Weakly nonlinear theory
attempts to better describe internal wave dynamics by ex-
panding flow variables asymptotically and retaining correc-
tions that correspond to finite amplitude (nonlinearity) and
wavelength (dispersion). The most famous weakly nonlinear
model is probably the Korteweg–de Vries (KdV) equation,
given by (Lamb, 2005),

Bt + clwBx +αBBx +βBxxx = 0, (3)

where B is the horizontal structure function describing the
propagation and evolution of the wave in the x direction, clw
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Figure 1. Example of (a) buoyancy frequency profile and (b) vertical structure profiles as the wave number varies for mode-1 internal waves
in a zero-background current. The amplitudes of the eigenfunctions have been varied for clarity of visual presentation.

is the speed of linear long wave (i.e. waves with k = 0), and
the parameters α and β measures the nonlinearity and disper-
sion of the wave, respectively. Analysis of the KdV equation
shows that it has solitary wave solutions of the form

B(x, t)= asech2
(
x−V t

λ

)
, (4)

where a measures the wave amplitude and V is the nonlin-
ear wave propagation speed. Internal solitary waves (ISWs)
are translating waves of permanent form, which consist of
a single wave crest. They are one of the most commonly ob-
served types of internal waves in the field (e.g. Klymak and
Moum, 2003; Scotti and Pineda, 2004; also see Helfrich and
Melville, 2006, for a more complete review).

While the KdV theory correctly predicts some properties
of internal waves, it can only be expected to perform well
within certain asymptotic limits (e.g. the small-amplitude
limit and long-wave limit). For large-amplitude waves, so-
lutions of the KdV equation and its variations have been
shown to be different from waveforms predicted by the fully
nonlinear theory (Lamb and Yan, 1996; Lamb, 1999). Fully
nonlinear ISWs can be computed by solving the nonlin-
ear eigenvalue problem known as the Dubreil–Jacotin–Long
(DJL) equation, which, in a zero-background current, takes
the form (Stastna and Lamb, 2002; Lamb, 2005)

∇
2η+

N2(z− η)

c2
isw

η = 0,

η(x,0)= η(x,H)= 0,
η(x,z)→ 0 as x→±∞. (5)

In this equation, cisw is the solitary wave propagation speed
(equivalent to V in the KdV theory), and η = η(x,z) is the
vertical displacement of the isopycnal relative to its far-
upstream depth. The DJL equation is equivalent to the full set
of stratified Euler equations in a frame moving with the wave,

where no assumptions are made with respect to the nonlin-
earity of the fluid flow. Hence, its solutions are exact soli-
tary wave solutions. For non-constant N , the DJL equation
has no analytical solutions. In this work, the DJL equation
is solved numerically using the method described in Dun-
phy et al. (2011). The algorithm for solving the DJL equa-
tion is based on the variational scheme developed in Turk-
ington et al. (1991), which iteratively seeks a solution that
minimizes the kinetic energy, subject to the constraint that
the scaled available potential energy is held fixed.

3 Problem formulation

3.1 Governing equations and numerical method

The governing equations for the present work are the incom-
pressible Navier–Stokes equations under the rigid lid and
Boussinesq approximations, given by (Kundu et al., 2012)

Du

Dt
=−∇p− ρgk̂+ ν∇2u, (6a)

∇ ·u= 0, (6b)
Dρ
Dt
= κ∇2ρ, (6c)

where D/Dt is the material derivative defined by

D
Dt
=
∂

∂t
+u · ∇, (7)

and

∇ =

(
∂

∂x
,
∂

∂z

)
. (8)

In these equations, u= (u,w) describes the velocity field
with u and w being the horizontal and vertical velocities, re-
spectively, ρ describes the density field, p is the pressure, g
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Figure 2. Graph of the model setup. Solid curves are isopycnals indicating the ISW and the linear waves in the initial field.

is the gravitational acceleration, k̂ is the unit vector in the
vertical direction (positive upwards), ν is the kinematic vis-
cosity, and κ is the molecular diffusivity. As is the common
practice under the Boussinesq approximation, the equations
are in dimensional form, except that the density ρ and pres-
sure p are scaled by the reference density ρ0. For all simu-
lations, we fix the viscosity at ν= 10−6 m2 s−1 and the dif-
fusivity at κ = 2× 10−7 m2 s−1. This gives a Schmidt num-
ber Sc = ν/κ = 5. Periodic boundary conditions are used in
the horizontal direction, and free-slip boundary conditions
are used at the top and bottom boundaries. We note that no-
slip conditions have also been tested but the difference is in-
significant, since the majority of the velocity perturbations
are found near the pycnocline. The effect of the Earth’s rota-
tion is neglected, and hence the simulations are performed in
an inertial frame of reference.

A complete description of the numerical model used in
this study can be found in Subich et al. (2013), where a de-
tailed validation and accuracy analysis through several test
cases is also given. The model employs a spectral colloca-
tion method, which yields highly accurate results at moderate
grid resolutions. From a purely numerical point of view, the
spectral method requires a minimum of two points in the hor-
izontal direction in order to completely resolve a wave (Tre-
fethen, 2000). Nevertheless, in this study we employ high
resolution in order to better resolve the thin pycnocline, with
at least 10 grid points in the pycnocline and across the short
waves. For spatial discretization, equally spaced grid points
are used in both horizontal and vertical directions. As appro-
priate for the boundary conditions, the Fourier transform is
applied in the x direction, whereas the Fourier sine or co-
sine transform is applied in the z direction depending on the
variable of interest. For time stepping, the model employs
an adaptive third-order multistep method, where viscous and
diffusive terms are solved implicitly, and pressure is com-
puted via operator splitting.

3.2 Model setup and parameter space

A graph showing the model setup is given in Fig. 2, where
a right-handed Cartesian coordinate system is considered

with the origin fixed at the lower left corner of the domain.
The position vector is expressed as x = (x,z), with the x axis
directed to the right along the flat bottom and the z axis point-
ing up towards the surface. The two-dimensional, rectangu-
lar computational domain is on the laboratory scale and has
an overall length Lx = 10 m and a depth Lz = 0.5 m. It con-
sists of an ISW subdomain of length Lisw = 4 m and a lin-
ear wave subdomain of length Llin = 6 m. The grid size is
Nx ×Nz= 4096× 512, which gives a horizontal grid spac-
ing of 2.44 mm and a vertical grid spacing of 0.98 mm.

We focus on flows in a quasi-two-layer stratification with
a dimensionless density difference 1ρ = 0.01, for which the
Boussinesq approximation can be safely adopted. The back-
ground density profile, non-dimensionalized by the reference
density ρ0, is given by

ρ̄(z)= 1− 0.51ρ tanh
(
z− z0

d

)
, (9)

where z0 is the location of the pycnocline and d is the half-
width of the pycnocline. The specific location of the pycno-
cline does not affect the dynamics of the interaction between
the ISW and the linear waves in general, except for the case
where the pycnocline is close to the surface such that the
ISW could be breaking (Lamb, 2002, 2003). In this work, we
set z0 = 0.4 m in order to avoid this situation. The thickness
of the pycnocline can affect the gradient Richardson number
through the buoyancy frequency profile it determines, which
may have an impact on the interaction. However, this topic is
not the focus of the present work (see Sect. 6). In this work,
we simply set d = 0.01 m for all simulations.

The initial solitary wave is specified by interpolating a so-
lution of the DJL equation onto the ISW subdomain. Pa-
rameters of the particular solitary wave solution considered
in this work are given in Table 1. Here, we compute the
Reynolds number Re based on the amplitude and maximum
wave-induced current as

Re=
umaxηmax

ν
. (10)

While there are a variety of Reynolds number estimates avail-
able in the literature, this simple estimate is more relevant to
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Table 1. Solitary wave parameters. Here, the amplitude is measured by the maximum isopycnal displacement ηmax, and the wavelength is
measured by the horizontal velocity profile along the inviscid upper boundary according to the formula λisw = 2(xR−xL), where xR and xL
satisfy the equation u(xR,Lz)= u(xL,Lz)= 0.5umax.

Amplitude Propagation speed Maximum current Minimum current Wavelength Reynolds number Richardson number
ηmax (cm) cisw (cms−1) umax (cms−1) umin (cms−1) λisw (m) Re Rimin

9.70 10.54 5.53 −3.83 2.66 5.36× 103 0.246

Figure 3. Filled contours showing the horizontal velocity induced by the ISW, with positive current shown in red and negative current shown
in blue. The dashed curve shows the isopycnal displacement along the pycnocline. The black contours show the gradient Richardson number
with Ri= 0.25, 0.4, 0.6, and 1 from inside to outside.

the length and velocity scales set by the ISW. The gradient
Richardson number Ri is defined by

Ri=
N2

u2
z

, (11)

where u is the ISW-induced horizontal current, and Rimin is
the local minimum of the Richardson number. It measures the
ratio between the strength of the stratification and the shear
stress in a parallel shear flow. The horizontal velocity profile
of the ISW, together with the Richardson number contours,
is shown in Fig. 3. The figure shows that the Richardson
number has a local minimum in the high-shear region across
the pycnocline along the wave crest, and is very large out-
side this region. We note that while Rimin given in Table 1 is
slightly smaller than the critical Richardson number 0.25, the
Richardson number criterion Ri< 0.25 is a necessary but not
sufficient condition for linear stability in a parallel shear flow.
Moreover, due to the fact that ISW-induced flow is not nec-
essarily a parallel shear flow, the onset of shear instability is
possible only when Ri is considerably smaller than 0.25 over
a region long enough for perturbations to amplify in space
(Lamb and Farmer, 2011). Thus, the onset of shear instabil-
ity is not likely to occur.

We perform a suite of simulations in which the solitary
wave propagates to the right and interacts with a small-scale
wave packet initialized from linear waves. The linear waves
are specified by solving the TG equation numerically us-
ing a pseudo-spectral technique (Trefethen, 2000) in the lin-

ear wave subdomain. In order to ensure a smooth transition
across the boundaries between the ISW subdomain and the
linear wave subdomain, an envelope function is applied to
the amplitude of linear waves. The particular form of the en-
velope function used here is given by

env(x)= 0.5tanh
[
x− (Lisw+ 1)

0.2

]
− 0.5tanh

[
x− (Lx − 1)

0.2

]
, (12)

although by testing other forms we found that results are not
sensitive to the exact shape of the envelope.

We consider linear waves of wavelengths ranging from 0.2
to 0.6 m, whose parameters are given in Table 2. For waves
with a wavelength less than 0.2 m, nonlinear self-interaction
(Sutherland, 2016) becomes evident and may affect the inter-
action, whereas waves with a wavelength larger than 0.6 m
may no longer be considered “short” in comparison to the
ISW width. We examine two types of interaction in particu-
lar: an “overtaking collision” means that the ISW and the lin-
ear waves propagate in the same direction, whereas a “head-
on” collision means that the two propagate in the opposite
direction. The amplitude of linear waves is set to be 1 cm
for all cases. According to the linear theory, the propagation
of linear internal waves is independent of their amplitude, at
least at the limit of small-amplitude waves. In fact, simula-
tions with an amplitude of 2 cm have produced quantitatively
similar results, and thus will not be discussed in this paper.
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Table 2. Linear wave parameters. In the case labels, O indicates an “overtaking” collision and H indicates a “head-on” collision, and the
proceeding digits correspond to the wavelength of the linear waves.

Case label Wavelength Wave number Phase speed Group speed Timescale
λ (m) k (m−1) cp (cms−1) cg (cms−1) τ (s)

Cases with an overtaking collision

O2 0.2 31.41 3.44 1.34 110
O2.5 0.25 25.13 3.93 1.65 113
O3 0.3 20.94 4.36 1.97 117
O4 0.4 15.71 5.06 2.59 126
O5 0.5 12.57 5.61 3.17 136
O6 0.6 10.47 6.05 3.69 146

Cases with a head-on collision

H2 0.2 31.41 −3.44 −1.34 84
H2.5 0.25 25.13 −3.93 −1.65 82
H3 0.3 20.94 −4.36 −1.97 80
H4 0.4 15.71 −5.06 −2.59 76
H5 0.5 12.57 −5.61 −3.17 73
H6 0.6 10.47 −6.05 −3.69 70

Figure 4. Shaded density contours (full range of density shown, green denotes the pycnocline centre) showing the solitary wave and the linear
waves in the case O2 (a) before, (b) during, and (c) after the collision. Panel (d) shows the corresponding density field from the simulation
performed with the same linear wave packet but without the solitary wave. Note the difference in x axis for each panel.
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Figure 5. Same as Fig. 4 but for O6. Vertical lines in panels (c) and (d) show the misalignment of wave crests in the two density fields.

For each experiment, we measure the time, τ , over which the
solitary wave (which moves at the speed cisw) and the linear
wave packet (which moves at the speed cg) experience a full
collision cycle by defining

τ =
Lx

cisw− cg
. (13)

At t = τ , the location of the solitary wave relative to the lin-
ear wave packet is approximately the same as it was in the
initial field. In all figures presented in this paper, reported
time T is scaled by this quantity such that T = t/τ .

We would like to mention that these linear waves are in
fact not purely linear during the simulations. However, by
scaling the relevant terms (i.e. Bt and BBx) in the KdV equa-
tion (Eq. 3) using the amplitudes and wavelengths of these
waves, we found that the timescale at which the nonlinear-
ity becomes important is on the order of 1000 s, at least for
waves with an amplitude of 1 cm and a wavelength larger
than 0.2 m. In contrast, the timescale of the interaction, as
indicated in Table 2, is on the order of 100 s. Hence, for clar-
ity of notation, the small-scale waves will still be referred to
as “linear waves”, as opposed to the “solitary wave” or the
“ISW”, in the remainder of this paper.

4 Simulation results

4.1 Evolution of flow fields

An impression of the overall flow behaviour in the case O2
can be gained from Fig. 4. The initial density profile is shown
in Fig. 4a, where the disparity in both amplitude and length
scale between the solitary wave and the linear waves can be
clearly seen. The linear waves have an amplitude that is ap-
proximately 10 % of the solitary wave and a wavelength of
7.5 % of the solitary wave. Figure 4b shows that as the lin-
ear waves pass through the solitary wave, they are deformed
significantly such that they have lost their coherent, wave-
like structure almost entirely. Figure 4c shows that after the
collision, the disturbance behind the solitary wave has a spa-
tial structure that is completely different from the initial lin-
ear waves. To demonstrate that such deformation of linear
waves does not occur naturally but is a result of the collision,
we performed an additional simulation with the same linear
wave packet but without the solitary wave. The resulting den-
sity field at T = 1 is shown in Fig. 4d.

The density profiles of the case O6 are shown in Fig. 5.
The initial density profile, visible in Fig. 5a, shows again
the disparity between the solitary wave and the linear waves,
though in this case the wavelength of the linear waves is
3 times larger than that in the previously discussed case (or
22.5 % of the wavelength of the solitary wave). Figure 5b

www.nonlin-processes-geophys.net/25/1/2018/ Nonlin. Processes Geophys., 25, 1–17, 2018
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Figure 6. Detailed density contours of the simulations (a) O2 and (b) H2, showing the overturning of the linear waves during the collision.
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Figure 7. Vertical structure profiles of the linear waves with wavelengths of (a) 0.2 m and (b) 0.6 m in the initial, undisturbed state (solid
curve) and the ISW-induced background state with an overtaking collision (dot-dashed curve), a head-on collision (dashed curve), and
a hypothetical zero-background current (dotted curve).

and c show, however, that unlike in the previously discussed
case, the linear waves are able to retain their spatial structure
throughout the collision. The amplitude is also maintained,
suggesting that energy loss during the collision is small. In-
stead, comparison to Fig. 5d, which shows the correspond-
ing density profile obtained from the simulation with linear
waves only, suggests that the primary effect of the collision
on the linear waves is a phase shift, as indicated by the ver-
tical lines. We will revisit the energy loss in these cases in
Sect. 5.

4.2 Destruction of short waves

In Fig. 6, we show details of the density field during the
overtaking collision in case O2 (Fig. 6a), and compare it
with the density field during the head-on collision in case
H2 (Fig. 6b). In both cases, the linear waves in front of the

solitary wave are unperturbed, whereas those behind the soli-
tary waves are almost completely destroyed. Inside the soli-
tary wave, the deformation of linear waves in the two cases
proceeds in a qualitatively different manner. Figure 6a shows
that for the overtaking case, overturning of the linear waves
occurs above the pycnocline centre, while Fig. 6b shows that
for the head-on collision case, overturning occurs with and
below the pycnocline.

As suggested in Fig. 3, the overturning of short waves is
not triggered by the shear instability since the local Richard-
son number is not small enough and the high-shear region
is not long enough. To understand what causes the deforma-
tion of short waves in these cases, we performed an analysis
similar to Stastna et al. (2015), in particular their Fig. 9. We
first extracted the background horizontal velocity and buoy-
ancy frequency profiles at the crest of the solitary wave. This
background state consists of a pycnocline lower than that in

Nonlin. Processes Geophys., 25, 1–17, 2018 www.nonlin-processes-geophys.net/25/1/2018/
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Figure 8. Detailed density contours showing the mode-2 wave packet (a) before and (b) after the collision with the solitary wave.

an undisturbed situation, and a horizontal velocity with sig-
nificant shear across the deformed pycnocline. We then com-
puted the linear wave solution with a wavelength of 0.2 m in
this background environment using the TG equation (Eq. 1),
and compared it with the solution in the undisturbed back-
ground environment. The mode structure functions of these
solutions are plotted in Fig. 7a. This figure shows that the
vertical structure of the horizontal velocity induced by lin-
ear waves is highly dependent on the stratification and the
background current, such that for both overtaking and head-
on collision cases, the structure functions at the solitary wave
crest (indicated by dashed and dot-dashed curves) are com-
pletely different from their initial, undisturbed state (indi-
cated by the solid curve). The locations of maximum am-
plitude of the structure functions are shifted downward from
their undisturbed situation, in order for the linear waves to
adapt to the new solitary-wave-induced background strati-
fication. However, there is a qualitative difference between
the overtaking and head on collision as well. Indeed, un-
der the influence of the shear background current, the struc-
ture function in the overtaking (head-on) collision case has
its maximum value above (below) the disturbed pycnocline.
This is consistent with the observation in Fig. 6 that inside
the solitary wave, perturbations in the overtaking (head-on)
collision case have a wave-like structure above (below) the
pycnocline. We also note that if there is no velocity shear
in the background, the vertical structure of linear waves of
a given wavelength (e.g. λ= 0.2 m in this case, as indicated
by the dotted curve) depends only on the stratification, re-
gardless of the direction they propagate in. Moreover, the
vertical structure with respect to the pycnocline centre is es-
sentially unchanged. This suggests that the velocity shear
in the background alters the vertical structure of the short
waves in a nonlinear manner and leads to the observation that
a head-on collision manifests differently from an overtaking
collision.

In Fig. 7b, we made the same plot for linear waves with
a wavelength of 0.6 m. The figure shows that the key dif-
ference in the initial structure function is that it has a non-
negligible value over a much larger vertical extent. As a re-
sult, near the pycnocline centre, changes in the vertical struc-
ture functions are much less dramatic in both the overtak-
ing and head-on collision cases. Therefore, longer waves are
able to adapt to the ISW-induced background environment
more easily and hence are more likely to survive the collision
with the solitary wave. We also note that formally changing
the amplitude of linear waves does not change their vertical
structures and thus does not affect the dynamics of the col-
lision process, though in practice larger amplitude waves are
expected to have a different (i.e. Stokes wave) structure.

4.3 Comparison of mode-1 to mode-2 collisions

The above analysis suggests that as the linear waves en-
ter into the solitary-wave-induced background state, they are
subject to a modified stratification and a velocity shear due
to solitary-wave-induced current, and it is this velocity shear
across the deformed pycnocline that leads to the deformation
of short waves. This process is in many ways similar to that
found in Stastna et al. (2015). However, a key difference is
that the disintegration of mode-2 waves due to the collision
is much less dependent on their wavelength. To compare and
contrast with their results, we performed an additional sim-
ulation, with mode-2 waves of amplitude of 1 cm and wave-
length of 0.6 m interacting with the same ISW with an over-
taking collision. The phase and group speeds of the mode-2
waves are cp = 1.43 cms−1 and cg = 1.35 cms−1, respec-
tively, much smaller than their mode-1 counterparts. Figure 8
shows that after the collision with the ISW, the mode-2 waves
are almost completely destroyed, except for some mode-1-
like disturbances found near x = 8 m in Fig. 8b.

In Fig. 9, we plotted the vertical structure functions for
mode-2 waves in the ISW-induced background environment.
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Figure 9. Same as Fig. 7 but for mode-2 waves.

The figure shows that the presence of velocity shear leads
to significant changes in the vertical structures of horizontal
velocity profiles of mode-2 waves with wavelengths of both
0.2 and 0.6 m. In the latter case, the deformed vertical struc-
ture functions show characteristics of mode-1 waves, with
essentially no perturbation below (above) the pycnocline for
the overtaking (head-on) case. This is similar to Fig. 9b in
Stastna et al. (2015), but fundamentally different from our
Fig. 7b, implying that mode-1–mode-2 collisions are differ-
ent from mode-1–mode-1 collisions. In fact, mode-2 waves
were unable to maintain their coherent structure after the col-
lision with mode-1 waves in all simulations in Stastna et al.
(2015). Recent experiments (M. Carr, personal communica-
tion, 2017) suggest that the situation is more complex when
the mode-1 wave amplitude is comparable to the mode-2
wave amplitude, though it is unclear if such a situation had
relevance to situations in the ocean.

4.4 Change of phase speed

Recall from Fig. 5 that a secondary effect of the interaction
is a phase shift of the linear waves. To explain this observa-
tion, consider the linear long-wave speed clw in a two-layer
stratification, defined by

clw =

√
1ρg

h1h2

H
, (14)

where h1 is the upper layer depth, h2 is the lower layer
depth, and H is the total depth. The long-wave speed sets
the limit of the phase speed of linear waves in a two-layer
stratification such that cp approaches clw as the wavelength
approaches infinity. Thus clw provides a good estimate of the
maximum phase speed in a quasi-two-layer stratification. Us-
ing the long-wave speed as a guide, we note that the phase
speed reaches its maximum value when h1 = h2 (i.e. when

the two layers are equal in depth), provided other parame-
ters (e.g. wavelength) remain constant. In our simulations,
since we consider an ISW of depression, the pycnocline at
the wave crest is close to the mid-depth. Hence, the linear
waves will experience an increase in phase speed as they
propagate through the ISW.

In addition to the stratification, the presence of background
current will also modify the phase speed. In Fig. 10, we ex-
plore the change of phase speed due to the presence of ISW-
induced shear current for mode-1 linear waves. For overtak-
ing collisions shown in Fig. 10a, at the long-wave limit, the
phase speed in the shear background current is very close
to that in a zero-background current. However, at the short-
wave limit, the figure shows that the phase speed in the shear
background current approaches the maximum ISW-induced
current, whereas the phase speed in a zero-background cur-
rent approaches 0 instead. This again suggests that short
mode-1 waves are more likely to be influenced by the non-
linear interaction with ISW. In particular, the critical wave-
length that determines whether the phase speed is signifi-
cantly influenced by the shear current is approximately 0.5 m,
where the phase speed in a zero-background current inter-
sects the maximum velocity of the shear current. On the other
hand, for mode-2 waves (not shown), the phase speed is al-
tered by the shear current throughout the whole spectrum of
wavelengths, since the phase speed in a zero-background cur-
rent is less dependent on the wavelength and is always much
smaller than the maximum velocity of the shear current. This
is also consistent with the fact that mode-2 waves are less per-
sistent after nonlinear interactions with the ISW. The fact that
the ISW-induced maximum current essentially sets the lower
limit for the phase speed of short waves implies that a criti-
cal layer does not exist for the ISW used in our simulations
(as well as those with smaller amplitude). While the above
analysis is performed for overtaking collisions (i.e. for linear
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Figure 11. Froude number of mode-1 linear waves in the ISW-induced background shear current for (a) overtaking and (b) head-on collisions
as a function of wavelength.

waves propagating to the right), we also examined head-on
collisions. As shown in Fig. 10b, at the short-wave limit, the
behaviour of the phase speed as a function of wavelength is
very similar to that in the cases of an overtaking collision, ex-
cept that now the phase speed is approaching the minimum
current induced by the ISW.

We would like to note that given the nonlinear nature of
the ISW, the interaction is indeed a nonlinear process, and
thus the linear theory can only provide some rough guide for
the flow behaviour. To measure the nonlinearity of the fluid
flows, we shall introduce the Froude number which, in the
context of internal wave dynamics, is usually defined as

Fr =
U

c
, (15)

where U is the background current and c is the phase speed
of the linear waves. The flow is said to be critical if Fr = 1,
in which case the nonlinear effects are dominant. In our sim-
ulations, for any x the vertically integrated U is essentially
0 since the flow is non-divergent in the simulation domain.
Thus, a better estimation of U would be the effective hori-
zontal velocity in a reference frame moving with the ISW,
which is essentially −cisw. In this reference frame, the esti-
mated c would be −cisw+ cp where cp > 0 for an overtaking
collision and cp < 0 for a head-on collision. Hence, we can
define the Froude number in a reference frame moving with
the ISW as

Fr =
cisw

cisw− cp
. (16)
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Figure 12. Power spectral density (PSD) of the initial horizontal velocity fields, computed from some of the overtaking collision cases.

Figure 11 shows the Froude number of the linear waves in
the ISW-induced background current as a function of wave-
length. The figure shows that Fr < 1 for an overtaking col-
lision and Fr > 1 for a head-on collision. In both cases, Fr
approaches 1 at the short-wave limit since short waves prop-
agate slower. This implies that in the interaction of ISWs with
short waves, the nonlinear effects become more important as
the wavelength of short waves becomes smaller.

5 Energetics

5.1 Diagnostic tool: power spectral density

A function that describes a physical process can be repre-
sented either in the physical space or in the Fourier space.
The two different representations are connected through the
Fourier transform. Suppose f is a function of position x
in the physical space, then the corresponding Fourier trans-
formed variable F is a function of the horizontal wave num-
ber k and is given by

F(k)=

∞∫
−∞

f (x)eikxdx. (17)

If x is bounded, then k takes discrete values

k = kn =
2nπ
Lx

, n= 0,1, . . .,∞. (18)

Parseval’s theorem states that the total power in a signal is
the same whether it is computed in the physical space or in
the Fourier space (Press et al., 2002). That is,

Total Power =

Lx∫
0

|f (x)|2dx =
∞∑
n=0
|F(kn)|

2dk. (19)

From this theorem, we can define the power spectral density
(PSD) of the function f as

PSD = |F(k)|2. (20)

The PSD is a function of the wave number k. It can be inter-
preted as the strength of the signal at each wave number. For
this reason, it provides a powerful tool for analyzing physical
processes.

In the remainder of this section, we compute the PSD of
horizontal velocity in the layer above the pycnocline and
use it to estimate the amount of wave energy being trans-
ferred during the collisions. The location of the horizontal
layer chosen for the analysis is z= 0.43 m (i.e. 3 cm above
the pycnocline), though we have also calculated the PSD at
other depths and found that results are not sensitive to the
particular choice of horizontal layer. The PSD profiles of the
initial horizontal velocity fields for some of the overtaking
collision cases (O2, O3, O4, and O6) are plotted in Fig. 12.
The figure clearly shows the wave number peaks due to the
small-scale waves, which occur at considerably larger wave
numbers than those associated with the ISW spectrum (the
peak near k = 0). This suggests that these small-scale waves
are indeed “short” in comparison to the ISW width. For each
simulation, we scale the PSD computed at the scaled time
T = 1 by the maximum PSD of the considered linear waves
observed in the initial field. According to Parseval’s theorem,
this ratio remains the same when mapped back into the physi-
cal space. Although only the horizontal velocity is used here,
computation of the PSD of the vertical velocity yields quan-
titatively similar results, as it usually decays in a way similar
to that of the horizontal velocity due to the interaction. Thus,
the scaled PSD of horizontal velocity represents the relative
strength of horizontal current at T = 1 and hence provides an
estimate of the percentage of kinetic energy remaining after
one full collision cycle.
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Figure 13. Scaled PSD of linear waves in the simulations with (a) an overtaking collision and (b) a head-on collision at T = 1.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.5

1

Overtaking collision
Head-on collision

Figure 14. Maximum values of the scaled PSD observed in Fig. 13 vs. their corresponding wavelengths.

5.2 Reduction of wave energy

In Fig. 13 we examine the energy reduction of linear waves
due to collision by plotting the PSD of horizontal velocity in
the wave number domain. The figure shows that in all cases,
there is a net loss of wave energy due to the collision. It also
shows that for a given solitary wave, the wavelength of the
linear waves (which remains unchanged after the collision) is
the single most important factor that determines the amount
of PSD (and hence wave energy) remaining after the colli-
sion. While the longest waves may retain as much as 85 %
of the kinetic energy they had initially, the shortest waves
lose almost all of their initial energy such that the peaks of
the PSD can hardly be distinguished from background noise.
Among other factors, a head-on collision is slightly more ef-
ficient in destroying the linear waves than an overtaking col-
lision, except for the small wavelength limit. This may be ex-
plained by the fact that during a head-on collision, the struc-
ture function (especially its peak) shifts further away from

its initial state than during an overtaking collision, as shown
in Fig. 7, such that the new ISW-induced background envi-
ronment is more difficult for the linear waves to adjust to.
In contrast, the initial amplitude of the linear waves has very
little impact on the net energy transfer due to collision, since
curves produced from simulations in which the linear waves
have an amplitude of 2 cm (not shown) are almost exactly
the same as their smaller amplitude counterparts shown in
Fig. 13a; though we did not consider large-amplitude short
waves, since these will have their own complex dynamics.

The maximum value of the scaled PSD as a function of
wavelength is plotted in Fig. 14, along with a quantitative
measurement in terms of percentage given in Table 3. The
figure and table show that the maximum value of the scaled
PSD increases monotonically as the wavelength increases,
for both overtaking and head-on collisions. It approaches 0 at
the short-wave limit and 1 at the long-wave limit. For waves
with a wavelength much longer than 0.6 m, simulation results
(not shown) suggest that the maximum values of the scaled
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Table 3. Quantitative measurement of the maximum values plotted
in Fig. 14.

Wavelength Simulation and scaled PSD

Overtaking collision Head-on collision

0.2 m O2 9.08 % H2 13.69 %
0.25 m O2.5 15.69 % H2.5 16.43 %
0.3 m O3 30.39 % H3 20.52 %
0.4 m O4 48.14 % H4 38.17 %
0.5 m O5 77.76 % H5 57.54 %
0.6 m O6 85.11 % H6 68.18 %

Table 4. Quantitative measurement of the peak values observed in
Fig. 15.

Simulation T = 1 T = 2 T = 3 T = 4

O6 85.11 % 76.08 % 66.40 % 60.20 %
H6 68.18 % 46.03 % 39.64 % 33.61 %

PSD at T = 1 are at the level of 90 % but are never larger than
100 %, implying that very little wave energy is being trans-
ferred from the short waves during the collision and that no
energy is transferred from the ISW to the short waves. For the
longest waves, the slight decrease in PSD is at a similar level
to viscous dissipation. We note that this observation is con-
sistent with the result shown in Fig. 10, since above the criti-
cal wavelength λ= 0.5 m, very little energy exchange occurs
due to the interaction.

For the cases O6 and H6, simulations were performed for
an extended period of time in order to allow for repeated col-
lisions between the solitary wave and the linear wave packet.
For each of these cases, four complete collision cycles were
observed, and the scaled PSD has been computed at T = 1,
2, 3, and 4, as shown in Fig. 15. The corresponding measure-
ment of the scaled PSD at each peak is given in Table 4. The
figure and table suggest that for both cases, the scaled PSD
is reduced after each subsequent collision, down to 60.20 %
in the case of O6 and 33.61 % in the case of H6 at T = 4.
Nevertheless, they are still larger than those of the shorter
waves after only one collision, implying that the wavelength
is an important factor that determines the wave energy being
transferred. Figure 15 and Table 4 also show that after each
collision cycle, the scaled PSD in the case of H6 is always
less than that of the case of O6, implying again that a head-
on collision is more efficient in destroying the linear waves.

5.3 Influence of the interaction on the ISW

During the collision with the linear wave packet, the solitary
wave is also affected by the linear waves that pass through
it. We note, however, that the kinetic energy carried by the
linear waves is much smaller than that carried by the solitary
wave, and hence the impact of linear waves on the solitary

wave is also small. Here, we define the kinetic energy (KE)
per unit mass following standard convention (which drops
the reference density and hence changes the dimensions of
the quantity) by

KE =
1
2
(u2
+w2). (21)

We found that when measured in terms of vertically inte-
grated kinetic energy at the wave crest, the linear waves are
about 1 % as energetic as the solitary wave.

To analyze changes in the solitary wave and determine if
they are results of the collision, we performed an additional
simulation with the same solitary wave but without the linear
waves. We estimated the vertically integrated KE at the crest
of the ISW for simulations with and without linear waves,
and plotted the difference as time series (i.e. as functions of
scaled time T ) in Fig. 16 over one complete collision cycle.
Mathematically, this quantity is computed as

1
A

max
0≤x≤Lx

Lz∫
0

(KEfull − KEisw)dz

 , (22)

where A is the normalization factor defined as the maximum
vertically integrated KE of the initial solitary wave. The sub-
script “full” denotes variables from simulations with both
solitary and linear waves, and the subscript “isw” denotes
variables from simulations with a freely propagating solitary
wave. For linear waves with a wavelength λ= 0.2 m shown
in Fig. 16a, there is a net energy transfer into the solitary
wave as a result of the interaction, such that the maximum
vertically integrated KE has increased by at least 1 %. We
are able to confirm that such an energy increase in the soli-
tary wave is robust since we have also performed additional
simulations with a longer linear wave packet (not shown),
and found that the maximum vertically integrated KE in-
creases approximately linearly with respect to the length of
the wave packet. On the other hand, for waves with a wave-
length λ= 0.6 m shown in Fig. 16b, energy increase in the
solitary waves after the collision is insignificant. In all cases,
the curves shown demonstrate periodicity associated with
their particular wavelengths.

We have also attempted to detect the phase shift of the
solitary waves from the locations of maximum vertically in-
tegrated KE. However, we found that such a phase shift, if
it exists at all, is on the order of millimetres. In other words,
the detected phase shift is on the grid scale and is subject
to numerical error. For this reason, the results are not shown
here.

6 Conclusions

In this work we performed two-dimensional direct numeri-
cal simulations to study the interaction between a large-scale
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Figure 15. Scaled PSD of the cases (a) O6 and (b) H6 after repeated collisions.
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fully nonlinear ISW and small-scale linear internal waves.
We demonstrated that there was a net energy transfer from
the small-scale linear waves to the large-scale solitary waves.
This contrasts the conclusion in Broutman and Young (1986),
made for a different type of internal wave interaction, that
energy is transferred from large-scale waves to small-scale
waves. Our simulation results suggest that during the inter-
action, the solitary wave essentially acts as a filter through
which only long waves may pass. For waves with a smaller
wavelength, the interaction leads to a reduction of their initial
energy and a destruction of their spatial structure. These pro-
cesses occur in a background state set by the solitary-wave-
induced stratification and current. During the interaction, ad-

justment of the short waves to this new background environ-
ment extracts their wave energy and modifies the wave struc-
ture. The fact that short waves may not survive the interac-
tion with a solitary wave, or more generally any localized
nonlinear background environment which both deforms the
pycnocline and induces shear, implies that the observed spec-
trum of wavelengths of internal waves in locations with large
amplitude ISWs (such as Straits) is likely to be deficient in
short waves. At the time of writing we are unaware of mea-
surements to support or contradict this hypothesis.

We performed analysis based on linear wave theory and
showed that during the nonlinear interaction with the ISW,
the destruction of short linear waves occurs primarily due to
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the presence of ISW-induced velocity shear, which alters the
vertical structure of the short waves in a nonlinear manner,
leading to significant wave amplitudes on only one side of
the deformed pycnocline centre. On the other hand, a shift
of the location of the pycnocline plays a secondary role dur-
ing the collision, as its main effect is to alter the propagation
speed of the linear waves, and shift the location of the maxi-
mum of the vertical structure downward. However, the verti-
cal structure is unchanged with respect to the pycnocline cen-
tre. We also demonstrated that a critical layer is not present
during the collision, regardless of the wavelength of the lin-
ear waves, since the phase speed approaches the maximum
ISW-induced current asymptotically as the wavelength ap-
proaches 0.

A clear avenue of future research is to explore the param-
eter space, in particular the Richardson number effect, of the
solitary wave. In the present work, we studied the ISW whose
minimum Richardson number is 0.246. Although none of the
simulations show evidence of the generation of shear insta-
bility, this does not necessarily mean that the wave–wave
interaction considered in the present work is Richardson
number independent. Moreover, Lamb and Farmer (2011)
showed that it is not only the minimum Richardson number
but also the length of the unstable region with a low Richard-
son number relative to the wavelength of ISW that is jointly
responsible for the generation of shear instability in an ISW.
It is thus reasonable to assume that the relative length of the
region with a low Richardson number in the ISW also has an
influence on the wave–wave interaction. Future research will
explore these effects in detail.

We note that our findings are in many ways similar to those
in Stastna et al. (2015). Their study also concluded that the
direction of energy transfer during the interaction is from the
small-scale weakly nonlinear wave (i.e. the mode-2 wave)
to the large-scale solitary wave (i.e. the mode-1 wave), and
that such energy transfer is more efficient when a head-on,
instead of overtaking, collision is involved. The main differ-
ence is that in a mode-1–mode-1 interaction, there is a cutoff
determined by the wavelength of short waves, above which
the small-scale waves maintain their structure after interac-
tion, whereas a mode-1–mode-2 interaction is much less de-
pendent on the wavelength. In a mode-1–mode-1 interac-
tion, this cutoff corresponds to the wavelength at which the
phase speed of the short waves upstream of the solitary wave
exceeds the maximum ISW-induced current. In a mode-1–
mode-2 interaction, however, this cutoff does not exist since
the maximum ISW-induced current is always larger than the
phase speed for any given wavelengths.

While all of the simulations discussed in this work are per-
formed on the laboratory scale, the scaling-up of the current
experiments to the field scale is left as a topic for future work.
When the field scale is considered, waves with a much larger
range of wavelengths can be expected to breakdown, in-
cluding short waves affected by self-interaction (Sutherland,
2016). Also, a higher Reynolds number implies that the over-

turning seen in Fig. 6 may eventually lead to significant over-
turns. The three-dimensionalization of the flow field should
also be examined. As shown in Andreassen et al. (1994),
two-dimensional models are unable to properly describe the
physics or the consequences of the wave-breaking process,
in particular those consequences induced by the presence of
a critical layer. We also note that in two dimensions, the only
possible form of wave–wave interaction is either an overtak-
ing collision or a head-on collision. However, observational
evidences (e.g. Quaresma et al., 2007; in particular, see their
Figs. 2 and 8) suggest that internal waves do not generally
propagate parallel to each other but may interact at different
angles. The effects of directionality of wave propagation is
another topic that can be considered in forthcoming studies.
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