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Abstract. Climate signals are the results of interactions
of multiple timescale media such as the atmosphere and
ocean in the coupled earth system. Coupled data assimilation
(CDA) pursues balanced and coherent climate analysis and
prediction initialization by incorporating observations from
multiple media into a coupled model. In practice, an ob-
servational time window (OTW) is usually used to collect
measured data for an assimilation cycle to increase obser-
vational samples that are sequentially assimilated with their
original error scales. Given different timescales of charac-
teristic variability in different media, what are the optimal
OTWs for the coupled media so that climate signals can be
most accurately recovered by CDA? With a simple coupled
model that simulates typical scale interactions in the climate
system and “twin” CDA experiments, we address this issue
here. Results show that in each coupled medium, an opti-
mal OTW can provide maximal observational information
that best fits the characteristic variability of the medium dur-
ing the data blending process. Maintaining correct scale in-
teractions, the resulting CDA improves the analysis of cli-
mate signals greatly. These simple model results provide a
guideline for when the real observations are assimilated into
a coupled general circulation model for improving climate
analysis and prediction initialization by accurately recover-

ing important characteristic variability such as sub-diurnal in
the atmosphere and diurnal in the ocean.

1 Introduction

Currently, the interactions between the earth climate sys-
tem’s major components, such as the atmosphere, ocean,
land, and sea ice, have been reasonably simulated by cou-
pled climate models, which can also give the evaluation of
climate changes (Randall et al., 2007). However, because of
the uncertainties and errors in models (e.g., parameterization
is only an approximation to sub-grid processes and the dy-
namical core is imperfect), models always tend to produce
different climate features and variability from the real world
(e.g., Delworth et al., 2006; Collins et al., 2006; Zhang et
al., 2014). Due to the significant importance of preserving
the balance and coherence of different model components
(or media) during the coupled model initialization, data as-
similation for state estimation and prediction initialization
should be performed within a coupled climate model frame-
work (e.g., Chen et al., 1995; Zhang et al., 2007; Chen, 2010;
Han et al., 2013). The characteristic variability timescales
of different media within the coupled frameworks are usu-
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ally different. When the observed data included in one or
more components of the coupled system framework are as-
similated, the observational information will be able to be
transferred among different media through the coupled dy-
namics so that all media gain consistent and coherent adjust-
ments. Such an assimilation procedure is called coupled data
assimilation (CDA), which can sustain the nature of multi-
ple timescale interactions during climate estimation and pre-
diction initialization (e.g., Zhang et al., 2007; Sugiura et al.,
2008; Singleton, 2011), thus producing better climate analy-
sis and prediction initialization and therefore improving the
coupled models’ predictability (Yang et al., 2013). Zhang et
al. (2007) developed the first CDA system in a fully coupled
general circulation model, version 2 of the Geophysical Fluid
Dynamics Laboratory Coupled Model (GFDL CM2). The
National Centres for Environmental Prediction (NCEP) also
started using coupled models to generate first-guess forecasts
for their Climate Forecast System Reanalysis (CFSR, Saha
et al., 2010). Despite the enormous benefits and demand for
CDA, it remains both theoretically and technically challeng-
ing to implement strong CDA in fully coupled models, in-
cluding the estimation of the coupled model error covariance
matrix and the huge computational costs (e.g., Han et al.,
2013; Lu et al., 2015; Liu et al., 2016).

During the coupled data assimilation process, an obser-
vational time window (OTW) is usually used to collect
measured data in each medium for an assimilation cycle
(e.g., Pires et al., 1996; Hunt et al., 2004; Houtekamer and
Mitchell, 2005; Laroche et al., 2007) to increase observa-
tional samples. As in Hunt et al. (2004), we expand the
EnKF to include a time window in which the observations
are treated as the exact assimilation times, even though their
times are different in the window. That is, we just assume
that all the collected data sample the “truth” variation at
the assimilation time and will be sequentially assimilated
with their original error scales. Thus the OTW is applied in
a three-dimensional data assimilation fashion rather than a
four-dimensional one. Apparently, while a large OTW pro-
vides more observational samples at the assimilation time,
the assimilation process blends more data from different
times and may distort the variability being retrieved. Given
the fact that climate signals are the results of interactions
of multiple timescale media, correct variability retrieved for
each medium so that correct scale interaction is maintained
in CDA is particularly important for climate analysis and
prediction initialization. In this study we attempt to answer
the following two questions. (1) What is the impact of vary-
ing OTWs for each coupled component within the coupled
model framework on the quality of CDA? (2) Based on this
impact, does an optimal OTW exist so that assimilation fit-
ting has maximum observational information but minimum
variability distortion?

With a simple conceptual coupled climate model and a se-
quential implementation of the ensemble Kalman filter, this
study first analyses the characteristic variability timescale of

each coupled medium and identifies the corresponding opti-
mal OTW. Then the impact of an optimal OTW on the qual-
ity of CDA and its linkage with the corresponding timescale
of characteristic variability are investigated. The simple cou-
pled model consists of three typical components, including
the synoptic atmosphere (Lorenz, 1963) and the seasonal–
interannual slab upper ocean (Zhang et al., 2012) coupling
with the decadal deep ocean (Zhang, 2011a, b). Although the
simple conceptual coupled model does not share the similar
complex physics with a coupled general circulation model
(CGCM), it does reasonably simulate the typical interactions
between multiple timescale components in the coupled cli-
mate system (see Zhang et al., 2013). The simple coupled
model helps us understand the essence of the problem by
revealing the relationship between the optimal OTWs and
corresponding timescales of characteristic variability as well
as their impact on CDA. The low-cost nature of the simple
model also provides convenience for a large number of CDA
experiments with different OTWs in optimal OTW detec-
tion. The ensemble Kalman filter (e.g., Evensen, 1994, 2007;
Whitaker and Hamill, 2002; Anderson, 2001, 2003) used in
this study is the ensemble adjustment Kalman filter (EAKF,
e.g., Anderson, 2001, 2003; Zhang and Anderson, 2003). Us-
ing the EAKF with the simple coupled model, we first estab-
lish a twin experiment framework. Within such a framework,
the degree to which the state estimation based on a certain
OTW recovers the truth is an assessment of the influence of
the OTW on the quality of CDA. In such a way, the optimal
OTW of each medium is detected and the impact of optimal
OTWs on CDA is evaluated. We also discuss the influence of
model bias on an optimal OTW through biased twin experi-
ment setting.

This paper is organized as follows. Section 2 briefly de-
scribes the simple conceptual coupled model, the ensem-
ble adjustment Kalman filter, as well as the twin experiment
framework including perfect and biased settings. Also with a
simplest case, we first show the influence of OTWs on assim-
ilation quality and its linkage with the timescale of character-
istic variability in this section. Then Sect. 3 presents results
on detection of the optimal OTWs for different media and the
impact of optimal OTWs on CDA. The influence of realistic
assimilation scenarios on optimal OTWs is discussed in Sect.
4. Finally, a summary and discussions are given in Sect. 5.

2 Methodology

2.1 The model

Due to the complicated physical processes and huge compu-
tational cost involved, it is inconvenient to use a CGCM to
investigate the impact of the different OTWs on the analy-
sis of climate signals so as to detect each coupled medium’s
optimal OTW. Instead, here we employ a simple coupled
“climate” model developed by Zhang (2011a). This sim-
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ple model is based on Lorenz’s three-variable chaotic model
(Lorenz, 1963) that couples with a slab upper ocean (Zhang
et al., 2012) and a simple pycnocline predictive model
(Gnanadesikan, 1999). Although very simple with low com-
putational cost, in terms of multi-scale interaction inducing
low-frequency climate signals, this model shares a funda-
mental character with a CGCM, and it is very suitable for
addressing the problem that is concerned here. And for the
readers’ convenience, here we simply review some key as-
pects of this conceptual coupled model. With all quantities
being given in non-dimensional units, the governing equa-
tions are

Ẋ1 =−σX1+ σX2,

Ẋ2 =−X1X3+ (1+C1ω)kX1−X2,

Ẋ3 =X1X2− bX3,

Omω̇ = C2X2+C3η+C4ωη−Odω+ Sm

+ Ss cos
(
2πt/Spd

)
,

0η̇ = C5ω+C6ωη−Odη, (1)

where X1, X2, and X3 represent the atmospheric model
states, while ω and η denote those for the upper and deep
ocean, respectively. A dot above the variable denotes the
time tendency. The atmosphere model states are the high-
frequency variables, while the slab oceanic variable ω is
of a lower frequency. To sustain the chaotic nature of the
atmosphere in reality, the standard values of the parameters
included in the atmospheric component (σ , k, and b) are
set as 9.95, 28, and 8/3, respectively. In the equation of ω,
the parameters Od and Om denote the damping coefficient
and heat capacity of the upper slab ocean, respectively. Due
to the lower frequency of ω than that of the model states
in the atmospheric components, the timescale of the upper
slab ocean variable must be much slower than that of the
atmospheric model states. Thus the damping rate parameter
(Od) should be much smaller than the heat capacity, namely,
Od�Om. Here following Lorenz’s idea (Lorenz, 1963),
the atmospheric timescale is defined as the typical time by
which the atmosphere goes through an attractive lob as 1
non-dimensional time unit (TU) ∼O(1). We set the param-
eters (Om,Od) as (10,1), which show that the slab oceanic
variable’s timescale is ∼O(10), i.e., 10 times that of the
atmospheric model states. While the Sm+ Ss cos

(
2π t/Spd

)
represents the external forcing, the parameter Spd denoting
the model seasonal cycle is set as 10 to make sure that
the period of the external forcing is comparable with the
upper slab ocean variables’ timescale. In this simple coupled
model, the seasonal cycle is set as 10 TUs and thus a model
year (decade) equals 10 (100) TUs. The parameters Ss
and Sm, denoting the magnitudes of the external forcing’s
seasonal cycle and annual mean, are insensitive to the
coupled model and set as (1,10). The coefficients C1 and
C2 in the equations of X2 and ω are used to implement the
coupling between the fast atmosphere model states and the

upper slab oceanic variable and are set as (0.1,1), where C1
denotes the upper slab oceanic forcing on the atmosphere
while C2 denotes the atmosphere forcing on the ocean. In
addition, C3 and C4 represent the deep oceanic forcing and
the nonlinear interaction between the upper and deep ocean.
In order to make sure that the atmospheric forcing plays a
dominant role in the upper slab ocean, the magnitudes of
C3 and C4 should be lower than that of C2 and both set
as 0.01. As in Zhang (2011a), the deep ocean model state
variable η, denoting the anomaly of pycnocline depth in the
deep ocean, is derived from the two-term balance model
of the zonal-time mean pycnocline (Gnanadesikan, 1999).
Within the equation of η, the parameter 0 is kept constant
and the ratio of 0 and Od denotes the deep ocean variable’s
timescale. The timescale of the deep ocean variable is
longer than that of the slab ocean, defined by the relative
magnitude of 0 to Od (0 is set as 100). Similar to the
equation of ω, the coefficients C5 and C6 denote the linear
slab oceanic forcing and the nonlinear interaction between
the upper and deep ocean. Also, to guarantee that the linear
interaction is dominant and the nonlinear interaction is
weaker than that in the deep ocean model, C5 and C6 are set
as (1, 0.001). In summary, in this study the standard values
of the parameters included in this simple coupled model
(σ,k,b,C1,C2,Od,Om,Sm,Ss,Spd,0,C3,C4,C5,C6) are
set as (9.95, 28, 8/3, 0.1, 1, 1, 10, 10, 1, 10, 100, 0.01, 0.01,
1, 0.001; e.g., Zhang, 2011a, b; Zhang et al., 2012; Han et
al., 2013, 2014).

Following the study of Han et al. (2014), the fourth-order
Runge–Kutta time-differencing scheme is used in this pa-
per to resolve this simple coupled model, and the time step
equals 0.01 TU (1 TU= 100 time steps).

Zhang (2011b) illustrated that, given the model parame-
ters described above, the constructed simple coupled model
can effectively simulate a fundamental feature of the real-
world climate system in which different timescales inter-
act with each other to develop climate signals. That is, the
synoptic to decadal timescale signals are produced by the
interactions between the transient atmosphere attractor, the
slow slab ocean, and the even slower deep ocean (see Zhang,
2011a; Han et al., 2014). Again, although the simple cou-
pled model does not have complex physics and cannot con-
sider the issue of impact of localization and imbalance as in
a CGCM, it can help us investigate the fundamental issue we
want to address here more directly and clearly.

2.2 Ensemble coupled data assimilation

Following Zhang (2011a), during the state estimation, the
error statistics evaluated from ensemble model integrations,
such as the error covariance between model states, will be
used in an ensemble filter to extract observational informa-
tion to adjust the model states (e.g., Evensen, 1994, 2007;
Anderson, 2001; Hamill et al., 2000; Zhang, 2011a, b; Zhang
et al., 2012; Han et al., 2014). In this study, a derivative of
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the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961)
called the ensemble adjustment Kalman filter (EAKF, An-
derson, 2001, 2003; Zhang and Anderson, 2003; Zhang et al.,
2007), which is a sequential implementation of the ensemble
Kalman filter under an “adjustment” idea, is used to imple-
ment the CDA scheme. The assumption of independence of
observational error allows the EAKF to sequentially assimi-
late observations into corresponding model states (Zhang and
Anderson, 2003; Zhang et al., 2007). While the sequential
implementation provides much computation convenience for
data assimilation, the EAKF maintains as much of the non-
linearity of background flows as possible (Anderson, 2001,
2003; Zhang and Anderson, 2003).

Based on the two-step implementation of the EAKF
scheme (Anderson, 2001, 2003), the observational increment
at an observation location is first computed. The observation
is denoted as Y at time t (simply Y instead of Yt ) which has
the observation value Y o and standard deviation σ o

y (assumed
to be Gaussian). Firstly, the reshaping of the model ensemble
at the observation location, 1Y ′, is formulated as

1Yi
′
=

1Y
p
i√

1+ r2
k

and rk =
σ

p
k,k

σ o
k,k

, (2)

where i represents the ensemble index and k denotes the ob-
servation index. σ o

k,k and σ p
k,k are the standard deviation of

observation error and its prior estimated ensemble standard
deviation, respectively, while rk is the corresponding ratio.
If rk > 1 , the ensemble spread is largely reduced by the ob-
servation; otherwise, the ensemble remains close to the prior.
The shift of the ensemble mean induced by the observation
is computed by

ȲU
=

Y
p

1+ r2
k

+
Y o

1+ r−2
k

. (3)

We can see that if the prior estimated ensemble standard de-
viation is greater than that of the observation error, the en-
semble mean shifts toward the observation value; otherwise,
the ensemble mean remains close to the prior model ensem-
ble mean Y

p
. Then the observational increment induced by

the observation value Y o for the ith ensemble member at the
kth observation location is computed as

1Y ok,i =
(
Y

U
k +1Yk,i

′

)
−Y P

k,i

=

 Y
p
k

1+ r2
k

+
Y o
k

1+ r−2
k

+
1Y

p
k,i√

1+ r2
k

−Y P
k,i . (4)

Once we get the observational increment at the observation
location, then a least square fit is used to distribute the incre-
ment over the relevant grid points impacted by the observa-
tion using the covariance between the grid index j and the

observation k, cpj,k , using

1Zi,j =
c
p
j,k

(σ
p
k,k)

2
1Y ok,i =

Cov(Zj ,Yk)

(σ
p
k,k)

2
1Y ok,i, (5)

where Z represents a certain state variable at the grid point
j . The term 1Zi,j is the contribution of the kth observation
to the ith ensemble member of the model state estimated at
grid point j . When an observation is available, Eq. (5) will be
applied to implement CDA for state estimation in a straight-
forward manner (Zhang et al., 2007; Zhang, 2011a).

Although many sophisticated inflation algorithms (e.g.,
Anderson, 2007, 2009; Li et al., 2009; Miyoshi, 2011) ex-
ist for atmosphere data assimilation, the inflation scheme
for a coupled model is a new subject due to the multiple-
timescale nature of the system. Furthermore, trial-and-error
experiments show that the usual form of inflation (e.g., only
inflate the atmosphere model states or inflate all the model
states equally) will lead to the analysis becoming unstable.
Thus, in this paper, for simplicity and computational con-
venience as well as convenience for comparison, no infla-
tion is used in our assimilation experiments, just as in Han et
al. (2014).

2.3 Perfect and biased twin experiment setups

In this study, a perfect twin experiment framework and a bi-
ased twin experiment framework are designed, respectively.
In both perfect and biased twin experiments, a “truth” model
using the standard parameter values listed in Sect. 2.1 is used
to generate the “true” solution of the model states and pro-
duce the observations sampling the “truth”. Starting from the
initial condition (0, 1, 0, 0, 0), the “truth” model is firstly
integrated forward for 10 000 TUs (i.e., 1000 model years)
for sufficient spinup and then integrated forward for another
10 000 TUs to generate the “truth” model states. The obser-
vations are produced by sampling the “truth” solution of the
model states at an observational interval and superimposing
with a white noise simulating the observational errors. As
schematically shown in Fig. 1, all the observational intervals
used in this study are assumed to be 1 time step (0.01 TU).
Although in the real climate system, the oceanic observations
are usually available less frequently than those in the atmo-
sphere (that is, the oceanic observation interval is larger than
that we set here), for this proof-of-concept study we will set
the time interval of the oceanic observations as small as pos-
sible. The standard deviations of the observational errors are
2 for X1, X2, and X3 and 0.5 for ω. Also, although the deep
ocean lacks observations in the real world, we conduct some
observation simulation experiments for η (the standard devi-
ation of the observational error is 0.06 for η) in this concep-
tual study.

We first want to learn some basics from the perfect experi-
ment which represents an idealized data assimilation regime.
In the perfect twin experiment framework, the assimilation
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Figure 1. The schematic for the assimilation interval, the length of the OTW, as well as the observational interval in terms of the model
integration time step. Here L represents the time steps at one side of the OTW. For example, OCN-OTW (L) in the content stands for an
ocean observational time window with total observations of 2L+ 1.

model also uses the standard parameter values, but starts
from different initial conditions using the Gaussian white
noises with the same standard deviation as observational er-
rors (2 for X1, X2, and X3, 0.5 for ω, and 0.06 for η) added
to the model states at different times during the spinup run to
form the ensemble initial conditions for each ensemble filter-
ing data assimilation experiment. Each assimilation experi-
ment is integrated for 10 000 TUs and only the data obtained
in the last 5000 TUs are used to conduct error statistics for
evaluation. We choose the model states between 9000 and
10 000 TUs during the spinup at an interval of 50 TUs being
perturbed to form 20 cases of ensemble initial conditions for
each assimilation experiment analyzed in Sects. 3 and 4. In
this way, we attempt to minimize the dependence of the re-
sults of optimal OTWs on ensemble initial states. Then each
assimilation experiment will be repeated 20 times starting
from these 20 independent ensemble initial conditions and
we will analyze the mean value and uncertainty evaluated
from these 20 cases.

Then we use the biased experiment setting to simulate
the real-world scenario. The biased twin experiment frame-
work is similar to the perfect one except that the assimilation
model in the biased twin experiment framework has a sys-
tematic discrepancy from the observations. Thus, in the bi-
ased twin experiment framework, the parameters included in
the assimilation model will have 10 % errors relative to the
standard values. The errors in the parameters will be the only
model error source.

Figure 1 also illustrates the assimilation update intervals
(the assimilation intervals are 5 time steps for atmosphere,
20 time steps for the slab ocean in all assimilation experi-
ments, and 100 time steps for the deep ocean when using
the η observations) as well as the length of the OTW, which
will be used throughout the study. In addition, the coupling
strength between the atmosphere and ocean may have influ-
ences on the characteristic variability timescale of each cou-
pled medium, such as on the optimal OTW. We discuss this
issue by changing the values of coupling coefficients C1 and
C2. In this simple model case, the model stability is sensi-
tive to the coupling coefficient C1 (Zhang et al., 2012), and

changing C1 only influences the chaotic component, so here
we just change C2 to investigate the impact of the coupling
coefficient between the atmosphere and upper ocean on the
optimal OTWs. As in Zhang and Anderson (2003), an en-
semble size of 20 is applied in all assimilation experiments
in this study.

2.4 Influence of the OTW on the accuracy of CDA

In order to exhibit the influence of the OTW on the qual-
ity of climate analysis, we show three simple assimila-
tion experiments (the time series of ω′s absolute errors)
in Fig. 2: (1) standard CDA (green) (assimilating the ob-
servation rights at the analysis times without any atmo-
spheric/oceanic OTW); (2) OCN-OTW(5) CDA (red) (assim-
ilating all 11 ocean observations in an oceanic OTW with
a half-width of 5, defined as the length of the OTW here-
after, but no atmospheric OTW is considered), and (3) OCN-
OTW(100) CDA (blue) (assimilating all 201 ocean observa-
tions in an oceanic OTW with a length of 100, but no atmo-
spheric OTW is considered). The three assimilation experi-
ments above are all conducted using the perfect model setting
(all the parameters use their standard values) and the univari-
ate adjustment scheme. The atmospheric and oceanic update
intervals are 0.05 and 0.2 TU, respectively. While the stan-
dard CDA does not use the atmospheric and oceanic OTWs
and only assimilates the observations right at the analysis
time, the OCN-OTW CDA incorporates all the valid obser-
vations collected in the oceanic OTW. All three assimilation
experiments above do not use an atmospheric OTW.

From Fig. 2, we can see that a small OCN-OTW (a total of
11 observations in the oceanic OTW) can make a much bet-
ter ocean analysis than the standard CDA (comparing the red
line with the green line). We can understand that this is be-
cause an OTW can provide more observational information,
thus enhancing the observational constraint so as to improve
the accuracy of climate analysis. However, comparing the
blue line to the green/red line, it is clear that an overly large
OTW degrades the quality of the ocean analysis. The results
of these simple assimilation experiments tell us that, if an ap-
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Figure 2. Time series of the absolute errors of the slab ocean
variable (ω) in three assimilation experiments based on the model
states between 9100 and 9110 TUs assimilation results in the per-
fect model experiment framework with the univariate adjustment
scheme. Green – CDA control with the standard update intervals
of 0.05 TU for X1,2,3 and 0.2 TU for ω; red – CDA with an ocean
observational time window (OCN-OTW) of five time steps (OCN-
OTW (5)); blue – CDA with OCN-OTW (100).

propriate OTW is used, we can gain optimal climate analysis.
How can we determine such an optimal OTW? Next, starting
from analyzing the characteristic variability of each coupled
medium, we will discuss the methodology of how to deter-
mine an optimal OTW for each medium in a coupled climate
system.

2.5 The timescale of characteristic variability and an
optimal OTW

The key to improving the accuracy of climate analysis in
CDA is by accurately recovering the characteristic variabil-
ity of different media in the coupled system. Thus we can
assume that the length of an optimal OTW for each medium
will have some relationship with the corresponding charac-
teristic variability timescale. Then, we should first analyze
the timescale of characteristic variability in each medium.

Figure 3 presents the power spectrum of X2 ω and η

based on the model states with a 4800 TU length (totally
480 000 data) after the spinup described in Sect. 2.3. From
Fig. 3, we learned that in this simple model, the characteris-
tic variability timescales of atmosphere (X2), upper ocean
(ω), and deep ocean (η) are about 1–2 TUs (1–2 model
months), 50–100 TUs (5–10 model years), and 500 TUs (5
model decades), respectively. That is, the characteristic vari-
ability timescale of the slab ocean is much larger than that of
the atmosphere, but smaller than that of the deep ocean.

An optimal OTW aims to provide maximal observational
information that best samples the characteristic variability
of that medium during the data blending process. Thus the

length of the optimal OTW should be smaller than the cor-
responding characteristic variability timescale, which means
that the optimal OTW in the atmosphere must be much
smaller than 1 TU (100 time steps), and in the ocean, the op-
timal OTW must be much smaller than 50 TUs (5000 time
steps). If we take observations for η, the optimal OTW for
η must be much smaller than 500 TUs (50 000 time steps).
From Fig. 3, we also see that the characteristic variabil-
ity timescales of different coupled media are a little larger
than the corresponding ones set in Eq. (1). This is owing
to the strong nonlinearity and smoothness of the fourth-
order Runge–Kutta time-differencing scheme that prolongs
the characteristic variability timescales of the simple coupled
model. But they do not change the essence of the problem we
address in this study. Given different timescales of character-
istic variability in different media, in the following section
we will further detect the optimal OTWs based on the cor-
responding characteristic variability timescales and examine
their impact on the quality of climate analysis in CDA.

3 Detection of the optimal observational time window

In this section, with the perfect model framework described
in Sect. 2.3, we first conduct a series of CDA experiments
with different ATM-OTWs and different OCN-OTWs to de-
tect the optimal OTW for each medium. The assimilation
scheme is the simple univariate adjustment scheme serving
as a proof-of-concept study. To eliminate the dependency of
results on initial states, each experiment is repeated 20 times
starting from the 20 independent initial conditions described
in Sect. 2.2. Then the mean value and the spread of 20 cases
of RMSEs are plotted in Fig. 4.

Figure 4a shows that the optimal ATM-OTW is 1; i.e.,
the optimal ATM-OTW includes only three atmosphere ob-
servations, with which the assimilation produces the lowest
RMSE of the atmosphere and the smallest spread. (In this
study each assimilation experiment will be repeated 20 times
starting from 20 different independent initial ensemble con-
ditions. Here the spread just represents the standard devia-
tion of these 20 cases’ results. Thus it will be smallest when
using the optimal OTW.) In these experiments for detecting
the optimal ATM-OTW, the ocean assimilation is kept as the
standard setting (i.e., no OTW, 0.2 TU update interval). Then
we keep the ATM-OTW as 1 and change the length of OCN-
OTW to produce Fig. 4b.

From Fig. 4b, we can see that the optimal OCN-OTW
is about 10 (i.e., each OTW includes a total of 21 obser-
vations), with which the lowest ω-RMSE and the smallest
RMSE spread are produced. Compared to the case of stan-
dard CDA (denoted as CDA_NOTW), the uses of optimal
ATM-OTW and OCN-OTW make the RMSEs of X1,2,3 and
ω significantly reduced. When the RMSE of ω has a distin-
guishable sensitive variation with respect to OCN-OTWs, the
RMSE of X does not show such a sensitivity to the optimal
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Figure 3. The power spectrum (green) of (a)X2 (b) ω, and (c) η based on the model states between 5000 and 9800 TUs integrations after the
spinup which integrates for 10 000 TUs from the initial condition (0, 1, 0, 0, 0) with respect to the frequency, with 95 % statistical significance
(red).
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Figure 4. Variations of root mean square errors (RMSEs) of (a) “atmospheric” statesX1,2,3 (namely, the average ofX1,X2, andX3 RMSEs)
in the space of ATM-OTW length when the “oceanic” state (ω) only uses a single observation at the assimilation time; (b) “upper ocean” state
(ω) in the space of OCN-OTW length when the ATM-OTW is fixed at 1 as shown in panel (a) (1 for the ATM-OTW, i.e., three observations
in each window; see the caption of Fig. 1) but the OCN-OTW (for ω) is varying and (c) “deep ocean” state (η) in the space of η-OTW length
when the “deep ocean” observations are assumed to be valid and the ATM-OTW and OCN-OTW are fixed as 1 and 10, respectively. The
experiments are conducted in a perfect model setting with a simple univariate adjustment scheme. The red lines are the 20-case mean, each
using different initial conditions taken from different periods in the control integration (see the description in Sect. 2.2), and the blue lines
represent the upper/lower bounds (mean ± standard deviations) of the RMSEs. An OTW with the length of 0 represents only assimilation
of the observation at the assimilation time (i.e., with no OTW, dashed-black lines). The RMSE values of the control case (no observational
constraint, called CTL) are marked in the parentheses.

OCN-OTW. (Because we just choose the optimal OCN-OTW
from the figure of ω-RMSE. Thus in this study the variation
of X-RMSEs in the OCN-OTW space is not shown.) This
means that in this simple system, due to the strong nonlin-
earity and chaotic nature of the “atmosphere”, the improved
accuracy for ω from optimal observational constraint is not
sufficient to impact the “atmosphere” (this point will be ex-
panded in Sect. 4.3). Similarly to the characteristic variabil-
ity timescale of the slab ocean vs. that of the “atmosphere”

shown by Fig. 3, the optimal OCN-OTW is much larger than
that of ATM-OTW.

To further understand the relationship between the opti-
mal OTW and characteristic variability timescale, we also
examine the η-RMSEs in the space of η-OTWs. The assim-
ilation interval of the pycnocline depth is set as 1 TU (100
time steps), which is much larger than that of the slab ocean.
When we change the η-OTW, the optimal ATM-OTW and
OCN-OTW detected from Fig. 4a and b are used. As shown
in Fig. 4c, the optimal η-OTW is about 100 (i.e., a total of 201
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Figure 5. Same as panels (a) and (b) in Fig. 4 but for the variation of ensemble spreads of the model states. In panel (b) the optimal ATM-
OTW is also set as 1. The area between the lower and upper bounds (blue) represents the range evaluated from the 20 cases. And the blue
shadow below the ensemble spreads represents the range of the uncertainty of state estimation in each assimilation experiment.

observations), which is much larger than that of OCN-OTW
and smaller than the characteristic variability timescale of the
deep ocean pycnocline depth. With the optimal η-OTW, the
RMSE of η is reduced by about 77.4 % from the level of the
CDA_NOTW.

We also check the variation of the 20-case mean ensemble
spread in the space of OTWs as shown in Fig. 5. The mean
and standard deviation of the ensemble spreads of X1,2,3 and
ω (the uncertainty of the state estimation in each assimila-
tion experiment is shown as the blue shadow in Fig. 5) grad-
ually decrease when the ATM-OTW and OCN-OTW become
larger. When the OTWs are set too large (here the ATM-
OTW and OCN-OTW are greater than 20 and 250, respec-
tively), the ensemble spreads of X1,2,3 and ω decrease dra-
matically. This is owing to the fact that when we increase
the length of the OTW, more observations will be included in
the OTW and then assimilated into the corresponding model
states, which can function as a smoother. The longer the
lengths of OTWs are, the stronger the smoother will be. Also,
under this circumstance, the overly strong smoother will dis-
tort the characteristic variability of the model states, which
explains the blue line of Fig. 2. From Figs. 4 and 5, we
can see that the mean of the ensemble spread is significantly
smaller than that of the corresponding RMSE. It is owing to
the fact that no inflation scheme is applied in this study. And
the statistics for evaluation are conducted from the data ob-
tained in the last 5000 TUs. Thus after the first 5000 TUs’
assimilation in each assimilation experiment, the ensemble
spreads of model states have been greatly reduced due to
no inflation. Then the mean ensemble spread is significantly
smaller than the mean RMSE.

To understand the essence of optimal OTWs, we show the
auto-correlation for each model state and mark the time cor-
relation coefficients at the timescales of optimal OTWs for
X2 (a), ω (b), and η (c) detected from Figs. 4 to 6. The result
is the mean of 20 cases. In each case, the number of data are
10 000 steps (100 TUs), which are chosen from the period of

5000 to 9000 TUs in the truth run after spinup. From Fig. 6
we can see that all auto-correlations at the optimal OTW
length are located at around 0.995. This means that the ob-
servations included in an optimal OTW are extremely highly
correlated with the model state at the analysis time. This can
be understood since in this sequential assimilation scheme all
the observations included in an OTW are assumed to be sam-
pled at the analysis time so that the difference among them
must be in a negligible range. Under such a circumstance,
the optimal OTWs provide maximal observational informa-
tion that best fits the characteristic variability and minimizes
the analysis error.

4 Influences of realistic assimilation scenarios on
optimal OTWs

In this section, we first show the impact of the multi-variate
adjustment scheme on the optimal OTWs in a perfect model
setting. Then we discuss the influence of model bias through
a biased model framework. We will also investigate the im-
pact of coupling strength on the optimal OTWs.

4.1 Influence of multi-variate adjustment on optimal
OTWs

While the experiments with the univariate adjustment
scheme provide us with a direct understanding of the influ-
ence of the OTWs on CDA, we want to check whether or
not it also applies to the multi-variate adjustment scheme.
So we repeat the experiments described in Sect. 3 but with
the multi-variate adjustment scheme. The results are shown
in Fig. 7. Here the multi-variate adjustment scheme is only
limited to the atmospheric observations (i.e., only the cross-
covariances among X1, X2, and X3 are used; as indicated in
Han et al., 2013, the multi-variate adjustment scheme using
the coupling cross-covariance between different coupled me-
dia involves complex scale interactions and may complicate
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Figure 6. The auto-correlation coefficient of (a) X2 (b) ω, and (c) η in the space of lag times are marked by corresponding time correlation
coefficients at the timescale (L) of optimal OTWs as detected by Fig. 4 for different media (the black-dashed lines). What are shown are the
means of 20 cases. In each case, an independent section (each has 10 000 data of the state – 100 TUs with the interval of 0.01 TU) is used to
evaluate the lag correlation coefficient. The 20 independent sections are taken from the model states apart each 200 TUs between 5000 and
9000 TUs integrations after the spinup of 10 000 TUs from the initial condition (0, 1, 0, 0, 0).
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Figure 7. Same as Fig. 4 but using a multi-variate adjustment scheme. In panel (b) the optimal ATM-OTW is also set as 1.

the investigation of the problem we are addressing here). The
results shown in Fig. 7 are similar to that in Fig. 4, suggest-
ing the multi-variate adjustment scheme has little influence
on the optimal OTWs, since it does not change the character-
istic variability timescales (especially in this simple model).

The perfect experiment framework provides a direct
guideline for the relationship between the optimal OTW and
the corresponding characteristic variability timescale. How-
ever, in reality, the numerical model has errors and is biased
with the observation. It is as necessary to investigate the in-
fluence of model bias on optimal OTWs as on the quality of
CDA.

4.2 Influence of model bias on optimal OTWs

With the biased model experiment framework described in
Sect. 2.3, we repeat all the experiments above for detection
of the optimal OTWs. The results are shown in Fig. 8. Com-
pared to the results in the perfect model setting, the results in

the biased model setting have two differences. First, the op-
timal ATM-OTW and OCN-OTW are larger than their coun-
terparts in the perfect model setting, becoming 3 and 20 (that
is, the total observations are 7 and 41, respectively). Second,
the RMSE curves in the space of OTWs show more concav-
ity and sensitive variation. This is more distinguishable in the
curve of ω-RMSEs in the OCN-OTW space. All these phe-
nomena can be explained by the influence of model bias on
the assimilation quality. On the one hand, due to the exis-
tence of model bias, the assimilation not only needs obser-
vations to fit the observed variability, but also needs obser-
vations to reduce the mean discrepancy between the model
and observations. This requires stronger observational con-
straints. An optimal OTW that makes the smallest RMSE of
model states must include more observed data. On the other
hand, the forecast ensemble in a biased model underestimates
the forecast error, which results in the EAKF underweight-
ing the observations. Therefore the optimal OTWs are larger
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Figure 8. Same as Fig. 4 but using the biased model setting. In panel (b) the optimal ATM-OTW is set as 3. And in panel (c) the optimal
ATM-OTW and OCN-OTW are kept as 3 and 20, when the “deep ocean” observations are assumed to be valid.

than those in the perfect experiment case in that the obser-
vations included in the optimal OTWs will be assimilated
for multiple times, which results in an improvement of fil-
ter performance. The test experiment for the optimal η-OTW
is also consistent with this point (in Fig. 8c): the optimal η-
OTW in the biased model setting is larger than that in the
perfect model setting. Then we also investigate the influence
of OTWs on the quality of CDA with the multi-variate ad-
justment scheme in the biased experiment framework (not
shown here). The results are the same as the perfect model
setting case; i.e., the multi-variate adjustment scheme does
not change the optimal OTWs.

Comparing the results from two experiment frameworks,
we can see that regardless of perfect or biased model setting
used in the assimilation experiments, the optimal OTW must
be associated with the corresponding characteristic variabil-
ity timescale in the medium. It is clear that while using ob-
servations in an OTW increases observational information,
an overly large OTW can distort the characteristic variability
of coupled media during the information blending process.
Therefore choosing an optimal OTW that is much smaller
than the medium’s characteristic variability timescale is very
important. The simple model results suggest that the length
of an optimal OTW is about 1–5 % of the medium charac-
teristic timescale, with which characteristic variability of the
medium can be retrieved most accurately.

In this study, the OTW validates the observations in a time
window to the analysis time and all the observations included
in the OTW are sequentially assimilated with their original
error scales. Another general approach is to assimilate the
average of the observations included in the OTW, but the ob-
servational errors decrease as 1/

√
N of their original error

scales (N represents the number of observations included in
the OTW). From the comparison of these two methods (not
shown), we can see that the results obtained by them are al-
most the same. From the perspective of the calculation pro-

cess of the EAKF method, owing to no inflation scheme be-
ing used, after many assimilation steps the ensemble spreads
of the model states have been greatly reduced and are sig-
nificantly smaller than the corresponding observational error
scales. And the prior ensemble member will be very close
to the prior ensemble mean. Thus the analysis adjustments
obtained by these two methods will be almost the same. It
is worth mentioning that although the resulting RMSEs ob-
tained by these two assimilation schemes will be different
when using the suitable inflation schemes, the lengths of the
optimal OTWs are still the same and the essence of this study
is still firm and does not change.

Also, among the above assimilation experiments in this
study, we have not considered the temporal offset induced by
the difference between the time of observations in the OTW
and the analysis time. Here we can use the de-correlation co-
efficients to weight the observations included in the OTW
and avoid overweighting them. The comparison of these two
assimilation approaches (non-weighted and weighted) has
been conducted (the results are not shown). From the com-
parison we learn that the lengths of the optimal OTWs ob-
tained by these two assimilation schemes are similar, ex-
cept that the RMSEs in the weighted observation experiment
will be lower than that in the non-weighted one when using
longer OTWs (when the length of ATM-OTW is greater than
4 and/or that of the OCN-OTW is larger than 50). This is ow-
ing to the high correlation between the observation included
in the optimal OTWs and model states at the analysis time
(exceeding 0.995). Thus the influence of the temporal offset
can be ignored and the results obtained by these two schemes
will almost be the same when using the shorter OTWs. When
we use the longer ones, the correlation will decrease and the
influence of the temporal offsets will be obvious in that the
results of the weighted observation experiment will be better.
For the CDA systems in the CGCMs, owing to the complex
physics and dynamics, the influence of the time offsets will
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Figure 9. The power spectrum of (a)X2 and (b) ω based on the model states between 5000 and 9800 TUs integrations after the spinup which
integrates for 10 000 TUs from the initial condition (0, 1, 0, 0, 0) with different coupling strengths (C2 is set as 1.5, 1.25, 1.0, 0.8, 0.5, and
0.1, while C1 remains as 0.1). Panel (c) shows the time series of the model state ω between 5000 and 5100 TUs integrations corresponding
to the six cases.
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Figure 10. Panel (a) is the same as panel (b) in Fig. 9 but for using six different coupling strength cases (with C2 values of 1.5, 1.25, 1.0,
0.8, 0.5, and 0.1, while C1 stays as 0.1). Panel (b) is the variation of the length of the optimal OCN-OTW with respect to the values of C2.

be obvious and the weights of the observations will be very
necessary. But from this simple model case, we can see that
regardless of using the weighted observations, the relation-
ship between the characteristic variability timescales and the
optimal OTWs will be robust, and the essence of this study
is established.

4.3 Influence of coupling strength on optimal OTWs

Changing the coupling strength (controlled by the coupling
coefficients C1 and C2 in this case) between the atmosphere
and upper ocean may have some influence on the character-
istic variability timescales of coupled media, as on the op-
timal OTWs. Test experiments show that changing the cou-
pling coefficient C1 has little influence on the characteristic
variability timescales of X1,2,3 and ω. This is because the
characteristic timescale of X is determined by the chaotic

nature of the Lorenz equations, not by the oceanic forcing
associated with the coupling coefficient C1. Therefore, here
we just change C2 to investigate the coupling coefficient be-
tween the atmosphere and upper ocean on the optimal OTW
of ω. Setting the values of C2 as 1.5, 1.25, 1.0, 0.8, 0.5, and
0.1 and keeping C1 as 0.1, we repeat all the biased CDA ex-
periments with the multi-variate adjustment scheme. The re-
sults are shown in Fig. 9, which presents the power spectrum
of X2 and ω (panels a and b) of the six cases above based
on the model states between 5000 and 9800 TUs, as well as
the time series of model states between 5000 and 5100 TUs
(panel c) after the spinup described in Sect. 2.3. We can see
that changing C2 does not influence the characteristic vari-
ability timescale of the atmosphere, but strongly influences
the variability of the slab ocean. From the equation of ω, the
characteristic variability timescale of ω is determined by the
combination of the atmospheric forcing and the periodic ex-
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ternal forcing. When C2 is small, the forcing of atmosphere
to ocean is weak, and then the periodic external forcing plays
a dominant role in determining the characteristic variability
timescale of the ocean component.

Then we examine the difference in the optimal OTW of ω
in the six cases above, as shown in Fig. 10. The results show
that changing C2 does not have any influence on the optimal
ATM-OTW (not shown). From panels a and b we can see
that when C2 is smaller, the optimal OCN-OTW is larger.
This can be explained by the increasing role of the periodic
external forcing in determining variability of the slab ocean,
for which data assimilation needs more observational infor-
mation to recover the periodic variation of ω, determined by
the timescale defined by Spd (10 TU). When C2 is larger than
1.0, changing it has little influence on the characteristic vari-
ability of the ω, as on the optimal OCN-OTW.

On the one hand, these experiments can further illustrate
the idea that a close relationship between the length of the
optimal OTW and the corresponding characteristic variabil-
ity timescale exists. On the other hand, for a realistic CDA
system, the coupling physics could be very complicated and
affected by many factors. The results of this simple model
give the insights that when determining the length of the op-
timal OTWs for a realistic CDA system, we can only consider
such factors that have an obvious influence on the character-
istic variability timescales. In this way, the process of deter-
mining the optimal OTWs in a realistic CDA system can be
greatly simplified and make it possible to apply the method
of using the optimal OTWs to the realistic CDA system.

5 Summary and discussions

With a simple conceptual climate model and the EAKF
method, the impact of OTWs on the quality of CDA has been
investigated in this study. This simple conceptual coupled
model consists of a synoptic atmosphere (Lorenz, 1963) and
seasonal–interannual slab upper ocean (Zhang et al., 2012)
coupling with a decadal deep ocean (Zhang, 2011a, b), and
reasonably simulates the typical interactions between multi-
ple timescale components in the climate system. Determined
from the characteristic variability timescale in each coupled
medium, an optimal OTW provides maximal observational
information to best fit the characteristic variability of the
medium during the data blending process. With correct scale
interactions within the coupled system, CDA can recover the
climate signals most accurately by incorporating all observa-
tions in the optimal OTWs into the coupled model, although
in an idealized and simple model circumstance, the conclu-
sion addressing the best fitting characteristic variability in
each medium with the optimal OTW is comprehensive and
therefore provides a guideline for improving climate analy-
sis and prediction initialization when real observations are
assimilated into a CGCM. For example, as learned from the
simple model results, we may consider improving the quality

of climate analysis and prediction initialization by accurately
recovering some important characteristic variability in the
atmosphere (sub-diurnal variations, for instance) and ocean
(diurnal cycle in the tropical oceans, for instance).

However, the current work can only serve as a proof-of-
concept study. Although CDA with the optimal OTWs has
shown promising improvement in this simple model, serious
challenges still exist for detecting optimal OTWs in the real
world with a CGCM for improving climate analysis and pre-
diction. First, the characteristic variability timescales in dif-
ferent media of the real world are complex, and great chal-
lenges remain to identify the characteristic variability of the
different component models and the real atmosphere and up-
per and deep ocean, which need to be further studied. Also, in
a real ocean model, the upper and deep ocean is inseparable,
which bring some troubles in using different OTWs for dif-
ferent parts of the same ocean model. Second, due to model
biases, characteristic variability in a CGCM may be different
from the real world. The combination of variability of the
real world and that of the model may further complicate the
problem. Therefore, model bias and its influence on model
variability need to be thoroughly analyzed before an optimal
OTW is determined. Thirdly, the coupling physics between
different coupled components are very complicated and are
impacted by many factors for a realistic CDA system. Even
though we only consider the factors which will obviously im-
pact the characteristic variability timescales when determin-
ing the length of OTWs for different coupled components, it
remains a heavy workload. In addition, in this study we as-
sume that all observations in the OTWs have equal weights to
contribute to the observational constraint. In the real obser-
vation case, the observation far away from the assimilation
time should have less contribution to the state estimation at
the assimilation time. How to take the time correlation into
account in a sequential algorithm needs to be studied before
implementing optimal OTWs in the assimilation with CGCM
and real observations.
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