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Abstract. It is analytically shown how competing nonlinear-
ities yield multiscaled structures for internal solitary waves
in stratified shallow fluids. These solitary waves only exist
for large amplitudes beyond the limit of applicability of the
Korteweg–de Vries (KdV) equation or its usual extensions.
The multiscaling phenomenon exists or does not exist for al-
most identical density profiles. The trapped core inside the
wave prevents the appearance of such multiple scales within
the core area. The structural stability of waves of large ampli-
tudes is briefly discussed. Waves of large amplitudes display-
ing quadratic, cubic and higher-order nonlinear terms have
stable and unstable branches. Multiscaled waves without a
vortex core are shown to be structurally unstable. It is an-
ticipated that multiscaling phenomena will exist for solitary
waves in various physical contexts.

1 Introduction

The typical horizontal scale (or scales) is a major charac-
teristic of a plane disturbance propagating in a nonuniform
medium. Usually, in an ideal density-stratified shallow fluid,
a wave of small albeit finite amplitude has one typical scale
resulting from the (local) balance between nonlinearity and
dispersion like in the realm of the Korteweg–de Vries (KdV)
equation (Helfrich and Melville, 2006). Solitary waves of
permanent forms for which capillary dispersion is on the
same order as the gravitational one may have oscillatory out-
skirts as predicted by Benjamin (1992). When viscosity is
taken into account, transient effects leading to various length
scales are discussed for the KdV-type equation with cubic
nonlinearity, for example by Grimshaw et al. (2003). In the
present note it is shown that, for the gravitational disper-
sion, ignoring all other previously mentioned effects, solitary
waves with multiple scales are possible. These solutions exist

only for disturbances of finite amplitude exceeding the range
of applicability of the extended KdV model, which incorpo-
rates both quadratic and cubic nonlinearities. Higher nonlin-
earity in the existing small-amplitude KdV or mKdV mod-
els leads to the correction of the wave length scale without
generation of multiscaling. For the appearance of multiscal-
ing, the various competitive nonlinearities should be on the
same order, and that order needs to be higher than the cubic
one, as analytically discussed below. This effect was initially
noticed by Derzho and Borisov (1990) in a Russian journal,
but the result was not widely disseminated. Recently Dunphy
et al. (2011) presented a numerical procedure that provides
fast calculations for gravitational waves between rigid lids.
This model is able to work with fine-density stratifications.
Dunphy et al. (2011) reported two-humped and usual one-
humped solitary internal wave solutions for nearly identi-
cal density profiles in a two-pycnocline density stratification.
Lamb and Wan (1998) have numerically shown that in some
stratifications with two pycnoclines three conjugate flow so-
lutions leading to two-humped solitary waves were present.
Makarenko et al. (2009) theoretically considered continuous
stratification in order to characterize the role of the vertical
structure of the fluid density in the context of waves close
to the limiting amplitude. To the best of the author’s knowl-
edge, neither specific nonlinearity in terms of power series of
wave amplitudes necessary to reveal a two-humped structure
nor regions of density profiles with a single pycnocline at
which such structures exist have been examined in the litera-
ture. Kurkina et al. (2011) derived a KdV-like equation with
quadratic and quartic nonlinear terms for interfacial tran-
sient waves for the specific three-layer geometry. Assump-
tion of a small albeit finite wave amplitude was essential to
balance nonlinearity and dispersion in that study. Table-top
limiting solutions were reported, and they were stable within
the accuracy of their numerical scheme. In the current paper,
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an asymptotic model presented in earlier papers by the au-
thor addresses multiscaling phenomena for internal solitary
waves under free surfaces in the framework of the Dubreil–
Jacotin–Long (DJL) equation (Long, 1965). Special attention
is given to the case of complicated nonlinearity involving
both quadratic, cubic and quartic nonlinear terms for the case
of continuous stratification with a single pycnocline. Solitary
waves of permanent form, their existence and structural sta-
bility are discussed. It is worth noting that the family of so-
lutions is richer than two-humped structures. It is expected
that such multiscaled solitary waves will exist in other physi-
cal systems where complicated competitive nonlinearities are
balanced by dispersion.

2 Model for internal waves

Let us consider the two-dimensional steady motion of an
ideal density-stratified fluid in a framework of a reference
moving with the phase speed of wave c. The approach is
asymptotic, being based on the DJL equation for waves
without a priori limitation on amplitude. This approach has
started from the pioneering work by Benney and Ko (1978).
Let us consider the stratification in the form

ρ0(z)= ρ00(1− σ(z+ δf (z))),δ� 1,σ � 1,f ∼ 1, (1)

where σ denotes the Boussinesq parameter. In Derzho and
Velarde (1995) it was shown that for this case the dimen-
sionless (primed) streamfunction ψ ′ =−ψ/cH of a solitary
disturbance obeys the equation

ψzz+µ
2ψxx + λ(ψ − z)−

σ

2
(ψz

2
− 1− 2ψλ(ψ − z))

+ δλ(ψ − z)fψ (ψ)= o(σ,δ,µ
2), (2)

where µ is the aspect ratio H/L and λ= σgH

c2 .
In Eq. (2) z denotes the vertical axis, taken as positive up-

wards, and x corresponds to the horizontal axis; z and x are
scaled withH and L, the given vertical and horizontal scales,
respectively. Expecting no confusion, we have, for simplic-
ity, dropped the primes in Eq. (2). Let us locate the bottom
and the surface at the dimensionless heights z=−0.5 and
z= 0.5+η(x), respectively, where η(x) denotes surface dis-
placement. The boundary conditions at the bottom and sur-
face are

ψx = 0 at z=−0.5, (3)

σ(ψxψzψzz−ψ
2
zψzx)+ λψx

= o(σ ) at z= 0.5+ η(x), (4)
ψx =−ηxψz. (5)

The solution of Eqs. (2)–(5) is sought in the form

ψ = ψ (0)+µ2ψ (1)+ . . .,λ= λ(0)+µ2λ(1)+ . . .,

η = η(0)+µ2η(1)+ . . ., (6)

where zeroth-order variables are of order unity. Below we
shall provide a solution for the first mode, which is most fre-
quently observed in nature. The analysis for the higher modes
is similar. In the zeroth order,

ψ (0) = z+A(x)cos(πz), λ(0) = π2,η(0) = 0, (7)

where the amplitude function A(x) is to be determined at a
higher order. For the solution to the first-order equation to ex-
ist, the solvability condition (Fredholm alternative) demands
that

Axxx + λ
(1)Ax −

σ

µ2 (2Ax − 8πAAx + 2π2A2Ax),

+ 2
δ

µ2Qx(A)= 0 (8)

Q(A)= A

0.5∫
−0.5

cos2(πz)fψ (ψ = ψ
(0))dz. (9)

In order to (locally) balance nonlinearity and dispersion,
we have to require max(σ/µ2,δ/µ2)∼ 1, thus determining
L. Benney and Ko (1978) suggested considering the nonlin-
ear terms as a power series in the Boussinesq parameter in-
stead of the small-amplitude parameter. Derzho and Velarde
(1995) somewhat extended this idea to account for a more
general undisturbed flow state. After straightforward integra-
tions, Eqs. (8)–(9) can be reduced to

A2
x + λ

(1)A2
+ 2

δ

µ2

A∫
0

Q(A′)dA′+A2

(
8πA

3
− 2−

π2A2

3

)
= 0. (10)

The Weierstrass approximation theorem states that ev-
ery continuous function defined on a closed interval can be
uniformly approximated as closely as desired by a polyno-
mial function. A recent account of the topic is reviewed in
Hazewinkel (2001). Thus, the integral below can be repre-
sented with the help of some N th-order polynomial accord-
ing to the Weierstrass approximation theorem. In the current
study only a polynomial formula for stratification is consid-
ered; thus, it directly leads to nonlinearities in the polynomial
form.

A∫
0

Q(A′)dA′ = A2PN (A) (11)
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For the wave of amplitude A0, Eq. (10) yields

A2
x

A2 = (A0−A)8(A,A0), (12)

8(A,A0)= 2
δ

µ2
PN (A0)−PN (A)

A0−A
+

σ

µ2
π2

3(
8
π
−A−A0

)
, (13)

λ(1) = σ
σ

µ2

(
−

8πA
3
+ 2+

π2A2

3

)
− 2

δ

µ2PN (A0). (14)

Equations (12)–(14) determine completely both the profile
and phase velocity of a solitary wave with amplitude A0.

3 Multiscaling

The function f in the form of anMth-order polynomial gen-
erates PN with the index N =M − 1. The power index of 8
is thus max(1,M−2). The condition for Eq. (8) to possess a
multiscaled solution reduces to the condition that 8(A,A0)

must be sign-defined with several extrema within [0,A0].
Thus it must have more than two imaginary roots on that in-
terval. It determines thatM ≥ 4; i.e., for a stratification in the
form of a cubic polynomial or if the wave amplitude is small
enough to neglect A4 and higher-order nonlinearities, multi-
scaled solitary waves do not exist because f has no imagi-
nary roots for this case. This is why classical KdV or mKdV
can not provide multiscaled solitary waves over a flat bottom.
Let us consider wave structures for the density stratification
in the form

ρ0(z)= ρ(1− σz+ 0.5σ 2z2
+ασ 2z4), (15)

which produces quadratic, cubic and quartic terms in Eq. (8).
Thus Eq. (12) for this case of stratification becomes

8(A,A0)=
σ

µ2

[
−8π

3

(
1
3
+ 2α−

160α
9π2

)
+
π2

3
(A+A0)

+
128απ2

75

(
A2
+A2

0+AA0

)]
. (16)

Two-humped solitary waves for the stratification given by
Eq. (17) exist in the domain shown in Fig. 1.

The two-humped solitary wave with amplitude A0 =

0.1885 for the particular stratification profile Eq. (16) with
α =−1.39 and σ = 0.01 is shown in Figs. 2 and 3.

Indeed, the maximum derivative on x in the dimension-
less coordinates is of order unity. However, the wave has a
pronounced two-scale structure with typical length scales,
which are much larger than the length L used to scale the
derivative. A solitary wave with three typical length scales (a
three-humped one) is shown in Fig. 4.

Figure 1. Existence domain for the two-humped solitary wave.

Figure 2. Amplitude function and surface displacement for the two-
humped solitary wave; α =−1.39.

www.nonlin-processes-geophys.net/24/695/2017/ Nonlin. Processes Geophys., 24, 695–700, 2017



698 O. G. Derzho: Brief communication: Multiscaled solitary waves

Figure 3. Streamlines for the two-humped solitary wave: α =
−1.39; A0 = 0.1885.

Figure 4. Amplitude function for the three-humped solitary wave.

For this case the stratification profile is

ρ0(z)= ρ(1− σz+ σ
2(1.206z2

− 4.37z3
− 3.435z4

− 33.407z6)),

which produces in Eq. (8) nonlinear terms up to A6. Gener-
ally, one can expect at mostM/2 different scales for a stratifi-
cation in the form of a polynomial with an even power index
M , and (M − 1)/2 otherwise.

Further, we wish to examine the structure of solitary waves
of a permanent form for the stratification given by Eq. (16).
We only consider the case α =−1.39 and focus on the waves
of a permanent form under a free surface, their domain of
existence, limiting forms and structural stability. Other val-
ues of α lead to more extensive consideration with a number
of particular cases. Such a study is beyond the scope of the
present paper. First, for α =−1.39 there exist only perma-
nent waves with positive amplitudes. Wave phase velocity is

Figure 5. Phase velocity versus wave amplitude. Solid line:
c(1)(A0, dashed lines 0<A0 = A1 and A0 = A2). Dotted line:
A0 = A∗ = 1/π , the critical amplitude above which the model does
not work as a vortex core arises inside the wave. A2 = 0.1311;
A1 = 0.1793.

Figure 6. Profiles of stable solitary waves are shown by solid lines.
Dashed lines correspond to A2 = 0.1311 and A1 = 0.1793. The
limiting amplitude is reached when A0 = A2.

defined by the following expression:

c(1)(A0)=
c− c(A0 = 0)

µ2 =
4A0

3π

(
2α+

1
3
−

160α
9π2

)
−
A2

0
6
+

64αA3
0

75π
. (17)

Figure 5 shows that the phase velocity is an increasing
function for 0<A0 <A2 and A0 >A1. For A1 <A0 <A2
the phase velocity decreases with amplitude and there are no
steady solitary wave solutions. When 0<A0 <A2 solitary
waves widen as amplitude increases with a table-top limiting
shape with a local maximum for the wave velocity as shown
in Figs. 5 and 6.

Such waves are structurally stable according to Bona et al.
(1987) as both the wave energy E =

∫
∞

−∞
A2dx and the wave

velocity increase as amplitude increases.
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Figure 7. Profiles of unstable solitary waves are shown by solid
lines. Dashed lines: A2 = 0.1311; A1 = 0.1793. The lower limiting
wave amplitude is A0 = A1.

For A0 >A1 wave profiles are shown in Fig. 7. Waves
change from the table-top solution to solitary waves with a
single scale via multiscaled structures.

For the particular stratification considered here, waves are
structurally unstable (Bona et al., 1987) since wave energy
decreases as shown in Fig. 8, but the wave velocity increases
with the increase in wave amplitude. An interesting observa-
tion is that these waves of sufficiently large amplitude could
be stable as the energy is eventually increased as shown in
Fig. 8. For the stratification considered here, it does not mat-
ter because the solution with the vortex core appears at a
lower amplitude when energy is still the decreasing function
of amplitude. However, it leads to an interesting phenomenon
– waves with vortex cores could stabilize the wave. The idea
is that the vortex core leads to widening of a wave (Derzho
and Grimshaw, 1997) and consequently to the increase in its
energy; thus, the structural stability criterion will be satisfied.
For the considered particular stratification, waves with vortex
cores are initially unstable as an increase in energy due to the
vortex core and associated widening does not compensate for
the decrease in energy in the wave outside the vortex core.
Nonetheless, above some amplitudes, waves become struc-
turally stable. When wave amplitude further increases, the
permanent wave of the limiting amplitude becomes infinitely
wide, as shown by Derzho and Grimshaw (1997).

The theory described above is valid for wave amplitudes
below A∗, a certain amplitude at which a vortex core started
to appear inside the wave. For the nearly linear density profile
A∗ = 1/π , Derzho and Grimshaw (1997) have shown that

B2
x ∼ R(A∗)(1−B)−

8ν
15

(
1−B5/2

)
, (18)

where ν is the supercriticality parameter defined such that B
varies from zero to one as wave amplitude does from A∗ to
the maximum value allowed to be predicted there. R(A∗) de-

Figure 8. Energy versus wave amplitude. The dotted line corre-
sponds to A0 = A∗.

pends on the stratification profile and is fixed. It is straightfor-
ward to notice that B(x) is monotonic and that therefore mul-
tiscaling in the vortex core area does not exist when A>A∗.

Multiscaling effects similar to those discussed above
could be observed in various physical media. Derzho and
Grimshaw (2005) reported that solitary Rossby waves in
channels obey the same KdV-type equation with complicated
nonlinearity due to the mean shear variations. A Coriolis
force for Rossby waves plays the same role as gravitational
force for the internal gravity waves. The results of multiscal-
ing for Rossby waves with and without a trapped core will be
reported elsewhere.

4 Conclusions

For the particular case of a nonlinear dispersive medium such
as a density-stratified fluid, we have addressed multiscaled
solitary waves which are predicted when there exists compe-
tition of several different types of nonlinearity. The mecha-
nism leading to these solutions differs from the mechanism
of multiscaling due to the competition of different types of
dispersion or effects due to the dissipation. We have shown
that the length used to scale the x-derivative does not simply
coincide with the typical length scale of the wave, as for KdV.
Moreover, multiscaled (multi-humped) disturbances exist for
sufficiently large amplitudes; at the least, terms in the fourth
order of wave amplitude should be accounted for. The multi-
scaling (multi-humped) phenomenon exists or does not exist
for almost identical density profiles; the two-pycnocline case
studied earlier is not necessary for the existence of multi-
scaling. The continuous stratification given by Eq. (16) was
studied in more detail. The structure of permanent solitary
waves and how multiscaling appeared were presented. Struc-
tural stability was examined using the criterion proposed by
Bona et al. (1987). It was shown that both stable and unstable
solutions of the KdV-type equation with quadratic, cubic and
quartic nonlinearities are available. Multiscaled waves with-
out a trapped core belong to the unstable solutions. A trapped
core inside the wave prevents the appearance of such multi-
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ple scales within the core area. However, the trapped core
could stabilize the multiscaled solution in the sense of struc-
tural stability. The case when the trapped core and multiscal-
ing are combined together is beyond the scope of the present
study and will be presented elsewhere. It is noted that multi-
scaling phenomena exist for solitary waves in various physi-
cal contexts, for example, for Rossby waves on a shear flow
(Derzho and Grimshaw, 2005) or inertial waves in swirling
flows (Derzho and Grimshaw, 2002).
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