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Abstract. Spatial distributions of the main properties of the
mode function and kinematic and non-linear parameters of
internal waves of the second mode are derived for the South
China Sea for typical summer conditions in July. The calcu-
lations are based on the Generalized Digital Environmental
Model (GDEM) climatology of hydrological variables, from
which the local stratification is evaluated. The focus is on
the phase speed of long internal waves and the coefficients at
the dispersive, quadratic and cubic terms of the weakly non-
linear Gardner model. Spatial distributions of these parame-
ters, except for the coefficient at the cubic term, are qualita-
tively similar for waves of both modes. The dispersive term
of Gardner’s equation and phase speed for internal waves of
the second mode are about a quarter and half, respectively,
of those for waves of the first mode. Similarly to the waves
of the first mode, the coefficients at the quadratic and cubic
terms of Gardner’s equation are practically independent of
water depth. In contrast to the waves of the first mode, for
waves of the second mode the quadratic term is mostly nega-
tive. The results can serve as a basis for expressing estimates
of the expected parameters of internal waves for the South
China Sea.

1 Introduction

The South China Sea is an example of shelf seas where
highly energetic internal solitary waves often generate
up to 100-200 m vertical displacements of water masses.
These powerful disturbances are usually excited by tide—

topography interaction in the Luzon Strait where the
Kuroshio serves as a background current that may greatly
modify the generating conditions but does not affect the co-
efficients of the Gardner model in the South China Sea. The
resulting internal waves are further modified by numerous is-
lands, seamounts and other bathymetric features in the Luzon
Strait (Liu et al., 1998, 2004, 2006; Cai et al., 2002; Ramp
et al., 2004, 2015). Many such structures with amplitudes up
to 100 m propagate as solitary waves. Their impact on water
masses has been observed in the vicinity of two underwa-
ter elevations in an area of the Luzon Strait where the water
depth is only about 300m (Liu et al., 2006). These waves
propagate into deeper regions of the South China Sea, cross
this water body and exert conspicuous transformations along
the continental shelf at depths of 400-200 m. The associated
displacements of isopycnals may reach 100 m. The appear-
ance of such waves often matches well theoretical shapes of
internal solitons (Klymak et al., 2006).

While most such waves represent internal waves of the
first mode, numerous recordings suggest that internal waves
of the second and sometimes even third mode are regu-
larly present in the South China Sea (Fig. 1; see also Guo
et al., 2006; Yang et al., 2009; Vlasenko et al., 2010; Liu
et al., 2013). It is likely that higher modes of long internal
waves are often generated in the world ocean. They are fre-
quently excited, for example, as a result of interaction of
non-linear waves of the first mode with topography (Ramp
et al., 2010, 2015; Shroyer et al., 2010; Vlasenko et al.,
2010, 2014; Vlasenko and Stashchuk, 2015). Alternatively,
internal waves of any mode may be created in micro-tidal
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stratified semi-sheltered basins by an intense outflow or in-
flow (Vlasenko et al., 2009), strong atmospheric disturbances
(Ivanov et al., 1987), indirect and/or delayed impact of such
disturbances (e.g. release of storm surges) and other phenom-
ena.

Most studies of internal waves focus on waves of the first
mode. This approach apparently mirrors the abundance of
records of various properties of water masses in the upper-
most layers of the ocean compared to profiles of the en-
tire water column, namely, profiles of motions and other hy-
drophysical properties of the upper sections of water masses
usually do not provide enough information about the full
vertical structure of internal waves. Separation of the inter-
nal wave field into components representing different modes
is extremely complicated in the vicinity of their generation
regions and in areas where the waves interact with one an-
other and with the bottom. Such analysis, however, is feasible
in regions remote from the generation and interaction areas
because small-amplitude internal waves of different modes
propagate with different velocities and become separated af-
ter some time.

Solitary internal waves of the first mode may be waves
of elevation or waves of depression. The structure of higher-
mode internal solitary waves is more complicated (Fig. 2).
For example, vertical displacements of the upper and lower
jump layers created by an internal solitary wave of the second
mode have different polarities. For this reason the notion of
internal waves is based on certain topologic features of the
instantaneous appearance of the intermediate layer. Waves
that create convex modifications of this layer are said to have
positive polarity. Such waves are called convex or positive
waves in what follows. Waves that create a concave shape of
the intermediate layer are said to have negative polarity and
are called concave or negative waves.

Internal solitary waves of the second mode with both po-
larities have been regularly observed on the north-western
continental shelf of the South China Sea (Yang et al., 2010;
Ramp et al., 2015). Such waves may be generated during in-
teractions of solitary waves of the first mode with various
bathymetric features (Vlasenko and Hutter, 2001). Positive
(convex) solitary waves of this kind appear substantially (by
about 20 times) more frequently in the records than negative
(concave) waves (Yang et al., 2010).

The dynamics of long internal waves of the second mode
can be described with reasonable accuracy using weakly non-
linear evolution equations of the Korteweg—de Vries (KdV)
family. In particular, Gardner’s equation is commonly used
as the classic model of internal waves of the first mode (Hol-
loway et al., 1999; Grimshaw et al., 2004; Talipova et al.,
2014, 2015). This model has been applied inter alia to ex-
plain and replicate a polarity switch of internal solitons prop-
agating along the north-eastern continental shelf in the South
China Sea (Liu et al., 1998; Orr and Mignerey, 2003; Zhao et
al., 2004; Grimshaw et al., 2010).
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The models of this kind are correct only asymptotically.
Their core advantage is that a small set of parameters gov-
erns the appearance and properties of internal solitary waves.
This feature makes it possible to use these models to iso-
late and identify principally new features of the dynamics
of internal waves even if some details of the system are not
reproduced. For example, a new kind of quasi-steady non-
linear internal wave (a so-called breather) has been predicted
using the framework of Gardner’s equation. The possibility
of generation of such phenomena by solitary waves of the
second mode and the basic properties of its long-term propa-
gation have been obtained in a numerical “wave tank” using
Euler’s equations (Lamb et al., 2007; Terletska et al., 2016).
Several features of the process of generation of table-top soli-
tary waves were also extracted based on Gardner’s equation
(Kurkina et al., 2016). The effect of a change in the polarity
of solitary waves predicted by the asymptotic theory has been
repeatedly observed in various areas, including the South
China Sea (see above). It is however inevitable that many
specific features and details (e.g. radiation of short waves,
properties of strongly non-linear disturbances or breaking of
solitonic structures) cannot be reproduced using equations
for weakly non-linear waves and specific configurations of
stratification may require the use of higher-order analysis and
equations.

The parameters selected for the model have a significant
effect on many features of internal solitary waves. In other
words, the appearance and core qualities of the propagation
and transformation of such waves are governed by spatial
variations in the coefficients of Gardner’s equation along the
propagation path of the waves in question. The associated
variations have been thoroughly studied for internal solitary
waves of the first mode using common databases of the ver-
tical structure of temperature and salinity (Levitus, 1982;
Carnes, 2009). This approach made it possible to construct
climatologically valid maps of spatio-temporal variations in
various coefficients of Gardner’s equation for internal waves
of the first mode in different regions of the world ocean.
These maps depict the values of phase speed of long waves
(also called wave speed because for long waves it is also
equal to group speed) and coefficients of various terms (lin-
ear, quadratic and cubic terms) in the relevant Gardner equa-
tion (Pelinovsky et al., 1995; Talipova and Polukhin, 2001;
Polukhin et al., 2003, 2004; Kurkina et al., 2011, 2017). Sim-
ilar maps have also been calculated for the South China Sea
(Grimshaw et al., 2010; Liao et al., 2014).

As many regions of the world ocean support propagation
of internal waves of higher modes, it is important to ex-
pand this kind of “climatology” of internal wave propaga-
tion regimes to cover, to a first approximation, the properties
of large-amplitude internal waves of the second mode. Such
maps of the kinematic parameters (wave speed and the co-
efficient at the linear term) and coefficients at the non-linear
terms of the relevant evolution equation make it possible to
rapidly evaluate several core properties of the dynamics and
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Figure 1. Internal waves representing the first, second and third modes (Guo et al., 2006). Numbers at the boxes in the panel indicate the

number of the relevant mode.

Figure 2. Scheme of internal solitary waves of the second mode
with positive (left) and negative (right) polarity.

impact of internal waves, build pathways of the propagation
of waves from their typical areas of generation and identify
which regions are possibly affected by hydrodynamic loads
created by large internal waves.

For example, the polarity of solitons is governed by the
sign of the coefficient at the quadratic term of Gardner’s
equation (Grimshaw et al., 2007). The values of this coef-
ficient as well as other kinematic parameters of waves can
be calculated in a straightforward manner from the so-called
mode function and its derivatives. The lines where the coeffi-
cient at the quadratic term vanishes or changes its sign mark
the regions of a switch of the polarity of internal solitons.

www.nonlin-processes-geophys.net/24/645/2017/

This switch may be accompanied by radical changes in the
further behaviour of waves or the region may even be a loca-
tion of the onset of wave breaking. This feature is valid for
solitons of the first and second modes. Similar maps of the
values of the coefficient at the cubic term specify e.g. the re-
gions where modulational instability of internal wave trains
may modify wave properties or where a specific type of soli-
ton — internal breather — may exist (Talipova et al., 2011).

This paper focuses on the construction of maps of phase
speed and coefficients at various terms of Gardner’s equa-
tion. These quantities are often called kinematic and non-
linear parameters of long internal waves of the second mode.
The target area is the South China Sea where such maps are
useful to better evaluate the core properties of internal waves
and their propagation. We start with a short description of
the set-up of the problem of internal wave propagation. An
asymptotic solution to this problem can be provided by an
evolution equation for such internal waves — Gardner’s equa-
tion. To properly evaluate the values of its coefficients that
govern the appearance and dynamics of internal waves of the
second mode, it is necessary to adequately describe the struc-
ture of the mode function. A relevant non-linear correction to
this function is derived using an asymptotic procedure, which
is discussed in Sect. 2 together with the main features of the
appearance of internal solitary waves of the second mode.
Section 3 describes the resulting maps of phase speed and
various coefficients at the non-linear terms of the Gardner
model for internal waves of the second mode and the appli-
cability of the entire model for the conditions of the conti-
nental shelf of the South China Sea. The main conclusions of
the study are formulated in Sect. 4.
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1.1 Vertical structure of long internal waves of the
second mode

Similarly to the treatment of internal waves of the first mode,
the dynamics of long internal waves of the second mode in
the ocean can be adequately described using a classic evolu-
tion equation — Gardner’s equation (Holloway et al., 1999;
Grimshaw et al., 2004, 2007). This model equation, pre-
sented here in the nondimensional form
an 33n
ot ax3
is valid for internal waves of any mode. Here x denotes the
distance along the propagation direction of the wave, ¢ is
time, 7 is the vertical deviation of the isopycnals from their
equilibrium position at a selected vertical location z*, ¢ is the
phase speed of internal waves, o and o1 are the coefficients at
the quadratic and cubic non-linear terms, respectively (some-
times also called the quadratic and cubic non-linear param-
eters), and B is the coefficient at the linear dispersive term
(often called the dispersion coefficient). The quantities c, «,
a1, and B represent the major kinematic characteristics of the
internal wave field.

The mode function @ is an eigenfunction of the Sturm—
Liouville problem:

a
+ (ctemtam?) ST +po =0, (M)

o N(2)
dz? c?
whereN (z) is the buoyancy (Brunt—V4isild) frequency. This

frequency depends on the local stratification and is defined
as follows:

d=0, 2)

g dp@@)
p(z) dz

where g is acceleration due to gravity, p(z) is the undis-
turbed density profile, and H is the total water depth. The
boundary conditions for Eq. (3) usually include the require-
ment of the vanishing of ® at the bottom and at the sea sur-
face. We chose the common approximation of the so-called
rigid lid at the surface, for which these conditions reduce to
P0)=d(H)=0.

The phase speed ¢ of long internal waves is an eigenvalue
of the described Sturm-Liouville problem. The vertical loca-
tion z* is, theoretically, arbitrary, but the resulting numerical
values of the coefficients of Gardner’s equation (1) obviously
depend on the choice of z*.

We follow the tradition of selecting z* at location Zyqax,
which corresponds to the maximum value @, of the mode
function ® (Holloway et al., 1999). This function is nor-
malised as ®(z*) = 1. Details of the spatio-temporal struc-
ture of internal waves are described in this model as

¢(x,z,1) = n(x, 1)@ () + n*F(2). )

N*(z)=—

3

Here F'(z) has the meaning of a second-order non-linear cor-
rection to the mode function. It is defined as a solution of the
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following inhomogeneous boundary problem:

d’F N? ad*® 3d|[do\?
5 _F = —— 5 + ~ 5 - 9
dz2 = 2 cdz?  2dz dz
F(0) = F(H) =0. 5)

A unique solution for Eq. (5) can be obtained using an ad-
ditional normalising condition F'(z*) = 0. Even though the
location z* can be chosen arbitrarily, the resulting vertical
structure of motions and displacements of different water
parcels do not depend on the particular choice of z* (Hol-
loway et al., 1999, 2001). The coefficients of Eq. (1) can
be expressed explicitly for any stratification in terms of the
mode function, its derivatives and its integrals:

H

f 3 do\’
c 5 c
= [0z, a=—2 [(Z2) 4z,
p ZD/ L *=5p (dz) ¢
0

0
H
2
D= / (d—q’) dz, ©)
Z
0

a 2 4 3
1 dF (d®d dd dod
oj=— | dz39c—(—) —6c| — ) +5a| —
2D dz \ dz dz dz
0
4o AF 4% a? (dD\? o
adz dz c \ dz '

The impact of stratification and mode correction on the value
and sign of the coefficient at the cubic term in Gardner’s
equation is analysed in detail in Grimshaw et al. (1997) and
Kurkina et al. (2015). Consequently, to specify the coeffi-
cients of Gardner’s equation, it is necessary to evaluate the
mode function from Eq. (2) and its non-linear correction
from Eq. (5).

The vertical structure of internal waves of the second mode
is more complicated than the same structure for the classic in-
ternal waves of the first mode. The core difference between
these structures can be illustrated with the example of a sim-
ple model of quasi-two-layer stratification (Fig. 3a). The wa-
ter masses described by such a model have one jump layer
of density. The Brunt—Viisili frequency (Fig. 3b) has one
maximum along each vertical cross section. The maximum
is located in the region of the fastest variation in density.
Similarly, the mode function for the waves of the first mode
has one extremum (maximum or minimum depending on the
normalisation) along each vertical cross section. Importantly,
the mode function for the waves of the first mode exhibits no
sign change within the entire water column.

In contrast, the mode function for the waves of the second
mode changes its sign. It has the maximum positive value
near the upper boundary of the jump layer and the minimum
(negative) value near the lower boundary of the jump layer
(Fig. 4a). This means that two more intrinsic quantities are

www.nonlin-processes-geophys.net/24/645/2017/
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Figure 3. An example of the vertical profile of the density (a) and
Brunt-Viisila frequency (b) of a quasi-two-layer marine environ-
ment.

present in the system: the locations of zero-crossing zo and
minimum Zm,;, of the mode function. If some function & sat-
isfies Eq. (2) with ®(0) = ®(H) =0, the function —® is
also a valid solution to this boundary problem. Therefore, it
is not clear beforehand whether zy,x Or Zmin should be cho-
sen to normalise the mode function and to specify the unique
mode function from the family described by Eq. (2) and the
relevant boundary conditions.

There are different approaches in the literature. Liu and
Wang (2012) rely on the values of the mode function at its
minimum Zzmin, Where the absolute value of & is usually the
largest. This approach, in essence, follows the logic of ad-
dressing the dynamics of internal waves of the first mode
where the absolute maximum of the mode function is cho-
sen as the scale for the normalisation of this function.

Other recent studies of internal solitons of the second
mode in the South China Sea address the situation on the
continental shelf where the largest absolute values of @ are
located at zyax relatively close to the sea surface (Yang et
al., 2009, 2010). In such situations it is natural to choose the
maximum of & in a location above the jump layer (main pyc-
nocline) as the basis for normalisation. The quality and reso-
lution of measurements above the main pycnocline are often
better than in deeper layers and thus the vertical structure of
the mode function is more reliably represented.

In such environments it is convenient to adjust Gardner’s
equation so that it describes the deviations of the isopycnals
that correspond to z* = zyax. Similarly to the analysis of in-
ternal waves of the first mode, the entire mode function ®
is then normalised so that the global maximum of its abso-
lute values is 1. Also, in this case the zero-crossing point of
the non-linear correction F (Eq. 5) is linked to zmax. In this
framework the function n expresses deviations of the isopy-
cnal ¢(x,z,t) in Eq. (4) at z = zZmax from its undisturbed lo-
cation.

www.nonlin-processes-geophys.net/24/645/2017/
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Figure 4. The vertical structure of the mode function ®(z) defined
in Eq. (2) (a) and its non-linear correction F'(z) defined by Eq. (5)
(b) for internal solitary waves of the second mode for the stratifica-
tion presented in Fig. 3.

Importantly, with this choice of normalisation the polarity
of the internal solitons of the second mode matches the sign
of the coefficient at the quadratic term of Eq. (1). In other
words, positive (convex) solitons correspond to positive val-
ues of the coefficient «w. This match follows the usual inter-
pretation of the coefficients and the appearance of solutions
of the family of generalisations of the KdV equation. This
choice, however, may be problematic in the analysis of wave
motions of deeper parts of the world ocean and the South
China Sea. The problem becomes evident when both the sea-
sonal and main pycnoclines are located relatively close to
the surface. In such cases the absolute value | (zpnin)| may
by several times exceed the maximum of the mode func-
tion ®(zmax). Consequently, the largest negative values of
the normalised mode function may reach values well beyond
—1.

This feature may lead to certain problems in the analysis
of the dynamics of internal waves of this kind. However, the
normalisation is, in essence, arbitrary and the vertical struc-
ture of motions is independent of the chosen normalisation.
Therefore, the relevant issues are purely technical and do
not impact on the results of the analysis. Thus, we decided
to meet the possible technical implications but still follow
the more logical and straightforward normalisation using the
maximum of the absolute values of the mode function at the
upper boundary of the jump layer.

2 Kinematic parameters of long internal waves of the
second mode

The South China Sea is a large (surface area about

3.5millionkm?) semi-sheltered water body bordered by
China from the north, Vietnam and Cambodia from the west

Nonlin. Processes Geophys., 24, 645-660, 2017



650

and the Philippines from the south-east (Fig. 5a). The water
depth of this sea varies greatly (Fig. 5b). About half of the
sea is located on the continental shelf and has water depths
of just a few hundred metres, while another half has depths
comparable with those of the open ocean. This variability to-
gether with extensive variations in the hydrological fields in
this sea gives rise to large spatial variations in the coefficients
of the underlying non-linear evolution equations and conse-
quently in the kinematic parameters of internal waves in the
area.

To construct spatial maps of these parameters, we followed
the approach implemented for the calculation of similar pa-
rameters of internal waves of the first mode and the coeffi-
cients of Gardner’s equation for this basin (Grimshaw et al.,
2010; Liao et al., 2014). We employed generalised clima-
tologic information about long-term mean temperature and
salinity profiles. This information was extracted from the
Generalized Digital Environment Model (GDEM) (Teague et
al., 1990; Carnes, 2009). The GDEM (https://data.nodc.noaa.
gov/cgi-bin/iso?id=gov.noaa.nodc:9600094) provides coeffi-
cients of mathematical expressions describing the vertical
profiles of temperature and salinity with a horizontal reso-
lution ranging from 30’ in the deep ocean to 10 in selected
coastal regions (including the South China Sea) at 77 ver-
tical levels. The relevant database integrates over 3 million
observations since 1975.

The maps in this paper were calculated for the stratifica-
tion that is characteristic in July. Seasonal variations in these
maps are discussed shortly at the end of Sect. 3.2. The field
of large-scale currents was ignored because there is no de-
tailed information about the currents in this area in the ex-
isting databases. We stress that both large-scale currents and
mesoscale structures may considerably affect the local strati-
fication and greatly impact the values of coefficients of Gard-
ner’s equation. However, their impact is highly variable in
space and time and it is likely that it will become evident via
limited variations of the seasonal values of the coefficients in
question.

Mean density profiles were computed for each horizontal
pixel of the GDEM database from temperature and salinity
profiles using the International Equation for State of Sea-
water (Fofonoff and Millard Jr., 1983). With these density
profiles, we evaluated the mode function ®(z) for the sec-
ond mode as the normalised eigenfunction of the boundary
problem (2) similarly to the procedure employed in Kurk-
ina et al. (2017). The field of large-scale currents was ig-
nored. The eigenvalue problem (2) was solved numerically
at each pixel of the GDEM for the first and second eigen-
values ¢ (phase speed of long linear internal waves of the
first and second vertical modes) and for the first and second
eigenfunctions ®(z) (vertical structure of the wave). Further,
the boundary-value problem (5) for the non-linear correction
F(z) was solved numerically by the method of variation of
parameters. Finally, the coefficients at the linear, quadratic
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and cubic non-linear terms were evaluated from Egs. (6) and

).

2.1 Spatial variations in the parameters of the mode
function

As described above, the calculations of various parameters
and coefficients rely on the values of maxima zmax, minima
Zmin and zero-crossings zo of the mode function (Fig. 4a).
Figures 6-8 present spatial distributions of these quantities
(normalised against the total depth of the sea) and frequency
histograms of the occurrence of their different values.

A large part of the values of zmax/H are concentrated
around zmax/H = 0.97 (Fig. 6b). This relatively wide peak
in the histogram indicates that in a substantial part of the sea
the location of the maximum of the mode function is found
relatively close to the sea surface. The pixels with such values
evidently belong to the deep-water region of the study area.
Another minor and narrow peak is located at zmax/H = 0.75.
This peak apparently reflects a more or less horizontal sub-
region of the sea on the continental shelf. The histogram of
z0/ H (Fig. 7b) has a similar shape. The main and secondary
peaks in this histogram are concentrated around the slightly
smaller values zg/H = 0.9 and zo/H = 0.5, respectively. In
contrast, the distribution of zpnin/H (Fig. 8b) is much flatter
but still contains distinct peaks at zmyin/H = 0.25, 0.45 and
0.65, and a narrow peak at zyyi,/H = 0.2. These features sug-
gest that interrelations between the vertical locations of the
maximum, zero-crossing and minimum of the mode function
are greatly different.

The locations of zero-crossings of the mode function
largely follow the relevant locations of the maximum. There-
fore, both zero-crossings and maxima of the mode function
roughly reflect the core variations in the water depth. In con-
trast, the minima of the mode function are only weakly, if at
all, correlated with zmax and zg. It is therefore likely that the
quantity zmin reflects some other features of the bathymetry
and hydrography of the sea. This conjecture once more sup-
ports the choice of the maximum of the mode function for
the normalisation of this function.

Another view of the nature of the distributions of the quan-
tities Zmax/H, zo/H and zmin/H can be provided using a
scatter plot of their values against the physical water depth
(Fig. 9). The plots of all three quantities exhibit a cluster
with extensive variation in their values for relatively small
depths. This feature indicates that very large variability in
kinematic properties of internal waves of the second mode is
an intrinsic feature of relatively shallow regions of the study
area. For depths larger than 500 m all three quantities show
a clear, almost rigorous dependence on water depth. Consis-
tently with the above, zmax/H and zo/H are concentrated
in a narrow range close to 1. Interestingly, zmin/H exhibits
an almost linear relationship with water depth. This feature
signals that the structure of the mode function of the second
mode may have a certain systematic pattern of changes along

www.nonlin-processes-geophys.net/24/645/2017/
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Figure 5. (a) Location scheme of the South China Sea (http://www.nationsonline.org/oneworld/map/South-China- Sea-political-map.htm);
(b) bathymetry of the South China Sea extracted from the GDEM database (Carnes, 2009).
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Figure 6. (a) Map of the vertical location of the normalised depth zmax/H of the maximum of the mode function in July in the South China
Sea; (b) histogram of values of zmax/H in steps of 0.01 (n is the number of values of zmax/H in the relevant interval). The total number of

pixels in the map is 3446.

the propagation of internal waves from their generation area
over the deep-water region of the South China Sea towards
the continental shelf. This pattern does not become visible in
the behaviour of the quantities zmax/H and zo/H.

As discussed above, it is debatable whether the maximum
or minimum values of the mode function should be used for
normalising this function. The spatial distribution of the val-
ues of ®@pin/Pmax indicates that the maximum of ® exceeds
the absolute value of the relevant minimum in most of the
relatively shallow-water parts of the study area, whereas in
the deeper regions |®piy| is systematically larger than ®pax
(Fig. 10). A histogram of the normalised values of @i, con-

www.nonlin-processes-geophys.net/24/645/2017/

tains two peaks of comparable height and width. The peak
at O pin/Pmax = —1 evidently reflects the typical values of
this ratio in the shallow areas, whereas another peak at —2
is characteristic of this ratio in deeper regions. The values of
|®Pmin| do not exceed 2.5 in the interior of the South China
Sea, but reach levels > 3 in the Sulu Sea.

2.2 Distributions of kinematic parameters of internal
waves of the second mode

Spatial distributions of phase speeds of long linear inter-
nal waves of the first and second modes are very similar

Nonlin. Processes Geophys., 24, 645-660, 2017
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Figure 7. (a) Map of the vertical location of the normalised zero-crossing depth zg/H of the mode function in July in the South China Sea;

(b) histogram of values of zg/H. Notations are the same as for Fig. 6.
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Figure 8. (a) Map of the vertical location of the normalised depth z,;,/H of the minimum of the mode function in July in the South China
Sea; (b) histogram of values of z,;,/H . Notations are the same as for Fig. 6.

to each other in the South China Sea (Fig. 11). The phase
speeds for internal waves of the second mode are mostly
below 1.5ms~! in this water body in typical conditions of
July. Internal waves of the first mode propagate much faster.
The phase speeds of waves from the first and second modes
usually differ by a factor of 1.5-2. As expected, the phase
speed of waves of both modes largely depends on the water
depth (Talipova and Polukhin, 2001; Polukhin et al., 2003).
The presence of two subregions of the study area with dif-
ferent characteristic phase speeds appears in the scatter plot
of phase speeds and water depth (Fig. 12a). This feature be-
comes distinctly evident as a two-peak distribution of the em-
pirical distribution of different phase speeds (Fig. 12b). Most

Nonlin. Processes Geophys., 24, 645-660, 2017

internal waves of the second mode propagate with speeds
around 0.2 ms ™! or around 1.4 ms~! in the South China Sea.

Even though water depth is one of the most important fac-
tors governing the propagation speed of internal waves, strat-
ification of water masses equally contributes to the properties
of the propagation of internal waves. Its impact is apparently
complemented by variations in the amount of incoming radi-
ation from the Sun. These variations may be one of the rea-
sons for the presence of the meridional pattern of the phase
speed of internal waves of the second mode. This meridional
pattern is well known for internal waves of the first mode
(Talipova and Polukhin, 2001). Its presence is a likely reason
why the dependence of the phase speed on water depth shows

www.nonlin-processes-geophys.net/24/645/2017/
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(green), and zp,;, / H (blue) against the total water depth in the South
China Sea.

substantial scatter in the study area (Fig. 12a). The level of
scatter is, however, fairly moderate and the relationship be-
tween the water depth and phase speed can be reasonably
approximated using a power function:

c=gq.H". 8)

For water depths less than 500 m an appropriate approxi-
mation of the coefficient in Eq. (8) is g. = 0.0078 m0-25 g1
(Fig. 12a). The 95 % confidence interval of this estimate is
[0.0075, 0.0081]. The estimate for the power in Eq. (8) is
a = 0.75, whereas the relevant 95 % confidence interval is
[0.743, 0.757]. For water depths exceeding 500 m (Fig. 12a)
the respective estimates are g. = 0.1901 m%73¢s~1 (95%
confidence interval [0.1802, 0.2]) and a = 0.244 (95 % con-
fidence interval [0.237, 0.251]).

Spatial distributions of the coefficient at the dispersive
term of Gardner’s equation (1) for internal waves of the sec-
ond (Fig. 13a) and first (Fig. 13b) modes are also qualita-
tively similar. However, the numerical values of this coeffi-
cient differ substantially. This coefficient (and, consequently,
the impact of linear dispersion on the wave propagation and
dynamics) for waves of the second mode is about 3—4 times
smaller than the similar coefficient for the waves of the first
mode. The relationship between this coefficient and water
depth (Fig. 13c) is remarkably different from a similar re-
lationship (8) for phase speed. Figure 13c clearly represents
a quadratic relationship that graphically can be presented as
a parabola:

B=qpH?>. )

An estimate for the coefficient in Eq. (11) is gg=
0.01682ms™!, with a 95% confidence interval [0.01669,

www.nonlin-processes-geophys.net/24/645/2017/
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0.01695]. The scatter of the values of this coefficient for a
given depth increases with the increase in the water depth.
This feature demonstrates that deep-water stratification may
have a considerable impact on the values of the coefficient at
the dispersive term in deeper areas.

Differently from the coefficient at the dispersive term, the
values of coefficients at the non-linear terms of Gardner’s
equation are mostly governed by properties of stratification
and only insignificantly depend on the water depth (Talipova
and Polukhin, 2001). It is therefore not surprising that the
maps of these coefficients for waves of the second (Fig. 14a)
and first (Fig. 14b) modes are qualitatively similar to each
other and that the numerical values of these coefficients for
the two modes are comparable.

The histogram of the values of the coefficient at the
quadratic term in Eq. (1) indicates that, differently from sev-
eral other quantities addressed above, this coefficient has a
clearly skewed but unimodal distribution. The values with
both signs are more or less equally represented (Fig. 14c).
The range of values is from —0.01 to +0.025~!. The most
frequent values are negative, the relevant peak is located at
—0.007 s~!, and the majority of single values are also neg-
ative. This feature apparently mirrors the larger extent of
deep-water regions compared to relatively shallow ones in
the South China Sea. However, the area of the shallow-water
region of the sea is also significant and almost half of the
values of the coefficient at the quadratic term are positive.

Interestingly, a smaller peak exists for zero values of this
coefficient. Gardner’s equation transforms into the modi-
fied KdV equation in locations where the coefficient at the
quadratic term vanishes and one has to use this equation in
order to properly describe weakly non-linear dynamics of in-
ternal waves in such regions. Importantly, the study area con-
tains regions characterised by large gradients and changes in
the sign of this coefficient. In general, the signs of this co-
efficient are different in deeper-water and shallower regions
of the South China Sea. Interestingly, the signs of this co-
efficient are also different in the north-western and south-
western regions of the continental shelf for both modes.

The coefficient in question is positive in most of the north-
ern part of the shelf; consequently, the situation is favourable
for the existence of positive internal solitons of the second
mode. This feature explains why convex solitons are predom-
inantly recorded in the north-eastern segments of the conti-
nental shelf (Yang et al., 2010). In contrast, this coefficient
is generally negative for internal waves of the first mode,
whereas its positive values are found only in a few small ar-
eas of the South China Sea. Further, this coefficient for waves
of the second mode is predominantly positive in the southern
relatively shallow part of the South China Sea, whereas for
waves of the first mode the sign of this coefficient is highly
variable.

It is well known that the values of the coefficient of the
quadratic term of Eq. (2) for internal waves of the first
mode are practically independent of the water depth (Tal-

Nonlin. Processes Geophys., 24, 645-660, 2017
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Figure 10. (a) Map of normalised values ®,;, of the minimum of the mode function in July in the South China Sea; (b) histogram of values
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Figure 11. Map of phase speeds of long linear internal waves of the

ipova and Polukhin, 2001). This property is also true for
internal waves of the second mode in the South China Sea
(Fig. 15). The largest absolute values of this coefficient (cor-
responding to both negative and positive values) occur in rel-
atively shallow areas. The range of its values in deeper parts
(depths > 1000 m) of the study area extends from —0.008 to
0.008 s~!, with the majority between —0.007 and 0.002s~!.
Several negative outliers (< —0.01 s~1) become evident at
very large depths (4—5 km).

The coefficient at the cubic non-linear term of Eq. (1) has
relatively small (but positive) values for waves of the first
mode in the entire deep-water region of the South China Sea
(Fig. 16b). This coefficient for waves of the second mode also
has small absolute values in this area. It is positive only on
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the continental slope and turns negative in the entire eastern
part of the sea. This coefficient for waves of the second mode
has large positive values in selected locations of the Sulu Sea.
The north-eastern shelf of the South China Sea is charac-
terised by intermittent variations in the sign of this coeffi-
cient for both modes of internal waves. This area also shows
the largest absolute values of this coefficient (0.001 m s
for both modes.

The histogram of different values of the coefficient at the
cubic term of Eq. (2) is moderately skewed. It covers values
from —0.001m~'s~! to 0.001 m~!s~! and has a high and
relatively narrow peak at zero values (Fig. 16¢). The major-
ity of the values of this coefficient are negative, in the range
from —0.0005m~!s™! to zero. Positive values are scarce
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China Sea. Red curve: approximation of the relationship between the phase speed and water depth for depths below 500 m with a power
function (8); green curve: the same approximation for depths > 500 m; (b) histogram of different values of the phase speed of linear long
internal waves of the second mode. Other notations are the same as for Fig. 6.

. B, m*s! B, m*s!
25°N -800000 25°N 800000
20°N 20°N

600000 ' * 600000
15°N 15°N
400000 400000
10°N 10°N
£ 200000 £ 1 200000
5°N 3 5N g
: :
g 3
§ H
EQ " : § 0 EQ 8!
100°E  105°E  110°E  115°E  120°E

100°E 105°E 110°E 115°E 120°E
(a) (b)
B,m3 s (x10%)

0 1000 2000 3000 4000 H m
©

Figure 13. Map of coefficients at the dispersive term of the Gardner equation for internal waves of the second mode (a) and first mode (b) in
July in the South China Sea; (c) scatter plot of this coefficient for internal waves of the second mode against water depth.
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Figure 14. Map of coefficients at the quadratic term of the Gardner equation for internal waves of the second mode (a) and first mode (b) in
July in the South China Sea; (¢) histogram of this coefficient for internal waves of the second mode. Other notations are the same as for Fig.
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in the South China Sea; (c) histogram of this coefficient for internal waves of the second mode. Other notations are the same as for Fig. 6.

and small. For example, only 5 values are counted around
0.00025m~!s~!, whereas some 75 negative values of the
same magnitude exist at —0.00025m~! s~!. Similarly to the
coefficient at the quadratic term, the values of the coefficient
at the cubic term of Eq. (2) are practically independent of the
water depth for both modes (Fig. 17). Extensive scatter and
the largest absolute values of this coefficient are characteris-
tic of shallow areas. For water depths > 1 km this coefficient
is in the range from 0.00013 to —0.0003m~' s~!. As an ex-
ception, a few pixels in the Sulu Sea contain much larger
positive (for waves of the second mode) or smaller negative
(for waves of the first mode) values.

Even though several properties of water masses of the
South China Sea exhibit extensive seasonal variations, this
feature does not necessarily become evident in terms of kine-
matic parameters of internal waves of the second mode. The
maps of quantities that express the normalised stratification
conditions zmax/H, z0/H, Zmin/H, and &, and the linear
parameters ¢ and § for January (not shown) qualitatively al-
most coincide with similar maps for July. The match is al-
most perfect in the deeper area of the basin. The largest quan-
titative differences (of the order of 20 %) occur in shallow

www.nonlin-processes-geophys.net/24/645/2017/

areas of this sea. However, both coefficients at the non-linear
terms of Gardner’s equation have substantial seasonal vari-
ations. The values of the coefficient « at the quadratic term
change insignificantly from July to January in deeper areas,
but instead of very small values (of the order of 0.001s~!
and below) in January, there are quite large values (around
and above 0.01s~!) in July in shallow areas. The values of
the coefficient « at the cubic non-linear term vary in a com-
plicated manner between January and July.

2.3 Applicability of the asymptotic model for long
internal waves in the South China Sea

Gardner’s equation is, strictly speaking, only an asymptoti-
cally valid model for weakly non-linear long internal waves.
Thus, its applicability should be discussed for each particu-
lar environment and set of parameters of internal waves. The
observed amplitudes of internal waves of the second mode in
the shelf region of the South China Sea were in the range of
10-30 m. According to Yang et al. (2009, 2010), amplitudes
of internal solitons of the second mode are about 20 m. We
use the value a = 20 m for the evaluation of the applicabil-

Nonlin. Processes Geophys., 24, 645-660, 2017
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Figure 17. Scatter diagram of coefficients at the cubic term of the Gardner equation against water depth for internal waves of the second

mode (a) and the first mode (b).

ity of the Gardner model (1) in the western part of the South
China Sea located on the continental shelf together with the
typical dimensional (physical) values of the coefficients of
the quadratic and cubic non-linear terms in Eq. (1).

The above shows that in this region usually o = 0.01s~!
and thus the typical magnitude of the quadratic term is ¢ A =
0.2ms~!. Similarly, the typical value of the coefficient at
the cubic non-linear term is a; = 0.0005m s~ ! and the
magnitude of this term is oy A> = 0.2ms~!. The case when
both non-linear terms are small is discussed in detail by Peli-
novsky et al. (2007) and Kurkina et al. (2015). The typical
magnitude of the phase speed of linear long internal waves
of the second mode is ¢ ~0.4ms~!. Therefore, both non-
linear terms of Gardner’s equation have an equal magnitude
that is about half of the long wave speed of the internal waves
of the second mode. In the light of estimates of Maderich et
al. (2009, 2010) the presented relationships signal that Gard-
ner’s equation is suitable for the description and analysis of
properties, propagation and dynamics of internal waves with
an amplitude of up to 20 m in South China Sea conditions.
Even though such solitary waves are strongly non-linear, pos-
sible errors in the estimates of their parameters (first of all
wave amplitudes) based on the Gardner model do not exceed
20 % (Maderich et al., 2009, 2010). This conjecture is con-
sistent with the practice of the use of such asymptotic mod-
els. This level of deviations of the estimates from the true
values is commonly acceptable (Liu et al., 2004; Talipova
et al., 2014, 2015). As errors of this kind rapidly increase
with increasing wave amplitude, the use of such models for
smaller-amplitude waves is associated with much lower lev-
els of errors.

Nonlin. Processes Geophys., 24, 645-660, 2017

3 Discussion and conclusions

The derived maps of various parameters of the governing
quantities of the underlying model (such as the location of
the maxima of the modal function) and the parameters of the
weakly non-linear models provide a new insight into qualita-
tive features of the propagation and transformations of inter-
nal waves of the second mode in the South China Sea. The
presented climatologically valid distributions of the phase
speed and coefficients at the non-linear terms of Gardner’s
equation (1) (or other equations of the family of KdV-type
equations) may be used for expressing estimates of various
parameters of internal waves of this kind. This includes in-
ter alia evaluation of hydrodynamic loads on the seabed (and
on offshore engineering structures) created by the propaga-
tion of such waves, forecasting of areas and depths strongly
affected by the internal wave activity after intense wave gen-
eration events, and identification of regions with a very high
probability that such waves will break.

A promising development is the possibility of evaluation
of the limiting amplitude of internal solitons that correspond
to negative values of the coefficient at the cubic non-linear
term (Kurkina et al., 2011, 2017) as well as the amplitude
of algebraic solitons that correspond to the positive values of
this coefficient.

The main conclusions of the study are the following.

— Spatial distributions of all kinematic parameters of in-
ternal waves of the second mode in the South China Sea
(except for the coefficient at the cubic non-linear term
of Gardner’s equation) are qualitatively similar to anal-
ogous distributions for internal waves of the first mode.

— The dispersive term of Gardner’s equation for internal
waves of the second mode is about 3—4 times smaller
than this term for waves of the first mode.

www.nonlin-processes-geophys.net/24/645/2017/
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— The phase speed for internal waves of the second mode
is about half of that for waves of the first mode.

— The coefficients at the quadratic and cubic terms of
Gardner’s equation for internal waves of the second
mode mainly depend on the stratification and much less
on the total water depth.

— In contrast to internal waves of the first mode, the
quadratic term of Gardner’s equation is mostly negative
for waves of the second mode in the South China Sea.

An important limitation of the current study is that the poten-
tial impact of large-scale currents and mesoscale activity is
not taken into account in our analysis. Both these phenomena
may substantially modify the local stratification and greatly
impact the values of coefficients of Gardner’s equation. To
our knowledge, no detailed information is available about
the currents in this area in the existing databases at a level
that would be acceptable to quantify their impact on the local
stratification on scales of propagation of internal waves. A
feasible way forward seems to be an attempt to quantify the
level of variations of the seasonal values of the coefficients
in question using single profiles of temperature and salinity
in selected sea areas.
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