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Abstract. The dynamics and energetics of a head-on colli-
sion of internal solitary waves (ISWs) with trapped cores
propagating in a thin pycnocline were studied numerically
within the framework of the Navier–Stokes equations for a
stratified fluid. The peculiarity of this collision is that it in-
volves trapped masses of a fluid. The interaction of ISWs dif-
fers for three classes of ISWs: (i) weakly non-linear waves
without trapped cores, (ii) stable strongly non-linear waves
with trapped cores, and (iii) shear unstable strongly non-
linear waves. The wave phase shift of the colliding waves
with equal amplitude grows as the amplitudes increase for
colliding waves of classes (i) and (ii) and remains almost
constant for those of class (iii). The excess of the maxi-
mum run-up amplitude, normalized by the amplitude of the
waves, over the sum of the amplitudes of the equal collid-
ing waves increases almost linearly with increasing ampli-
tude of the interacting waves belonging to classes (i) and (ii);
however, it decreases somewhat for those of class (iii). The
colliding waves of class (ii) lose fluid trapped by the wave
cores when amplitudes normalized by the thickness of the
pycnocline are in the range of approximately between 1 and
1.75. The interacting stable waves of higher amplitude cap-
ture cores and carry trapped fluid in opposite directions with
little mass loss. The collision of locally shear unstable waves
of class (iii) is accompanied by the development of instabil-
ity. The dependence of loss of energy on the wave amplitude
is not monotonic. Initially, the energy loss due to the inter-
action increases as the wave amplitude increases. Then, the
energy losses reach a maximum due to the loss of potential
energy of the cores upon collision and then start to decrease.
With further amplitude growth, collision is accompanied by
the development of instability and an increase in the loss of
energy. The collision process is modified for waves of dif-
ferent amplitudes because of the exchange of trapped fluid

between colliding waves due to the conservation of momen-
tum.

1 Introduction

Internal solitary waves (ISWs) are widespread in stratified
oceans and lakes (Helfrich and Melville, 2006). The ob-
served ISWs are mostly waves of mode-1 and propagate as
waves of depression or as waves of elevation. When near-
surface or near-bottom layers are stratified, then mode-1
ISWs of large amplitude can trap and transport fluid in their
cores, as observed in the ocean (Moum et al., 2003; Lien et
al., 2012; Klymak and Moum, 2003; Scotti and Pineda, 2004)
and in the atmospheric boundary layer (the phenomenon
known as “the morning glory”; Christie, 1992; Reeder et al.,
1995). These waves have been studied in laboratory exper-
iments (Grue et al., 2000; Carr et al., 2008; Luzzatto-Fegiz
and Helfrich, 2014). The fluid can also be trapped by ISWs
of mode-2 (Yang et al., 2010; Shroyer et al., 2010; Ramp
et al., 2015) propagating in the thin interface layer between
two uniform density layers, as has been shown in labora-
tory experiments (e.g. Davis and Acrivos, 1967; Maxwor-
thy, 1980; Kao and Pao, 1980; Honji and Matsunaga, 1995;
Stamp and Jacka, 1995; Maderich et al., 2001; Brandt and
Shipley, 2014; Carr et al., 2015). The weakly non-linear so-
lution for the corresponding ISW (i.e. the Benjamin–Ono
(BO) soliton; Benjamin, 1967; Ono, 1975) agrees well with
experimental data for a small-amplitude ISW without mass
transport. However, experiments and numerical solutions of
both the Dubreil–Jacotin–Long (DJL) equation and the ac-
tual Navier–Stokes equations (Lamb, 2002; Helfrich and
White, 2010; Lamb and Farmer, 2011; Salloum et al., 2012;
Maderich et al., 2015; Luzzatto-Fegiz and Helfrich, 2014;
Deepwell and Stastna, 2016) show that BO solitons cannot
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even qualitatively describe the dynamics and transport fea-
tures of large-amplitude waves. A detailed review of labora-
tory and numerical experiments is given by Maderich et al.
(2015).

Little is known regarding the interaction of waves with
trapped cores. This kind of interaction is of special interest,
as the masses of fluid trapped by waves are also involved
in the interaction. The oblique interaction of “morning glo-
ries” over northern Australia was described by Reeder et al.
(1995). Head-on collision as a special case of oblique interac-
tion was considered by Matsuno (1998) using a second-order
analysis of small-amplitude interfacial waves in deep fluid.
A mostly qualitative description of the head-on collision of
mode-2 waves with trapped cores, obtained by conducting
several laboratory experiments (Kao and Pao, 1980; Honji
and Matsunaga, 1995; Stamp and Jacka, 1995; Gavrilov
et al., 2012) and via a numerical simulation (Terez and
Knio, 1998), has been given. These experiments showed that
(i) waves experience a phase shift during collision, (ii) large-
amplitude waves transport trapped masses of fluid after col-
lision, (iii) waves of unequal amplitude exchange masses
of trapped fluid in the interaction process, and (iv) some
trapped fluid is ejected upon collision. According to Gear and
Grimshaw (1984), interaction processes can be distinguished
as strong interactions when waves propagate in almost the
same direction and the time of interaction is relatively long
and as weak interaction when waves propagate in almost
opposite directions and the time of interaction is relatively
short. However, a numerical study of both overtaking and
head-on collisions of large-amplitude mode-1 and weakly
non-linear mode-2 ISWs Stastna et al. (2015) showed that
these interactions are strong interactions resulting in the de-
generation of mode-2 ISWs. In this paper, the dynamics and
energetics of a head-on collision of ISWs with trapped cores
for a wide range of amplitudes and stratifications are stud-
ied numerically within the framework of the Navier–Stokes
equations. The paper is organized as follows: the numerical
flume set-up is described in Sect. 2, the results of experiments
on the collision of waves of equal and non-equal amplitudes
are discussed in Sect. 3, and the main results are summarized
in Sect. 4.

2 The numerical model set-up

A free-surface non-hydrostatic numerical model for variable-
density flows using the Navier–Stokes equations under the
Boussinesq approximation (Kanarska and Maderich, 2003;
Maderich et al., 2012) was applied in the simulations of
a numerical flume emulating a laboratory basin filled with
salinity-stratified water. The numerical flume and experimen-
tal configurations are shown in Fig. 1. The simulations were
performed in a 2-D setting where (x,y) are the Cartesian
coordinates in the longitudinal and vertical directions, re-
spectively. The vertical coordinate z is directed upward. The

Figure 1. Configuration of the experiment exploring the interaction
of ISWs with trapped cores.

flume has a length Lx = 3 m and a depth H = 0.46 m. It was
filled with salinity S stratified water, in which the density of
the upper layer is ρ1, and with a thin pycnocline near the
bottom, expressed as

ρ (z)= ρ0

(
1−

1ρ

ρ0
tanh

( z
h

))
, (1)

where ρ0 is the density at the bottom, 1ρ = ρ0− ρ1 is the
density difference between the bottom and the surface, and
h is a parameter of the pycnocline. An equation of state ρ =
ρ(S,T ) (Mellor, 1991) was used for constant temperature
T = 15 ◦C.

The ISWs were generated at both ends of the flume by the
collapse of the mixed regions with the density ρ0. Following
Maderich et al. (2015), the shape of the mixed region was
selected to be half of a BO soliton to reduce the mixing due
to the collapse. The wave amplitude varied according to the
initial volume of the mixed fluid and thickness of the pycn-
ocline h. The kinematic viscosity ν was 1.14× 10−6 m2 s−1,
and the molecular diffusion χ was 10−9 m2 s−1.

An ISW is characterized by an amplitude a, which repre-
sents the maximum displacement of the isopycnal (Fig. 1),
a wave speed Uc, calculated as the velocity of the wave
crest, and a wavelength λ0.5, estimated to be a half-width
with which the amplitude of the wave is reduced by half.
The maximal speed of the wave is Um. The wave parameters
were evaluated in the sections xL = xR = 0.5 m away from
the centre of the laboratory tank xC. For example, the ampli-
tudes of waves propagating from the left to the right in cross
sections xL and xR are defined as aL(xL) and aL(xR), while
those propagating from right to left are defined as aR(xL) and
aR(xR), respectively.

The simulation results are presented in dimensionless
form. The coordinates xi = (x,z) are normalized by h, and
the time τ = t/τ0 is dimensionless, where t is time, τ0 =√

2ρ0h/1ρg, and g is gravity; the velocity ui = (u,w) is
normalized to the long linear wave phase velocity C0 =√
gh1ρ/2ρ0 (Benjamin, 1967); p is pressure deviation in

the Boussinesq approximation normalized to the ρ0gh/2;
ρ′ = (ρ− ρ0)/ρ0 is non-dimensional density deviation. The
governing Navier–Stokes equations for stratified fluid in non-
dimensional form are written under the Boussinesq approxi-
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mation as

∂ui

∂xi
= 0, (2)

∂ui

∂τ
+ uj

∂ui

∂xj
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−

1
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Re
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)
, (3)

∂ρ′

∂τ
+ uj

∂ρ′

∂xj
=

1
Re Sc

∂2ρ′

∂xj∂xj
, (4)

where δij is the Kronecker delta, Re=C0h/ν is the Reynolds
number based on linear theory, and Sc= ν/χ is the Schmidt
number. The effect of the height of the computational tank on
the ISW propagation is described by the parameter ε =H/h.
It can be assumed that the results of experiments and sim-
ulation for small viscosity (Re→∞), small diffusivity for
water (Sc→∞), and deep water (ε→∞) will not depend
on the viscosity, diffusivity, and depth. That case is referred
to by Barenblatt (1996) as a complete similarity in the pa-
rameters Re, Sc, and ε. Generally, however, the flow de-
pendence on the viscosity, diffusivity, and depth can be re-
tained at Re→∞, Sc→∞, and ε→∞, and scaling on
them is called incomplete (Barenblatt, 1996). In most cases
it is impossible to determine the kind of self-similarity a pri-
ori, until the solution of the full problem is available. Like
(Maderich et al., 2015), we follow the suggestion by Baren-
blatt (1996) “assuming in succession complete similarity, in-
complete similarity, lack of similarity – and then compar-
ing the relations obtained under each assumption with data
from numerical calculations, experiments, or the results of
analytic investigations”. The simulation results (Maderich et
al., 2015) show that the flume depth in the range 23≤ ε ≤ 92
does not affect the characteristics of the ISWs with trapped
cores. The sensitivity of the wave dynamics to the values of
ε was found by Carr et al. (2008) in the range 4≤ ε ≤ 11.
From these studies we conclude that results of our simula-
tions in the range 23≤ ε ≤ 92 (Table 1) do not depend on ε.
The possible effects of Schmidt and Reynolds numbers will
be discussed in Sect. 3.4 and 3.6.

The important features of the ISWs can be described by the
dimensionless amplitude α = a/h, and the Froude, Richard-
son, and Reynolds numbers based on local characteristics of
the waves (Maderich et al., 2015). The Froude number Frmax
is defined as the ratio of the maximum local velocity Um to
the phase velocity Uc:

Frmax =
Um

Uc
. (5)

The shear stability of an ISW can be described by the mini-
mum Richardson number Rimin calculated for a wave crest:

Rimin =
g

ρ0

∂ρ

∂z
/

(
∂U

∂z

)2

, (6)

where ρ(x,y,z, t) is the density, and U is the longitudinal
component of velocity. The ISW Reynolds number is defined
as

Rem =
Um(a)

ν
. (7)

The parameters of the interacting ISWs studied are given
in Table 1. The waves are divided into four groups: (A, B,
C) depending on the thickness of the stratified layer and
D for simulation of ISW reflection from a vertical wall in
the laboratory experiment (Stamp and Jacka, 1995). The
waves in Table 1 can be categorized according to the values
of the parameters Frmax and Rimin (Maderich et al., 2015)
into three classes: (i) the weakly non-linear waves without
trapped cores at 1< Rimin, Frmax < 1; (ii) the stable strongly
non-linear waves with trapped cores at 0.15< Rimin < 1, 1<
Frmax < 1.3; and (iii) the unstable strongly non-linear waves
with trapped cores at Rimin < 0.1; Frmax ≈ 1.35. The bound-
ary conditions on the surface include the kinematic condition
for the free surface. At the rest of the boundaries, the free-
slip conditions are used. The no-flux condition for density
deviation was applied at all boundaries. For large ε, these
allow for the simulation of the interaction of mode-1 ISWs
with a trapped core, propagating in stratified layers near the
surface and the ISWs interaction near the bottom, as con-
sidered here, and the interaction of mode-2 ISWs, assuming
symmetry in the Boussinesq approximation around the hor-
izontal midplane (Maderich et al., 2015). The numerics of
the model is described in detail in (Kanarska and Maderich,
2003; Maderich et al., 2012). A total of 40 runs were per-
formed in Series A–D. Most of the runs were performed with
a grid resolution of 3000× 400 (length and height, respec-
tively), whereas several runs (waves A11–A13) were also
carried out with a grid resolution of 6000× 800 to verify ef-
fects of grid resolution on the wave interaction and to make
the finest structure clearer. Comparison of the main and dou-
bled grid resolution showed the equivalence of the calculated
fields, with the exception of wave A13, for which 6000×800
resolution was used.

3 Results and discussion

3.1 Interaction of waves of equal amplitudes without
trapped cores

The interaction of ISWs of equal amplitude αL = αR = 0.81
(case (A2; A2)) is shown in Fig. 2a. These waves belong to
the class of weakly non-linear waves without trapped cores
(Frmax = 0.71, Rimin = 52). After a collision, waves retain
their profile and lose amplitude mainly due to viscous ef-
fects. Before and after collision, the wave profiles are sim-
ilar to those of the weakly non-linear BO solitons even if
the wave amplitudes are not small (Fig. 3). The collision for
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Table 1. Summary of parameters of interacting ISWs: pycnocline thickness parameter h, wave amplitude a, wavelength λ0.5, ratio ε, dimen-
sionless ISW amplitude α, Froude number Frmax, minimum Richardson number Rimin, Reynolds number Rem, and ISW class.

Wave h a λ0.5 ε α Frmax Rimin Rem Wave
(cm) (cm) (cm) class

A1 0.5 0.25 3.15 92 0.5 0.33 81 45.1 i
A2 0.5 0.4 2.35 92 0.81 0.71 52 86.6 i
A3 0.5 0.58 1.9 92 1.15 0.82 14 132 i
A4 0.5 0.68 2 92 1.35 0.98 11 166 i
A5 0.5 0.8 2.2 92 1.6 1.11 1.1 223 ii
A6 0.5 0.94 2.4 92 1.88 1.12 0.8 277 ii
A7 0.5 1.08 2.65 92 2.15 1.16 0.4 338 ii
A8 0.5 1.3 3.15 92 2.6 1.25 0.35 443 ii
A9 0.5 1.7 3.65 92 3.3 1.28 0.25 683 ii
A10 0.5 1.9 4.25 92 3.38 1.29 0.19 785 ii
A11 0.5 2.3 4.75 92 4.6 1.3 0.15 1075 ii
A12 0.5 2.5 5.35 92 5 1.35 0.12 1242 iii
A13 0.5 3.2 6.35 92 6.4 1.31 0.06 1681 iii

B1 1 0.63 5.21 46 0.63 0.51 24 153 i
B2 1 0.85 4.23 46 0.85 0.68 11.5 225 i
B3 1 1.25 3.61 46 1.25 1.02 2.4 388 ii
B4 1 1.95 5.25 46 1.95 1.16 0.38 765 ii
B5 1 2.68 6.65 46 2.68 1.22 0.18 1225 ii
B6 1 2.86 7.1 46 2.86 1.22 0.13 1345 ii
B7 1 3.56 8.6 46 3.56 1.23 0.11 1839 iii

C1 2 0.42 14 23 0.21 0.19 52 161 i
C2 2 0.76 10.4 23 0.38 0.30 25 291 i
C3 2 1.2 7 23 0.6 0.50 3.1 511 i
C4 2 1.7 6.1 23 0.85 0.69 1.1 669 i
C5 2 2.02 6.21 23 1.01 0.84 0.45 881 i
C6 2 2.6 6.25 23 1.3 0.9 0.23 1159 i
C7 2 2.9 7.22 23 1.45 1.01 0.22 1483 ii
C8 2 3.3 7.9 23 1.65 1.08 0.18 1851 ii
C9 2 3.5 8.5 23 1.75 1.147 0.15 2030 ii
C10 2 4.1 9.2 23 2.05 1.17 0.13 2521 ii
C11 2 4.56 10.82 23 2.28 1.23 0.12 2812 ii
C12 2 4.846 12.44 23 2.42 1.24 0.09 3171 iii
C13 2 5.28 13.4 23 2.64 1.25 0.07 3478 iii
C14 2 5.94 15.31 23 2.97 1.29 0.05 3884 iii

D1 0.25 0.55 12.5 56 2.2 1.18 1.05 329 ii

this class of wave is not fully elastic. For a two-layer strati-
fication, in which the outer layer is assumed to be infinitely
deep, a weakly non-linear theory (Matsuno, 1998) predicts
excess 1α of the maximum runup αm over the sum of the
amplitudes of equal interacting waves α as1α ∼ α2. In con-
trast, normalized to characteristic time τ0, the temporal phase
shift 1θ is 1θ ∼ α. The presence of a phase shift due to the
collision of mode-2 waves for α = 0.98 was confirmed in a
laboratory experiment (Honji and Matsunaga, 1995). We es-
timated the temporal phase shift by comparing trajectories of
the wave crests with and without collision. As seen in Fig. 4,
the relative runup excess 1α/α and normalized temporal
phase shift 1θ increase as the interacting wave amplitude

α increases at small and moderate α, as weakly non-linear
theory predicts.

3.2 Interaction of waves with a trapped core and
moderate amplitude

The head-on collision between ISWs of equal, moderate am-
plitude with trapped cores α = αL = αR = 1.6 (case (A5;
A5)) is characterized by special features, as seen in Fig. 2b.
These waves, belonging to class (ii), i.e. stable strongly non-
linear waves with trapped cores (Frmax = 1.11, Rimin = 1.1),
carried fluid in the cores before the collision. The trapped
fluid slowly leaks from the rear of the trapped bulge, sim-
ilarly to the laboratory experiments (e.g. Maderich et al.,
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Figure 2. Snapshots of the density isopycnals during the collision of ISWs. (a) Case (A2; A2). (b) Case (A5; A5). The trapped cores are
visualized by dyed fluid.

Figure 3. Wave profile of a wave before (a) and after (b) collision
in section xL (b) for α = 0.81 (case A2; A2). These profiles are
compared with the profile of the BO soliton.

2001; Brandt and Shipley, 2014). However, after collision,
the waves lost all fluid trapped by the wave cores. This fluid
slowly collapsed in the viscous and diffusive-viscous regimes
(Galaktionov et al., 2001). The profile of the incident wave
at α = 1.6 (as well as other characteristics: Maderich et al.,
2015) essentially differs from the predictions made by us-
ing the weakly non-linear theory (Fig. 5a). The amplitudes
of interacting waves (Frmax = 1.0, Rimin = 1.2) decrease af-
ter collision. They propagate as weakly non-linear BO soli-
tons (Fig. 5b). This kind of head-on collision occurs in the
range of approximately 1≤ α ≤ 1.6. Note that in the numer-
ical study (Terez and Knio, 1998), the wave lost trapped fluid
in the process of interaction even at α = 2.1. As shown in
Fig. 4, the normalized excess of the maximum amplitude1α
increases almost linearly in the range 1≤ α ≤ 2, whereas the
increase in the phase shift 1θ slows down.

Figure 4. Relative runup excess 1α (a) and phase shift 1θ (b) of
the interacting symmetric ISWs versus the normalized amplitude of
the wave α. The filled symbols correspond to the cases with KH
instability. The fits, done by using a straight line in panel (a) and an
exponential function in panel (b), are shown.

3.3 Interaction of internal waves with stable trapped
cores

The large-amplitude ISWs with 1.2.Frmax.1.3 and
0.15.Rimin < 1 are characterized by stable long-lived cores.
Figure 6a shows the collision of waves with equal ampli-
tude α = αL = αR = 3.3 (case (A9; A9)) with the parame-
ters Frmax = 1.28 and Rimin = 0.25. As seen in the figure,
the volumes of dyed fluid in the trapped core collide together
with the waves. The cores did not mix during the collision,
which was also observed in a laboratory experiment (Honji
and Matsunaga, 1995). Then, the outgoing waves captured
the cores and carried the dyed fluid in the opposite directions
with little mass loss. Some mass exchange between waves
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Figure 5. Wave profile of a wave before (a) and after (b) collision
in section xL (b) for α = 1.6 (case A5; A5). These profiles are com-
pared with the profile of the BO soliton.

that occurred in the mode-2 experiment (Stamp and Jacka,
1995) was, perhaps, the result of a slight displacement of the
pycnocline in the vertical direction, which is often observed
in laboratory experiments (Carr et al., 2015).

The interaction process is described in Fig. 7 in more de-
tail. Here, the velocity and vorticity fields are shown together
with an isopycnal distribution. At the beginning of collision
(Fig. 7a), the trapped cores almost touch. They form a pair
of vortices carrying trapped fluid upward. The next snapshot
(Fig. 7b) corresponds to the time when the potential energy
of the interacting waves reaches a maximum and the kinetic
energy reaches a minimum. Unlike waves of class (i), at this
moment in time, the kinetic energy of the waves does not
vanish because the flows in the trapped cores change sign
due to the collision. This process is also different from the
process of the formation of waves with captured cores due to
the collapse of the mixed region, which was initially in a state
of rest. Then, the fluid in the cores is entrained by the outgo-
ing waves with some mixing, as represented in a 2-D con-
text, arising due to instability. This results in the slight loss
of mass from the trapped cores and a decrease in the phase
velocity of 8 % (Figs. 7c and 6a). As shown in Fig. 4a, for
stable waves of class (ii), the runup excess1α/α still almost
linearly increases in the range 2.3≤ α ≤ 4.6, whereas the in-
crease in the phase shift 1θ is substantially slowed down
when α > 1, and then 1θ tends towards a constant value at
α ≥ 4. The distributions of 1α and 1θ in Fig. 4 for stable
waves showed approximated linear and exponential depen-
dencies, respectively, which were based on the weakly non-
linear asymptotics 1α/α ∼ α and 1θ ∼ α (Matsuno, 1998)
for small α, and obtained in numerical experiments almost
constant distribution of1θ at large α. These fitted curves are

1α = 0.116α, 1θ = 4.1[1− exp(−1.33α)]. (8)

The behaviour of mode-2 ISWs during reflection off a solid
vertical wall is similar to that of the collision of two waves
of equal amplitude. A comparison with the simulated reflec-
tion of ISWs off a vertical wall (case D1) in a laboratory
experiment (Stamp and Jacka, 1995) is given in Fig. 8. The
parameters of the experiment were as follows: density differ-

ence1ρ/ρ0 = 0.05, pycnocline thickness h= 0.0025 m, and
α = 2.2. The incident wave belongs to the class (ii) of ISWs:
Frmax = 1.18, Rimin = 1.05. The calculated density isopyc-
nals in a vertical cross section along the flume at t = 16 s in
Fig. 8a agree with the density isopycnals visualized in the
experiment by water-insoluble droplets of different densities
in Fig. 8b. The interaction process is similar to that shown
in Fig. 6a, where after collision, some instability and mix-
ing are observed in the rear of the trapped core. In simulated
case D1, the corresponding values of Frmax and Rimin after
reflection are 1.1 and 1.21, respectively. The simulated and
observed trajectories of the wave crests, as shown in Fig. 8c,
are similar. The corresponding simulated runup excess was
1α = 0.28 and phase shift 1θ = 3.8. These values agree
with the other values of 1α and 1θ in Fig. 4. The experi-
mentally observed (Stamp and Jacka, 1995) phase shift val-
ues are also given in Fig. 4b. They demonstrate large scatter
due to difficulties encountered in the experiment, as indicated
by Stamp and Jacka (1995).

3.4 Interaction of internal waves with unstable trapped
cores

The large-amplitude ISWs with Frmax ≈ 1.3 and Rimin.0.1
belong to class (iii), which is characterized by a local wave-
induced shear instability resulting in the appearance of the
Kelvin–Helmholtz (KH) billows (Maderich et al., 2015);
globally, however, this wave-/self-generated shear system
can be stable, as noted by (Almgren et al., 2012). The waves
carry out trapped fluid, but the cores gradually lose trapped
fluid to the wake through KH billows shifting to the wave
rear and through recirculation in the trapped core (Terez
and Knio, 1998; Maderich et al., 2001; Lamb, 2002). Fig-
ure 6b shows the collision of waves with equal amplitude
α = αL = αR = 6.4 (case (A13; A13), with the parameters
Frmax = 1.31 and Rimin = 0.06). Unlike that shown in Fig. 6a
(case (A9; A9)), the collision of trapped cores was accom-
panied by billows, resulting in mixing. The divergent waves
remained locally unstable, again forming KH billows in the
wave aft. The amplitudes of diverging waves gradually de-
creased due to the loss of mass of the trapped cores.

In the ocean and in most of the laboratory experiments the
Schmidt number is about 700–800. The used grid does not
allow the whole range of inhomogeneities in salinity (den-
sity) to be resolved. Therefore, it is important to evaluate
the effect of molecular diffusion of salinity on the dynam-
ics of waves and to verify the possibility that diffusion can
be neglected in the wave collision for large Sc. Two cases
for large-amplitude waves were considered: (A9; A9) and
(A13; A13). We performed runs for Sc= 1, 10, and 1000. In
the collision case (A9; A9) the behaviour of colliding waves
is the same, whereas the difference between runs for Sc= 1
and Sc= 1000 was less than 1 % of 1α/α and 1θ values.
The comparison of the density snapshots during collision in
case (A13; A13) for different Schmidt numbers is shown in
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Figure 6. Snapshots of the density isopycnals during the collision of ISWs. (a) Case (A9; A9). (b) Case (A13; A13). The trapped cores are
visualized by dyed fluid.

Figure 7. Details of the interaction of waves of equal amplitude α = 3.3 at different times (case (A9; A9)) in a 2-D setting. The velocity,
vorticity ω, and isopycnals are shown.

Fig. 9. Figure 9 clearly depicts the difference between the
structure of interacting waves for cases Sc= 1 and Sc= 10.
The corresponding values of 1α/α and 1θ differ by 5 and
0.6 %, respectively. This was in agreement with the results
of Deepwell and Stastna (2016), where the essential effect of
molecular diffusivity on the mass transport by mode-2 ISW
in the range 1≤ Sc< 20 was shown. At the same time, the
results of calculations at Sc= 10 and Sc= 1000 in Fig. 9b
and c practically coincide, which indicates that molecular
diffusion may not be taken into account when studying the
global properties of colliding waves. This conclusion agrees
with Terez and Knio (1998), as they estimate that the value
of Sc= 100 was “sufficiently high for density diffusion to be
ignored during the simulation period”, and the results of the
Deepwell and Stastna (2016) simulation, according to which
the mass transfer is virtually independent of Sc already at
Sc> 20. However, diffusion can be important for small-scale
mixing processes in tiny density structures (see e.g. Galak-

tionov et al., 2001) forming as a result of instability and tur-
bulent cascade processes (Deepwell and Stastna, 2016) and
persisting over time in a wake behind a moving bulge of
trapped fluid (Terez and Knio, 1998). These subgrid-scale
structures in our simulations were smeared by numerical dif-
fusion which did not affect the larger scale due to use of a
second-order total variation diminishing (TVD) scheme for
advective terms in the transport equation.

3.5 Interaction of internal waves with trapped cores
and different amplitudes

The collision process is modified for waves of different am-
plitudes by the exchange of trapped fluid between colliding
waves due to the conservation of momentum (Stamp and
Jacka, 1995). This process is shown in Fig. 10 for two cases.
In the first case, two stable strongly non-linear waves with
trapped cores collide (αL = 3.3 with Frmax = 1.28, Rimin =
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Figure 8. Comparison of the simulated reflection of ISWs off a
vertical wall (case D1) in a 2-D setting with a laboratory exper-
iment (Stamp and Jacka, 1995). (a) Snapshot of the calculated
density isopycnals, visualized by a black tracer trapped fluid at
t = 16 s. (b) Density isopycnals in the experiment, visualized by
water-insoluble droplets of different densities. (c) Spatio-temporal
diagrams of the path of an ISW during reflection off a wall.

Figure 9. Comparison of the density snapshots during collision of
ISWs in case (A13; A13) for different Schmidt numbers. (a) Sc= 1.
(b) Sc= 10. (c) Sc= 1000. The right half of the numerical flume is
shown due to the symmetry of the interaction process.

0.25; αR = 2.15 with Frmax = 1.16, Rimin = 0.4). As seen in
Fig. 10a, the part of the trapped core fluid from the wave
of larger amplitude (blue colour) is merged with the trapped
fluid from the smaller wave (red colour) without noticeable
mixing. The circulation inside the core of the larger outgoing
wave results in the stirring of the fluid in such a way that the
smaller core fluid eventually ends up inside the fluid from the
larger wave.

The collision of an ISW of small amplitude (class (i)) with
a stable wave of large amplitude (class (ii)) was considered
for case (A11; A1) to study the possibility of triggering insta-
bility in the wave of large amplitude via a small disturbance,
similar to the waves of mode-1 in a two-layer fluid (Almgren
et al., 2012). The simulation results are shown in Fig. 10b.
As seen in the figure, the small-amplitude ISW (α = 0.5,
Frmax = 0.33, Rimin = 81) triggered instability in the ISW
with an amplitude that was 10 times larger than that of the
small wave. Note that the large-amplitude wave has param-
eters (α = 4.6„ Frmax = 1.3, Rimin = 0.15) that are close to

critical for the development of instability. The amplitude of
the small wave essentially decreased during the interaction
process due to the interaction and due to the viscous attenu-
ation at the low Reynolds number of the wave (Rem = 45.1).
Unlike the head-on collision of large-amplitude mode-1 and
weakly non-linear mode-2 ISWs (Stastna et al., 2015), the
outgoing wave of small amplitude did not degenerate. Spatio-
temporal diagrams for the paths of two ISWs of different am-
plitudes colliding head-on are shown in Fig. 11 for cases (A9;
A7) and (A1; A11). As seen in Fig. 11a, the trajectories of
waves of larger amplitude propagating from left to right were
less subject to changes due to the collision, whereas the phase
shift and the decrease in phase velocity for the smaller waves
propagating from right to left were essentially greater.

3.6 Estimation of the energy loss due to collision

We defined the relative energy loss due to the wave collision
(1Eloss) as the difference between the total loss of energy
Etot due to the collision and the loss of energy by two single
waves due to the viscous decay or instability 1Edis:

1Eloss =1Etot−1Edis. (9)

The relative loss of energy due to the collision of ISWs can
be calculated as the normalized difference in energy of waves
before and after collision,

1Etot =
PSE(bf)

L +PSE(bf)
R −PSE(af)

L −PSE(af)
R

PSE(bf)
L +PSE(bf)

R

, (10)

1Edis =
PSE(bf)

L +PSE(bf)
R − P̃SE

(af)
L − P̃SE

(af)
R

PSE(bf)
L +PSE(bf)

R

, (11)

where PSE(bf)
L and PSE(bf)

R are the pseudo-energies of the
waves before collision at cross sections xL and xR, respec-
tively, and PSE(af)

L and PSE(af)
R are the pseudo-energies of

the waves after collision at cross sections xL and xR, re-

spectively, whereas P̃ SE
(af)
L and P̃ SE

(af)
L are the energies

of the outgoing waves without interaction at cross sections
xL and xR, respectively. The pseudo-energy is the sum of the
kinetic and available potential energies (Shepherd, 1993) of
waves before and after collision. The method for estimation
of the available potential energy and energy fluxes was given
in Scotti et al. (2006) and Lamb (2007). A detailed descrip-
tion of the procedure of the pseudo-energy calculation was
presented by Maderich et al. (2010).

From dimensional arguments, 1Eloss =8(α,Rem,Sc),
where 8 is a function of three arguments. Assuming com-
plete similarity on the Rem→∞ and Sc→∞, consider de-
pendence 1Eloss on α. As seen in Fig. 12, this dependence
given for symmetric collisions (α = αL = αR) is not mono-
tonic and is not universal, changing depending on the series
of calculations. It can be divided into three different ranges.
In range I (0≤ α ≤ 1), the energy loss due to the interac-
tion increases as the wave amplitude increases. This range
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Figure 10. Snapshots of the density isopycnals during the collision of ISWs with different amplitudes for case (A9; A7) (a) and case (A11;
A1) (b). The trapped cores are visualized by dye.

Figure 11. Spatio-temporal diagrams for paths of two ISWs
of different amplitudes colliding head-on. (a) Case (A9; A7).
(b) Case (A11; A1). The diagrams for the waves without interac-
tion are shown by dashed lines.

coincides with the range of weakly non-linear waves without
trapped cores. In range II (1< α ≤ 1.75), the relative energy
losses reach a maximum. The range coincides with the range
in which colliding waves lose trapped cores in the process
of interaction. This fact can explain the relative maximum
of energy loss as the loss of potential energy of the cores.
In range III (1.75≤ α), the behaviour of the loss of energy
is also non-monotonic and non-similar. At first, in the zone
of stable large-amplitude collisions, the loss of energy de-
creases, but as the amplitudes of collided waves increase, the
interaction is accompanied by the development of instabil-
ity; therefore, the loss of energy increases. Finally, for unsta-

Figure 12. Plot of the energy loss versus the amplitude of the equal
colliding waves. The filled symbols correspond to the cases with
KH instability. The crossed symbols correspond to the cases where
colliding waves lost trapped cores in the process of interaction.

ble waves, the energy losses due to the interaction increase
monotonically with increasing amplitude.

The absence of complete self-similarity in the Reynolds
and Schmidt numbers also means that the Euler equations
do not describe the wave interaction processes in deep wa-
ter even for the range of stable waves. As shown in Table 1,
the parameter Rem varies in Series A–C several times for
waves of the same dimensionless amplitude α. The incom-
plete similarity scaling following (Barenblatt, 1996) results
in the relation 1Eloss ∼9(α)RemmScn, where 9 is a func-
tion, andm and n are exponents. However, this rescaling also
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did not result in universal dependence. We conclude that this
is due to the different mechanisms governing collision pro-
cesses in ranges I–III: non-linear wave interaction, collapse
of collided trapped masses, and instability. Another factor in-
fluencing the interaction may be the diffusivity effect (Deep-
well and Stastna, 2016), which is described by the Schmidt
number. However, in these experiments, the Schmidt number
was large and constant.

4 Conclusions

The dynamics and energetics of a head-on collision of in-
ternal solitary waves (ISWs) with trapped cores propagat-
ing in a thin pycnocline were studied numerically within the
framework of the Navier–Stokes equations for a stratified
fluid. The peculiarity of this collision is that it involves the
trapped masses of a fluid. The interaction of ISWs was dif-
ferent for three classes of waves: (i) weakly non-linear waves
without trapped cores, (ii) stable strongly non-linear waves
with trapped cores, and (iii) shear unstable strongly non-
linear waves with trapped cores. The simulations showed
that the wave phase shift grew as the amplitudes of the in-
teracting waves increased for interacting waves of classes (i)
and (ii) and remained almost constant for those of class (iii).
The excess of the maximum runup amplitude over the sum
of the amplitudes of colliding waves increased almost lin-
early as the amplitude of the interacting waves belonging to
classes (i) and (ii) increased. However, it decreased some-
what for those of the unstable class (iii). The dependence is
similar to the interaction of the mode-1 waves in a two-layer
stratification (Terletska et al., 2017), with the difference be-
ing that the phase shift continues to grow for the collision
of interfacial waves of mode-1. The waves of class (ii) with
a normalized thickness of the pycnocline amplitude α fully
lost fluid trapped by the wave cores in the approximate range
of 1≤ α ≤ 1.75. The interacting stable waves of higher am-
plitude captured cores and carried trapped fluid in the oppo-
site directions with little mass loss. The collision of locally
shear unstable waves of class (iii) was accompanied by the
development of instability. We concluded that this kind of
interaction reduced the capacity of an ISW to transport mass.
The dependence of energy loss on wave amplitude was not
monotonic. Initially, the energy loss due to the interaction
increased with increasing wave amplitude. Then, the energy
losses reached a maximum due to the loss of potential en-
ergy of the cores upon collision, and then started to decrease.
With further amplitude growth, the collision was accompa-
nied by the development of instability, and the loss of energy
increased. The collision process was modified for waves of
different amplitudes because of the exchange of trapped fluid
between colliding waves due to the conservation of momen-
tum. Merging of the trapped fluid due to the collision of sta-
ble waves belonging to class (ii) occurred through the stirring
mechanism without noticeable mixing. Similar to waves of

mode-1 in a two-layer fluid (Almgren et al., 2012; Terletska
et al., 2017), the interaction of a wave of large amplitude with
a wave of small amplitude can trigger local wave instability
of the large-amplitude wave if the parameters of this wave
were close to critical for the development of instability. The
results obtained can be applied to the interaction dynamics
of a subsurface trapped core formed within a shoaling large-
amplitude internal wave (Lien et al., 2012). Note, however,
that the destruction of the KH billows is essentially a 3-D
process; therefore, 3-D high-resolution simulation is neces-
sary to predict turbulence development (Arthur and Fringer,
2014; Deepwell and Stastna, 2016). This is the subject of a
separate study, whereas the interaction of the colliding waves
as a whole can be described in a 2-D setting.
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