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Abstract. The study of the adjustment to equilibrium by
a stratified fluid in a rotating reference frame is a classi-
cal problem in geophysical fluid dynamics. We consider the
fully nonlinear, stratified adjustment problem from a numer-
ical point of view. We present results of smoothed dam break
simulations based on experiments in the published literature,
with a focus on both the wave trains that propagate away
from the nascent geostrophic state and the geostrophic state
itself. We demonstrate that for Rossby numbers in excess of
roughly 2 the wave train cannot be interpreted in terms of
linear theory. This wave train consists of a leading solitary-
like packet and a trailing tail of dispersive waves. However,
it is found that the leading wave packet never completely
separates from the trailing tail. Somewhat surprisingly, the
inertial oscillations associated with the geostrophic state ex-
hibit evidence of nonlinearity even when the Rossby num-
ber falls below 1. We vary the width of the initial distur-
bance and the rotation rate so as to keep the Rossby num-
ber fixed, and find that while the qualitative response re-
mains consistent, the Froude number varies, and these varia-
tions are manifested in the form of the emanating wave train.
For wider initial disturbances we find clear evidence of a
wave train that initially propagates toward the near wall, re-
flects, and propagates away from the geostrophic state be-
hind the leading wave train. We compare kinetic energy in-
side and outside of the geostrophic state, finding that for
long times a Rossby number of around one-quarter yields
an equal split between the two, with lower (higher) Rossby
numbers yielding more energy in the geostrophic state (wave
train). Finally we compare the energetics of the geostrophic
state as the Rossby number varies, finding long-lived iner-
tial oscillations in the majority of the cases and a general
agreement with the past literature that employed either hy-
drostatic, shallow-water equation-based theory or stratified
Navier–Stokes equations with a linear stratification.

1 Introduction

Geostrophic balance, namely the balance between the pres-
sure gradient and the Coriolis pseudoforce, is observed to
hold to a good approximation for many large-scale mo-
tions in the atmosphere and the ocean. The process through
which some disturbed state reaches this balance is called
geostrophic adjustment. The linear problem was first con-
sidered by Rossby (1937). Using conservation of momen-
tum and mass, he derived the geostrophic steady state cor-
responding to an initial perturbation. In the original publica-
tion, Rossby noted that the final state of the system possessed
less energy than the initial state. The cause of this difference
was identified by Cahn (1945), who showed that the end
state is reached via inertial oscillations, which disperse en-
ergy through waves. Since then, numerous papers have used
a variety of methods such as asymptotic expansions and nu-
merical integration to solve this linear problem. There has
been a great deal of published work on the linear problem
(Ou, 1984; Gill, 1976; Middleton, 1987; Washington, 1964;
Mihaljan, 1963), but little on the fully nonlinear one. This
is partly because nonlinear problems rarely yield analytical
solutions in closed form, and partly because numerical meth-
ods applied to the problem must accurately resolve multiple
length scales.

Kuo and Polvani (1999), a key paper in the study of the
nonlinear problem, considered the adjustment problem in the
context of the single-layer shallow-water equations in one di-
mension. The authors built on the results of Killworth (1992)
and performed a numerical analysis of the fully nonlinear
problem with “dam break” initial conditions (see Gill, 1982).
The authors found that the nonlinearity and rotation led to
bore generation, with the bores dissipating energy as they
propagated away from the geostrophic state. Since the non-
linear shallow-water equations neglect non-hydrostatic dis-
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persion, these bores manifested as shock-like fronts. This is
in contrast to the non-rotating stratified adjustment problem
which leads to the generation of either a rank-ordered train of
internal solitary waves or an undular bore. Indeed, in this dis-
persive system, for the majority of parameter space, breaking
is not observed. The authors also found that the inertial oscil-
lations within the geostrophic state can persist for long times
and are highly dependent on the initial conditions. In their
analysis of the energy within the geostrophic state, the au-
thors found that the ratio of change in kinetic energy (1KE)
to change in potential energy (1PE) tended to 1

3 , which is
the theoretically predicted value for both the linear and non-
linear problems (see Boss and Thompson, 1995). However,
Kuo and Polvani (1999) showed that, even for late times, the
energy ratio fluctuated by up to 30 % around the 1

3 value.
While primarily viewed from a theoretical framework,

rotation-modified adjustment has been shown to arise nat-
urally in the ocean. Examples of this are upwelling fronts
which can create the initial density anomaly that then must
adjust; see Chia et al. (1982) for a more complete discussion.
More recently, Ledwell et al. (2004) and Oakey and Greenan
(2004), as part of the Coastal Mixing and Optics experiment,
showed the presence of patches of well-mixed regions (den-
sity anomalies) throughout a background of stable fluid along
the New England shelf. The specifics of this adjustment were
investigated in Lelong and Sundermeyer (2005). The authors
performed fully 3-D numerical simulations of moderate reso-
lution, using the nonhydrostatic equations under the Boussi-
nesq approximation, of the adjustment process resulting from
one of these density anomaly patches. To allow for more
reasonable computation, the authors followed the procedure
outlined in Lelong and Dunkerton (1998), and reduced the
physical ratio for N

f
(by varying f and holding N constant),

where N is the buoyancy frequency and f is the Coriolis pa-
rameter. For analysis, they separated the energy into kinetic
and potential, and separated the domain into two regions,
an inner region associated with the geostrophic state and an
outer region associated with the waves. Since the initial con-
ditions are static, the initial energy of the system is contained
solely as potential energy. By comparing the energy within
different areas of the simulation to the initial energy, the au-
thors found that initial conditions with Ror

L
= 1, where Ror is

the Rossby radius of deformation, and L is the half-width of
the initial state, were the most effective at generating kinetic
energy in the geostrophic state. This is in contrast to cases
with Ror

L
< 1, where rotation effects dominate and little po-

tential energy is converted to kinetic, or cases with Ror
L
> 1,

where the potential energy is primarily converted to wave
energy. In all cases considered by these authors the radiated
wave train was weak, composed of long waves and well ap-
proximated by linear theory.

The nonlinear effects on the rotating adjustment problem
have been investigated analytically using multiple-scale per-
turbation analysis of the shallow-water and fully stratified

equations. In part one of a two-part paper series, Zeitlin et al.
(2003a) perturb the rotating shallow-water equations using
the Rossby number as their small parameter. The authors pro-
ceed to confirm that a slow–fast splitting is possible, with
the slow state largely remaining in geostrophic balance and
largely unaffected by the fast state. In the waves that are gen-
erated, Zeitlin et al. (2003a) observe shock formation and
present a semi-quantitative criterion for this, based on the
initial conditions. In the second paper, Zeitlin et al. (2003b),
the authors generalize their results to the case of continu-
ous stratification and also consider two-layer and quasi-two-
layer stratifications. Zeitlin et al. (2003b) perform a num-
ber of asymptotic expansions for different initial isopycnal
deviation regimes. They conclude that for large deviations
the model strongly depends on the ratio of the layer depths
and that the waves produced from the initialization obey a
Schrödinger-type modulation equation. For small deviations
the waves generated are not impacted by the geostrophic
state, which is left to evolve according to the standard quasi-
geostrophic (QG) equations.

Rotation-influenced nonlinear waves have also been con-
sidered using a model nonlinear wave equation, in this case
a member of the Korteweg–de Vries (KdV) family of equa-
tions. The KdV equation is the simplest model equation that
allows for a balance between nonlinear and dispersive ef-
fects, with a rich mathematical structure which makes pre-
dictions of the evolution of an initial state that are remark-
ably robust in both laboratory and field settings (see John-
son, 1997). A rotation-modified version of the KdV equa-
tion was first derived by Ostrovsky (see Grimshaw et al.,
2012 for an in-depth discussion of the equation properties
and references to the Russian literature). This new equation
was subsequently analysed both through theoretical solutions
found by asymptotic expansions and through numerical so-
lutions. Investigation of the model equations revealed that
the precise balance between nonlinearity and dispersion that
leads to the traditional soliton solution of the KdV equa-
tion is destroyed by the addition of rotation, and that over
time the soliton breaks down into a nonlinear wave packet
(Grimshaw and Helfrich, 2008). This hypothesis was later
supported by experimental results (Grimshaw et al., 2013).
From a theoretical point of view, Grimshaw and Helfrich
(2008) also found that the extended nonlinear Schrödinger
(NLS) equation provides a good qualitative description of
the wave packet. While the mathematical developments of
the rotation-modified theory are substantial, it is also true
that this theory has a number of pathologies not observed in
the non-rotating KdV-based theory, which in itself has been
shown to misrepresent aspects of large amplitude solitary
waves (Lamb, 1997, is one of many papers to discuss some
of these discrepancies).

Work has also been performed using models with higher-
order nonlinearity (Helfrich, 2007) but weak nonhydrostatic
effects, as well as with the full set of stratified Euler equa-
tions (Stastna et al., 2009). Both of these studies consid-
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ered the breakdown of an initial solitary wave in the pres-
ence of rotation. Helfrich suggested that the initial solitary
wave breaks down into a coherent leading wave packet with
a trailing tail of waves. Stastna et al. (2009) suggested that
for large amplitude, exact internal solitary waves that are
solutions to the Dubreil–Jacotin–Long (DJL) equation, Hel-
frich’s result was observed for artificially high rotation rates,
while rotation rates typical of mid-latitudes led to a distur-
bance that never fully separated from the trailing tail. De-
spite differences in details, the qualitative features observed
in both studies were quite similar. Additionally, they also per-
formed collision experiments, finding that the packets that
emerge from the initial solitary waves can merge during col-
lisions and hence do not interact as classical solitons. Finally,
Stastna et al. (2009) also found that by increasing the width
of a flat-crested wave, more energy was deposited into the
tail. It remains to reconcile the two sets of results in detail,
likely by systematically reducing the solitary wave amplitude
used as an initial condition.

In this paper, we present the results of high-resolution sim-
ulations of the geostrophic adjustment of a stratified fluid
with a single pycnocline on an experimental scale. Our simu-
lations consider the full set of stratified Euler equations using
a pseudo-spectral collocation method. We begin by provid-
ing and reviewing the non-rotating case and the changes that
arise when the polarity of the initial condition is changed.
Next we present the general evolution of the rotating case
using classical theory and two “base” cases, one of which is
comparable to one of the cases presented in Grimshaw et al.
(2013). We subsequently identify the manner in which non-
linearity is exhibited in the problem, focusing on both the
wave train and the geostrophic state and its inertial oscilla-
tions. We are able to clearly show the generation of a left-
ward propagating wave from the initial condition (especially
evident for wider initial perturbations) and its subsequent
reflection from the left wall. This wave train interacts with
the geostrophic state, before and after reflecting off the left
wall of the domain, and then continues to propagate right-
ward across the tank. This is of potential interest to future
experiments. We then focus on the geostrophic state in detail,
specifically examining the change in kinetic energy and the
change in potential energy for different initial widths, as well
as the changes in the kinetic energy in the geostrophic state
and the propagating wave train as the Rossby number varies.
These results make the closest contact with the work of Le-
long and Sundermeyer (2005). Finally we draw a number of
conclusions based on our findings and identify directions for
future work.

2 Methods

For the following numerical simulations, the full set of strat-
ified Navier–Stokes equations for an incompressible fluid
were used, though no span-wise variations were consid-

ered. Rotation was incorporated using an f plane approxi-
mation and the non-traditional Coriolis terms were dropped.
For a review of the effects of the non-traditional Corio-
lis terms, see Gerkema et al. (2008). The x axis is taken
as parallel to the flat bottom with the z axis pointing up-
ward (k̂ is the upward directed unit vector). The origin is
placed in the bottom left corner so that both axes are pos-
itive. The incompressible Navier–Stokes equations for ve-
locity u= [u(x,z, t),v(x,z, t),w(x,z, t)], density ρ(x,z, t),
and pressure P(x,z, t) are

Du

Dt
+ (−f v,f u,0)=−∇P − ρ′gk̂+ ν∇2u, (1)

∇ ×u= 0, (2)
Dρ

Dt
= 0, (3)

where f is the constant Coriolis parameter, g is acceleration
due to gravity, and ν is the kinematic viscosity. In accordance
with convention, we have divided the momentum equation
by the constant reference density ρ0 and absorbed the hydro-
static pressure into the pressure P . We make the Boussinesq
approximation for density and write ρ = ρ0(1+ ρ′(x,z, t)),
where ρ′ is considered a small perturbation. Due to our in-
terest in the wave dynamics in the main water column, as op-
posed to details of the boundary-layer dynamics, we impose
free slip boundary conditions at the top and bottom of our do-
main. This will also ensure that the boundary layer does not
play a significant role in the simulations on which we report.
The walls allow us to mimic a lock–release set-up that is used
to create waves in many laboratory set-ups (Carr and Davies,
2006; Grue et al., 2000; Helfrich and Melville, 2006). We
have chosen to neglect the span-wise dimension (y), as the
lab results in Grimshaw et al. (2013) were performed away
from any side boundaries and the authors elected to neglect
any curvature from the waves created. Another change from
Grimshaw et al. (2013) is that we have a rigid lid as opposed
to their free surface; this is due to the computational difficulty
of a moving boundary.

In the following set of experiments the dominant dimen-
sionless number is the Rossby number. This number is de-
fined as Ro= U

fL
, where U is the typical wave speed, L is

the typical length scale, and f is the Coriolis parameter. This
reflects a ratio of the inertia term to the Coriolis pseudoforce
term (henceforth just force). When the Coriolis force dom-
inates, the fluid can reach a balance between the rotation
and pressure terms, i.e., geostrophic balance. Since the full
equations contain the diffusion term ν∇2, it can be used to
form the dimensionless Reynolds number which is given by
Re= UL

ν
. U and L are the same as for Ro and ν is the kine-

matic viscosity. The other relevant number considered is the
Froude number Fr= U

c
, which compares the typical wave

speed U to the theoretical wave speed c. In addition to these
traditional dimensionless numbers we also define a nonlin-
earity parameter α. Following from Kuo and Polvani (1997)
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this is defined as α = η
H1

, where η is the height of the dis-
placement in isopycnals and H1 is the height of the undis-
turbed fluid interface. This parameter can be used to mod-
ify the strength of the nonlinearity, and is well suited for
shallow-water equations. However, for the full set of incom-
pressible Navier–Stokes equations some ambiguity is intro-
duced by the vertical structure of the stratification and the
initial perturbation. Nevertheless, we have found α to be a
useful parameter, likely since the disturbances in our simula-
tions are dominated by mode-1 waves.

The numerical simulations presented here were performed
using an incompressible Navier–Stokes equation solver
which implements a pseudo-spectral collocation method
(SPINS), presented in Subich et al. (2013). The solver uses
spectral methods resulting in the order of accuracy scaling
with the number of grid points. To deal with the build-up of
energy in the high wavenumbers, an exponential filter is used
after a specific wavenumber cut-off.

We computed a series of 2-D lab-scale numerical simula-
tions on a similar scale to the physical experiments presented
in Grimshaw et al. (2013), which were performed using the
13 m diameter rotating platform at the LEGI-Coriolis Lab-
oratory in Grenoble. Motivated by the results presented in
Stastna et al. (2009), a domain 4 times longer than the phys-
ical tank (Lx = 52 m) was used, as 13 m is an insufficient
length when considering lower (closer to physical) rotation
rates. In addition to this it was decided to change the tank
depth to a more evenly divisible 0.4 m (from a laboratory
value of 0.36 m). The density difference was set to 1 % to
match Grimshaw and Helfrich (2008). The different physi-
cal parameters related to the initial set-up are illustrated in
Fig. 1.

In total, 8192 grid points were used to resolve the 52 m
length of the tank and 192 points were used for the 0.4 m
height, providing a 0.006 m horizontal resolution and a
0.002 m vertical resolution. To easily compare these numer-
ical results to the experimental values in Grimshaw et al.
(2013), our Coriolis parameter was based on their lowest pre-
sented value of f , which had a value of 0.105 s−1. It was also
decided to base the initial perturbation width w0 on twice the
Rossby radius of deformation (Ror =

U
f

) so as to allow for a
neater examination of the parameter space. We used the same
change in density as Grimshaw et al. (2013), 1 % between the
upper and lower fluids. In each of the simulations, the initial
conditions were given by a quiescent fluid, and a density field
defined via the isopycnal displacement η,

ρ′(x,z, t = 0)=−0.005tanh
(
z− η− 0.3

0.01

)
, (4)

η =±0.05exp
[
−

( x
w

)8
]
, (5)

where w is the half-width of the initial perturbation and the
sign changes correspond to changes in perturbation polarity.

Figure 1. A schematic of the tank simulation set-up which illus-
trates the different parameters. The dotted line represents the isopy-
cnal found at the centre of the pycnocline on the far right of the
domain. The largest deflection (both polarities are shown in the fig-
ure) occurs at the left end point of the domain.H1 andH2 represent
the depth of fluid below and above the centre of the undisturbed
pycnocline respectively. H0 is the maximum or minimum height of
the pycnocline created by the initial conditions. η is the isopycnal
displacement. w is the width of the initial condition defined from
the left-hand wall to where the pycnocline reaches within 1 % of
the undisturbed height.

3 Results

In this section we present the results of multiple numerical
simulations. Parameters were primarily modified by chang-
ing either the initial width of the perturbation or by changing
the rotation rate. Using the initial width as the typical length
scale, L= w, we are thus varying the Rossby number. The
resulting values of Ro are shown in Table 1. Across all the
cases, the depth does not change, and hence neither does

the two-layer linear longwave speed U =

√
g
1ρ
ρ0

H1H2
H1+H2

=

0.0858 m s−1, where g = 9.81 m s−2,1ρ = 10 kg m−3, ρ0 =

1000 kg m−3, H1 = 0.3 m, and H2 = 0.1 m. Using the same
wave speed and length scales as for the Rossby number, the
corresponding Reynolds numbers can be calculated; how-
ever, since we are primarily concerned with internal waves,
viscosity is negligible until the waves disperse to scales
where viscosity is dominant Vallis (2006). The kinematic vis-
cosity was the same for all simulations, ν = 1×10−6 m2 s−1.
Several additional experiments were carried out by chang-
ing the initial wave amplitude, which results in different
“nonlinearity” parameters. For the initial amplitude of η =
0.05 m and undisturbed pycnocline height H1 = 0.3 m we
have α = 0.1667. For the cases where amplitude is halved
and quartered, corresponding alpha values are α = 0.0833
and α = 0.0416. The initial value of α = 0.1667 allows for an
easy comparison to many of the figures in Kuo and Polvani
(1999) which are based on a value of 0.1. In addition to the
simulations above, another set of simulations was performed
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Table 1. Rossby number of each simulation, where f0 = 0.105 s−1

and w0 = 1.63 m.

Ro 1
4w0

1
2w0 w0 2w0 4w0

f0 2 1 1
2

1
4

1
8

1
2f0 4 2 1 1

2
1
4

1
4f0 8 4 2 1 1

2

using the opposite polarity of the initial disturbance. These
opposite polarity simulations correspond exactly to the cases
seen in Table 1, the only difference being the sign in the
isopycnal displacement used in the initial conditions.

Several simulations were also performed on an extra-long
tank to investigate the long-time results of adjustment. For
these simulations the tank length was L= 260 m and the
number of horizontal grid points was increased to 16 384,
providing a 0.0158 m resolution. The vertical height and grid
points were kept the same from the smaller case.

Unless otherwise stated the following scaling is used for
all figures: T = 1

f
, Lz = Lz, and Lx = Ror, with Lz= 0.4 m

corresponding to the depth of the tank. For kinetic energy,
we scale by the maximum kinetic energy for all spaces and
times to show relative changes.

3.1 The non-rotating case

We begin by reproducing the results of the adjustment prob-
lem without rotation. The solution to this problem is well
known, though we are not aware of any references that
present the result in detail. We thus state the result, with a
numerical example, and briefly outline the weakly nonlin-
ear theory behind it. Non-rotating adjustment yields either a
rank-ordered train of solitary waves or an undular bore form-
ing from the initial disturbance, depending upon the polar-
ity of the initial disturbance. Examples of these two cases
are shown in Fig. 2. Since there is no rotation, the advective
timescale was chosen, T = L

U
, to nondimensionalize time,

with the initial width w = 1
2w0 chosen for the typical length

scale. The stark difference between these cases is readily ap-
parent in both types of plots.

The result may be understood in terms of KdV theory. Us-
ing the notation of Lamb (1997), separation of variables is
applied to the streamfunction so that

ψ(x,z, t)= B(x, t)φ(z). (6)

The vertical structure is determined from a linear eigenvalue
problem, while to first order in amplitude and aspect ratio
B(x, t) is governed by a KdV equation for waves propagat-
ing in each direction. The KdV equation corresponding to
rightward propagating waves reads as

Bt =−cBx + 2cr10BBx + r01Bxxx, (7)

Figure 2. A space–time filled contour plot of vertically integrated
kinetic energy and density isocontours at t = 4275 showing the dif-
ferences between the positive and negative polarity initial condi-
tions with w = 1

2w0. Panels (a) and (c) correspond to the positive
polarity case, and panels (b) and (d) to the negative case.

where c is the linear longwave speed, r10 is the nonlinear-
ity coefficient, and r01 is the dispersive coefficient. The nu-
merical value for c is computed from the linear longwave
eigenvalue problem (Lamb’s Eq. 8a), while r10 and r01 are
computed from the integral expressions involving the eigen-
functions of the same problem (Lamb’s Eqs. 10a and b). The
dispersive coefficient, r01, is always negative, while the non-
linear coefficient, r10, switches sign depending on the func-
tional form of the stratification. In the case of a two-layer
flow exact expressions can be derived. Solitary wave solu-
tions of Eq. (7) are of the classical sech2 form. The prop-
agation speed equals the linear longwave speed to leading
order, with a nonlinear correction that is proportional to am-
plitude and r10 (Lamb’s Eq. 17). Thus the sign of r10 also
determines solitary wave polarity. In the absence of back-
ground shear currents this implies that stratifications centered
above (below) the mid-depth yield solitary waves of depres-
sion (elevation). All numerical experiments performed with
exact solitary waves computed using the DJL equation that
we are aware of match the predictions of the KdV theory pre-
sented above, as far as solitary wave polarity is concerned. Of
course, KdV theory is not necessarily a quantitatively accu-
rate predictor of the structure of large solitary waves (Lamb,
1997, is one of many papers to discuss some of the discrep-
ancies).

3.2 Rotation-modified evolution

As discussed in the introduction, a variety of model equa-
tions have been derived that account for the effects of rota-
tion, with Grimshaw and Helfrich (2008) providing a rela-
tively recent summary. The essential aspects of the role of
rotation can be gleaned from linear theory. In this case the
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streamfunction is governed by(
µ2ψxx +ψzz

)
t t
+

1
Ro2ψzz+

1
Fr2N(z)

2ψxx = 0, (8)

where µ= H
L

is the aspect ratio. When the assumption of
a linear stratification is made, the vertical structure of ψ is
sinusoidal, so that for the first vertical mode a separation of
variables like Eq. (6) yields(
µ2Bxx −

π2

H 2B

)
t t

−
π2

H 2
1

Ro2B +
1

Fr2Bxx = 0. (9)

The well-known dispersion relation of rotation-modified in-
ternal waves in a channel is readily recovered by assuming
a travelling wave solution (Vallis, 2006). In the hydrostatic
limit this equation reduces to the simplest example of a par-
tial differential equation that is both hyperbolic and disper-
sive, the classical Klein–Gordon equation of mathematical
physics,

Bt t +
1

Ro2B =
H 2

π2Fr2Bxx . (10)

By using the plane wave ansatz, it can immediately be seen
that the dispersion relation yields a lower bound on frequency
in the longwave limit, and hence the phase speed is un-
bounded in this same limit. This is the central problem that
model equation theories such as the Ostrovsky equation face
when implemented numerically. It is also readily apparent
from Eq. (10) that a non-trivial, time independent state is
possible, and this state corresponds to the geostrophic state
of classical geophysical fluid dynamics (Vallis, 2006). Fur-
thermore, it is clear that a spatially independent inertial os-
cillation is a possible solution to the equation. However, for
a given initial condition it is not immediately obvious what
the precise split is between the portion of the initial state
that propagates away and the portion left behind. While the
case in which the disturbance that emanates from the ini-
tial condition is small enough to be well described by linear
wave theory has been studied in detail by Lelong and Sun-
dermeyer (Lelong and Sundermeyer, 2005), the significant
amount of literature on the combined effects of nonlinearity,
dispersion, and rotation, and especially the experimental re-
sults in Grimshaw et al. (2013), suggest that the initial value
problem should be reconsidered without a priori approxima-
tions.

Using our definition of the Rossby number, we find that
the experiments presented in Grimshaw et al. (2013), with
a Coriolis parameter of f = 0.105 s−1, had a corresponding
Rossby number of 0.667. Therefore, we consider the f = f0
and w = w0 case (Ro= 0.5) as our baseline. We also pick a
negative initial condition to match their configuration. With
this in mind, Fig. 3 compares this baseline case with one
where the only difference is that the rotation rate has been
quartered (f = 1

4f0, Ro= 2). Figure 3a and c correspond

Figure 3. Panels (a) and (b) show a space–time plot of vertically
integrated kinetic energy, while panels (c) and (d) show three den-
sity isolines at t = 47.25 and t = 11.81 respectively. Panels (a) and
(c) correspond to the Ro= 0.5, f = f0, and w = w0 case, and pan-
els (b) and (d) to the Ro= 2, f = 1

4f0, andw = w0 case. The verti-
cal lines in panels (c) and (d) represent the distance the waves would
have travelled according to the linear phase and group speed.

to the baseline case, while Fig. 3b and d correspond to the
reduced rotation case. Figure 3a and b show vertically in-
tegrated kinetic energy space–time plots, while Fig. 3c and
d show density isolines at t = 47.25 and t = 11.81 respec-
tively. The vertical lines correspond to the locations of the
waves that emanate from the initial disturbance as described
by linear theory. We computed the spectrum of the horizon-
tal velocities to extract the dominant wavenumbers (k ≈ 0.84
and k ≈ 0.48 respectively) and used the algorithm outlined
in Stastna and Rowe (2007) to calculate the speeds. We have
presented both the linear phase and linear group speeds.

Comparing the results seen in Fig. 3 with Fig. 2b and c
(since they both began with a negative polarity initial condi-
tion), there are immediate differences in both styles of plots.
The most striking of these differences are the retention of
energy in the geostrophic state, and the spreading of the
ejected waves. The geostrophic state is visible in all plots
along the left-hand side of the tank (near the wall). Compar-
ing the two columns in Fig. 3, the case with a stronger rota-
tion rate traps more energy in the geostrophic state. We will
investigate differences in the geostrophic state in Sect. 3.4.
The wave spreading is visible in the space–time plots as the
waves propagate and within the new structure of the density
isolines. At both rotation rates, the solitary wave, which is
produced in the non-rotating case, has broken down into a
series of smaller waves. A transition also appears to occur
in the wave speed as the rotation rate changes. In Fig. 3d
the wave front roughly corresponds to the linear phase speed
(which is, in turn, a good approximation of the solitary wave
propagation speed), while in Fig. 3c the front appears to have
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shifted to the linear group speed. This suggests that the low
rotation case develops a wave train that can be interpreted as
a rotation-modified solitary wave (at least on the timescales
considered), while the high rotation case develops a wave
train that can be interpreted as a wave packet. The impor-
tance of nonlinearity for both of these cases, and indeed for
the geostrophic state, remains to be assessed.

Observing the structure that appears throughout the fig-
ure, we argue that these waves closely resemble a modu-
lated wave packet as presented in Grimshaw et al. (1998),
instead of the rotation-modified bore seen in Kuo and Polvani
(1997). When comparing to the work done by Kuo and
Polvani (1997), we first note that for our simulations the non-
linear parameter is quite small at α ≈ 0.166. However, their
work suggests that, even for this small value and smooth
initial condition, breaking will still occur. The present sim-
ulations were carried out with the full set of incompress-
ible Navier–Stokes equations. As such, the dispersion that
is neglected in the shallow-water equations, used by Kuo
and Polvani (1997), becomes important when the wave front
steepens. Dispersion breaks the front down into a train of
smaller waves and eliminates shock formation. In addition
to the change in steepening dynamics, the initially localized
waves disperse over time, yet are observed to remain bound
together (corresponding to the width of the packet envelope).
For this reason we find that the modulated wave packet is a
better description for these dynamics, though we note that in
all our simulations the wave packet never completely sepa-
rates from the trailing waves. This description is also sup-
ported by the shift in propagation speed to the linear group
speed, as this is the first-order estimate of the speed which a
wave packet would propagate at.

3.3 Nonlinear and polarity effects

Since the majority of the classical literature on the
geostrophic adjustment problem considers the linear prob-
lem, it is important to clearly identify those aspects of our
simulations that are nonlinear in nature. One way to investi-
gate the nonlinear effects in the evolution, shown in Fig. 3,
is to consider how the spectrum evolves in time, since (in
the absence of dissipation) linear dispersive waves main-
tain the spectrum of the initial conditions for all times. Fig-
ure 4 shows the spectrum of the horizontal velocity pro-
file at the surface (the results at other depths, and indeed
for other fields, yielded qualitatively unchanged results) at
various times for both cases shown in Fig. 3. Respectively,
these correspond to t = 15.75 and t = 3.94, t = 31.50 and
t = 7.87, t = 47.25 and t = 11.81, and t = 63 and t = 15.75.
The spectral power density was scaled by the maximum
power for all profiles shown in order to highlight the differ-
ences. It is readily apparent from Fig. 4a that in the Ro= 0.5,
f = f0, and w = w0 case there is little change in the spec-
trum as time evolves. As time increases there appears to be a
slow decay in the power at the excited wavenumbers. There

Figure 4. A comparison of how the horizontal velocity spectra
for the Ro= 0.5, f = f0, and w = w0 case (a) and the Ro= 2,
f = 1

4f0, and w = w0 case (b) change over time. The spectral
power has been scaled by the maximum between the cases to high-
light the differences. The green line corresponds to t = 15.75 and
t = 3.94, the black line to t = 31.50 and t = 7.87, the blue line to
t = 47.25 and t = 11.81, and the red line to t = 63 and t = 15.75.
There are clear changes in the spectra for the weakly rotating case
as the waves evolve. In the strong rotation case the only temporal
differences are a slow decay. The differences seen in the weakly ro-
tating case highlight the nonlinear effects which are present in this
regime.

is no shift in wavenumber for the various peaks, or indeed
any other major change evident in the spectrum. This is not
the case in Fig. 4b for the Ro= 2, f = 1

4f0, and w = w0
case. The spectrum in this case contains large fluctuations
(more than 25 % for the peak value) in power and shifts in the
excited wavenumbers. These changes in the spectra as time
evolves are hallmark effects of nonlinearity, and hence indi-
cate that, while the emanating wavetrain in the Ro= 0.5 case
appears to be well described by linear theory, if we consider
weaker rotation effects such as in the Ro= 2 case, linear the-
ory is no longer a useful description.

In order to investigate these effects in a more systematic
manner, we started from the case with w = 1

2w0 (which was
the smallest width that still produced a solitary wave) and ran
several simulations where we varied the amplitude (by halv-
ing it), varied the rotation rate (which was quartered to show
clear differences), compared the different polarities, and con-
sidered an extremely small amplitude “nearly linear” case.
To compare with known nonlinear wave results we computed
the non-rotating version of a number of the cases. A compar-
ison of the 1-D-averaged KE for a number of the cases is pre-
sented in Fig. 5, where we have scaled any reduced amplitude
cases so that, were linear theory to apply, the curves would
collapse onto a single profile. Kinetic energy was chosen as
the variable shown, since it provides information about both
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Figure 5. A comparison of the 1-D KE for several different cases to outline the effects of nonlinearity. All plots are taken at t = 1140 for
the non-rotating case, t = 25.2 for the f0 case (w = 1

2w0, Ro= 1), and t = 6.3 for the 1
4f0 case (w = 1

2w0, Ro= 4). The reduced amplitude
nearly linear cases have been scaled by the change in amplitude squared. The kinetic energy has also been normalized by the maximum of
the non-rotating negative polarity case. Panel (a) highlights the differences that arise from halving the initial amplitude and by changing the
polarity of the non-rotating case. Panel (b) compares the same changes as the panel above; however, we have included rotation, and also
consider a “nearly linear” case with an initial amplitude of 1

200η0. Panel (c) is a comparison of different negative polarity cases, one with no
rotation and the standard amplitude, and two others at 1

4f0 with standard and half amplitude.

the structure of the dynamics and the magnitude of the veloc-
ities. Figure 5a shows how the non-rotating adjustment yields
waves that are profoundly affected by changes in polarity and
to a lesser degree by changes in amplitude. A solitary wave
train is observed for the negative polarity case and an undular
bore for the positive polarity case. The change in amplitude
results in a phase shift; however, the amplitude of the soli-
tary wave remains nearly constant. These results are a clear
indication of nonlinear behaviour for the non-rotating case.
In Fig. 5b we compare several cases with rotation following
a similar methodology to Fig. 5a; however, we have included
our “nearly linear” case where the amplitude has been re-
duced by a factor of 200. The change in polarity does not
significantly change the dynamics of the ejected waves, with
the largest change between these cases being that the positive
polarity case has a higher amplitude both within the wave
packet and in the geostrophic state. The effect of changing
the amplitude does not significantly change the wave packet,
since the wave packet is quite small in this case, and hence
to leading order can be understood from the point of view of
linear dispersive wave theory, similarly to what was observed
based on the spectrum in the discussion above (Fig. 3 and the
related discussion). For the geostrophic state, the changes in
the initial disturbance amplitude result in changes to the am-

plitude and the location of the peak in kinetic energy, with the
reduction in amplitude yielding a greater than linear response
in the amplitude of the geostrophic state. Again, changing
polarity yields the most significant changes. Linear theory,
as exemplified by the green curve, provides a reasonable pre-
diction, though details are amplitude dependent. For Fig. 5c
we kept the polarity of the initial disturbance negative and
compared the change in amplitude for a smaller rotation rate
as well as the non-rotating case. The lower rotation rate al-
lows for more energy to be deposited into the wave train. The
primary change for the reduction in amplitude is that the in-
dividual waves within the wave packet of the scaled reduced
case (in blue) appear to be larger in amplitude compared to
the base case (in black). There also appears to be a slight
phase shift between the cases (consistent with a packet that
travels at a slightly different speed). Comparing these two
cases to the non-rotating case shows that, while the peak in
energy has been shifted back, the wave front of the solitary
wave and the wave packets are at roughly the same location.
For this lower rotation case there is very little difference in
the geostrophic state as a result of amplitude reduction, im-
plying that for low rotation rates the geostrophic state can be
well described by linear theory.
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Figure 6. Long-time simulations comparing the differences in the
geostrophic state for negative and positive initializations. For both
simulations f = 2f0, w = 1

2w0 and Ro= 1
2 . Panel (a) presents the

long-time time series of vertically integrated kinetic energy in the
geostrophic state for both cases. Panel (b) shows the base-10 log-
arithm of the geostrophic state kinetic energy for both cases after
the packet has been ejected. Panels (c) and (d) show the shaded dis-
tribution of kinetic energy in the geostrophic state along with con-
tours of constant density, for a negative and positive initial polarity
respectively.

To investigate the nonlinear effects that arise from changes
in polarity in the geostrophic state (Fig. 5b), long-time simu-
lations with a rotation rate set to f = 2f0 and an initial width
ofw = 1

2w0 were computed, resulting in a Rossby number of
1
2 . These results are presented in Fig. 6. Figure 6a and b show
the vertically integrated kinetic energy at the location of the
maximum induced by the geostrophic state. Figure 6c and d
show the total spatial distribution of the normalized kinetic
energy in the region around the geostrophic state at 720 s
(151.2), along with three contours of constant density, for
a negative and positive initial polarity respectively. Figure 6a
clearly shows the energy difference that was seen in Fig. 6b,
indicating that the positive polarity case appears more effi-
cient at keeping energy in the geostrophic state. Figure 6b
shows the time series of the logarithm of kinetic energy after
the packet has been ejected. If we ignore the inertial oscilla-
tions, which appear to be rapid on the timescale shown, we
can see a clear decay. From this panel it is also possible to
note that the oscillations appear to persist significantly longer
in the positive case. By computing the logarithm of the time
series (Fig. 6b) we are able to show that the decay is nearly
exponential, with the positive polarity case decaying roughly
5 % faster. The decay rate decreases over time. From the bot-
tom two panels, Fig. 6c and d, it is clear that the polarity of
the geostrophic state strongly modifies the vertical distribu-
tion of the kinetic energy. Note in particular the difference in
strength of kinetic energy below the pycnocline and the tilt of
the high kinetic region that follows the deformed pycnocline.

Figure 7. The difference in total inner kinetic energy between our
original amplitude cases and cases where the amplitude has been
reduced by a factor of 10. The reduced cases have then been linearly
scaled to account for this amplitude change. The original energies
are shown in red, while the reduced ones are in blue. Discrepancies
between the two cases are due to nonlinear effects. (a) w = 1

4w0

(Ro= 2), (b) w = 1
2w0 (Ro= 1), (c) w = w0 (Ro= 0.5), (d) w =

2w0 (Ro= 0.25), and (e) w = 4w0 (Ro= 0.125).

To quantify the nonlinear behaviour of the geostrophic
state and the inertial oscillations that accompany it, Fig. 7
shows the differences in total kinetic energy within the
geosotrophic state between our original amplitude cases and
cases with a 10-fold reduction in amplitude. As in Fig. 5
we have scaled up the reduced amplitude cases, and thus
for a purely linear problem there should be no differences
between the two curves shown. Figure 7 shows five cases
of differing initial width and the same Coriolis parameter
f = f0, Fig. 7a to w = 1

4w0 (Ro= 2), Fig. 7b to w = 1
2w0

(Ro= 1), Fig. 7c to w = w0 (Ro= 0.5), Fig. 7d to w = 2w0
(Ro= 0.25), and Fig. 7e to w = 4w0 (Ro= 0.125). Though
the nearly linear case does behave in a qualitatively simi-
lar manner to the original cases, there are key differences.
For one, in Fig. 7a–c there are clear magnitude differences
between the two cases. For almost all times the scaled ki-
netic energy curve for the amplitude reduced case lies be-
low the corresponding curve for the original cases. This re-
mains true for the later cases (Fig. 7d and e), though not to
the same extent. Second, closely examining the inertial os-
cillations reveals that they appear to decay more rapidly for
the amplitude reduced cases compared to the original cases;
this can especially be seen in Fig. 7c and d. Only for the two
rightmost panels (Ro≤ 0.25) could it be said that the two
curves are nearly coincident. Thus even the geostrophic state
exhibits clear evidence of nonlinearity.

The primary dynamic variable for these simulations is
the Rossby number since both changes to rotation rate and
changes to the initial width are both just modifications to
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Figure 8. A space–time plot of kinetic energy. The different columns correspond to different combinations of f and w used to form a value
of Ro= 1. (a) f = f0 and w = 1

2w0, (b) f = 1
2f0 and w = w0, and (c) f = 1

4f0 and w = 2w0. The second row corresponds to the same
case as the first columns, but the aspect ratio has been scaled by the change in rotation rate.

this dimensionless parameter. A different manner in which
the effects of nonlinearity may be investigated is by asking
whether the dynamics collapse onto a single case for the
same Rossby number; Fig. 8a–c show the space–time plots
of vertically integrated kinetic energy for three cases with
the same Rossby number but different combinations of pa-
rameters. The Froude number, Fr= U

c
, is computed dynam-

ically, with U set by the maximum horizontal velocity from
the simulation at a given time and c given by the linear group
speed calculated using the algorithm outlined in Stastna and
Rowe (2007) using the dominant wavenumbers (k ≈ 0.84
and k ≈ 0.48 respectively) for each rotation rate. Fig. 8a cor-
responds to f = f0 and w = 1

2w0, Fig. 8b to f = 1
2f0 and

w = w0, and Fig. 8c to f = 1
4f0 and w = 2w0. The axis of

Fig. 8b and c has been scaled by the corresponding change in
Coriolis parameter ( 1

2 and 1
4 respectively). Figure 8d shows

the time series of the Froude number, Fr= U
c

. While the os-
cillations of the geostrophic state near x = 1 in the space–
time plots are quantitatively similar, the number and shape
of the waves that are produced in the wave train are slightly
different. The reason for these differences is highlighted in
Fig. 8d, where the Froude numbers match for early times,
but begin to drift rapidly. These results again illustrate the
importance of nonlinear effects within this system and the
necessity to include such effects when modeling the system.

During the analysis of the numerical experiments that var-
ied the width of the initial condition, an interesting observa-
tion about multiple wave trains was made. The initial condi-
tion yields both rightward and leftward propagating waves.
For narrow initial conditions the leftward propagating waves

reflect from the left wall early in the simulation and are dif-
ficult to disentangle from the initially rightward propagating
wave train. However, for wider initial conditions the leftward
propagating waves must travel a longer distance before re-
flecting off the wall, allowing for them to appear separate
from rightward propagating waves. This interaction is shown
in Fig. 9 using the potential energy field because the amount
of span-wise velocity created in the geostrophic state is so
great that it drowns out this reflection signal in the kinetic
energy field. Both cases maintain the same Coriolis param-
eter f = f0, but Fig. 9a corresponds to w = 0.5w0, while
Fig. 9b corresponds to w = 2w0. In Fig. 9a it is difficult to
distinguish the two wave trains (though we have superim-
posed coloured arrows in order to accentuate the pattern for
the reader). This distinction is much clearer in Fig. 9b, where
the leftward travelling wave takes roughly twice as long to
reach the left wall. In this case it is possible to distinguish
the wave trains within the pattern of waves that are produced.
Thus a natural method of generation of waves in a tank will
create waves in both directions which must be accounted for
in the interpretation of physical experiments.

3.4 The geostrophic state

In the rotation-modified adjustment problem there are two
dominant features, the geostrophic state that is left over
from the initial conditions and the train of Poincaré waves
that carries energy away from it. For this section we will
focus on the dynamics, and changes, of the geostrophic
state. We will primarily be comparing our results with
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Figure 9. Space–time pseudocolour plots of the change in poten-
tial energy for the Ro= 1, f = f0, and w = 0.5w0 case (a), and the
Ro= 0.25, f = f0, and w = 2w0 case (b). As for the kinetic en-
ergy, it has been scaled to the maximum value. Visible in both cases
(though significantly easier to see in panel b), there are both right-
ward (black arrow) and leftward (white arrow) propagating wave
trains created by the initial conditions. The leftward travelling wave
train will eventually reflect off the close left-hand wall and propa-
gate rightwards. If the initial conditions are quite narrow, the left-
ward propagating wave train reflects quickly off the wall and is dif-
ficult to disentangle from the rightward propagating wave train.

those from Lelong and Sundermeyer (2005), who per-
formed 3-D numerical simulations of the adjustment prob-
lem. Lelong and Sundermeyer (2005) focused on the ener-
getics of the geostrophic state that are generated by a well-
mixed region of intermediate density fluid. Though not ex-
actly the same case, Lelong and Sundermeyer (2005) per-
formed their simulations using the full set of equations and
thus provide an apt point of comparison. To facilitate this
comparison between our work and theirs, Table 2 provides a
translation of our notation to that of Lelong and Sundermeyer
(2005).

A major difference between the two sets of experiments is
the background stratification and density anomaly. As given
explicitly in Sect. 2, we have a two-layer stratification given
by the tanh function with an anomaly also given by the tanh
function. Lelong and Sundermeyer (2005) use a localized
anomaly diffusivity to create a two-lobed axisymmetric lens
density perturbation, with a linear background stratification.

Figure 10 shows space–time plots of vertically integrated
kinetic energy within the geostrophic state for five cases of
different initial widths where the rotation rate has been held
constant at f = f0. These cases have Rossby numbers 2, 1,
1
2 , 1

4 , and 1
8 for Fig. 10a, b, c, d, and e respectively. The figure

has been saturated by the maximum kinetic energy across all
cases. Once Ro≥ 1 (Fig. 10b–e), the geostrophic state shows
clear oscillations within the kinetic energy. These spikes in

Table 2. A comparison of the notation in our work and that of Le-
long and Sundermeyer (2005).

Our notation Lelong and Sundermeyer
(2005)

Ror R

Ro R/L

w L

Geostrophic state KE /PE KEv /PEv
Outside geostrophic state
KE /PE

KEw /PEw

Figure 10. A space–time plot of vertically integrated kinetic energy,
in the geostrophic state, for different values of w while f is held
constant at f = f0. (a) w = 1

4w0 (Ro= 2), (b) w = 1
2w0 (Ro= 1),

(c) w = w0 (Ro= 0.5), (d) w = 2w0 (Ro= 0.25), and (e) w = 4w0
(Ro= 0.125).

kinetic energy occur during the vertical oscillations of the
geostrophic state. It is also possible to see from this figure
that all the cases initially spike with roughly the same mag-
nitude of kinetic energy, but then differ greatly depending on
the Rossby number. In Fig. 10d and e it is possible to iden-
tify the reflected wave interfering with the oscillations of the
geostrophic state, matching the features seen in Fig. 9.

To compare the energy within the geostrophic state be-
tween cases, and with the published literature, we horizon-
tally integrate the geostrophic state (the region shown in
Fig. 10) to produce a time series of both the kinetic and
potential energies. Following what was done in Kuo and
Polvani (1997), we compute the difference in these ener-
gies compared to the initial state. The results of this are
shown in Fig. 11. The extent of the geostrophic state is de-
fined as twice the distance from the left-hand wall to the
maximum in kinetic energy. Due to the nature of our ini-
tial conditions, namely that we start with a smooth transi-
tion and still fluid, the ratio 1KE/1PE, which is used in
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Figure 11. The changes in potential and kinetic energy, compared to the initialization, for the cases in Fig. 6. Panel (a) corresponds to the
change in potential energy, and panel (b) to the changes in kinetic energy. The energy in both plots has been scaled by the base case (f = f0,
w = w0).

Kuo and Polvani (1997), is difficult to use since the change
in potential energy may be zero if it reaches its initial state
during oscillation. While it would be possible to use the re-
ciprocal of the ratio, we have chosen to present the differ-
ences separately (Fig. 11a for 1PE and Fig. 11b for 1KE).
The energy in both plots has been scaled by the base case
of f = f0 and w = w0. As in the results presented in Fig. 8
of Lelong and Sundermeyer (2005), for larger initial widths
(smaller Rossby numbers) there are correspondingly larger
oscillations in both potential and kinetic energy. Our simu-
lations show that these oscillations persist for long times, in
agreement with the results of Kuo and Polvani (1997). In a
similar manner to what is seen in Lelong and Sundermeyer
(2005), the case with Ro= 1 (f0 and 1

2w0) appears to re-
tain the maximum amount of potential energy (as opposed
to kinetic energy for Lelong and Sundermeyer, 2005). How-
ever, we have verified that the results seen in their figure can
be generated by scaling the kinetic energy by the initial en-
ergy (not shown here). We also computed the linear kinetic
energy for the geostrophic state following Boss and Thomp-
son (1995)’s Eq. (9), using the parameter set for our base
case. We then compared this to the maximum kinetic energy
in the geostrophic state. We calculated the linear KE to be
4.06327×10−5, while our KE was 3.63771×10−5, which is
roughly an 11 % difference.

We next consider how the time evolution of the total ki-
netic energy inside the geostrophic state compares to that
outside; this is shown in Fig. 12. From Fig. 9a we can see

Figure 12. The total kinetic energy located inside (blue) and outside
(red) of the geostrophic state. In this figure we have the same cases
as in Figs. 10 and 11, separated into their own panels. Panel (a)
corresponds to 1

4w0 (Ro= 2), (b) corresponds to 1
2w0 (Ro= 1), (c)

corresponds to w0 (Ro= 0.5), (d) corresponds to 2w0 (Ro= 0.25),
and (e) corresponds to 4w0 (Ro= 0.125). The red line (inner) is
the energy inside the geostrophic state, while the blue line (outer)
corresponds to that outside.

that for low rotation rates there is much less energy retained
within the geostrophic state, and that the oscillations of this
remaining kinetic energy are very small. We can compare
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this panel with Fig. 13 of Lelong and Sundermeyer (2005)
and see similar results, namely the dominance of the kinetic
energy outside the geostrophic state. We should also note that
there is a steady decrease in kinetic energy in the outer kinetic
energy which is due to dissipation of the waves throughout
the numerical domain. As in Fig. 6 of Lelong and Sunder-
meyer (2005) we see a similar separation between the en-
ergy of the inner and outer regions for the Ro= 1 case (our
Fig. 12b). The inner kinetic energy oscillations of Fig. 12d
and e do not appear to have reached a steady state by the
end of our simulation, but have reached a sufficiently close
value to interpret. In Fig. 12d there is an equal amount of en-
ergy in the final inner and outer regions. These results seen in
Fig. 12d and e are consistent with the results from Lelong and
Sundermeyer (2005)’s Fig. 14, namely significantly more en-
ergy being retained inside the geostrophic state, resulting in
much larger amplitude oscillations.

Motivated by the results shown in Fig. 12, we consid-
ered the vertical structure of the inertial oscillations. We
confirmed that for all cases the gradient Richardson num-
ber (including the v component of shear) never dips be-
low 0.25 in the stratified region, thereby suggesting the in-
ertial waves are not strong enough to induce shear insta-
bility. Indeed, the isopycnal displacements associated with
the inertial oscillations were never larger than about 2.5 %
of the total depth. For early times and low Rossby numbers
(Ro≤ 0.125), the spatiotemporal (in z and t) structure of the
kinetic energy field induced by the inertial waves followed
a separable structure. For the Ro= 0.25 case evidence of a
nonseparable structure was clear for t > 100. In comparison,
for the Ro= 0.5 case a non-separable structure was evident
by t = 60. However, since the inertial oscillations are smaller
in this case at later times (t > 150), the signature of the iner-
tial waves is masked by that of the geostrophic state.

4 Conclusions

In this paper we have taken a systematic approach to the clas-
sical rotation-modified stratified adjustment problem. Build-
ing on results based on shallow-water theory presented in
Kuo and Polvani (1997), we have shown that by using the
fully nonlinear incompressible Navier–Stokes equations, un-
der the Boussinesq approximation, the waves that are ejected
from the geostrophic state do not steepen to a shock. Once
the wave front steepens sufficiently it disperses into a pri-
mary wave packet and a tail of smaller dispersive waves. We
demonstrated that the nonlinear wave packet interpretation
of the wave train of Grimshaw et al. (2012) is appropriate
in some parameter regimes, with changes in amplitude re-
flected in the phase of the nearly solitary wave response. By
mapping out the parameter space we have shown that, as ex-
pected, the Rossby number is the controlling variable for the
dynamics in this problem. For Ro< 1, the wave packet prop-
agates with a speed roughly corresponding to the linear group

speed, while for Ro> 1, the packet propagates with a speed
closer to the linear phase speed. We have further character-
ized the nonlinear effects present in both the wave packet
and the geostrophic state. The effects of nonlinearity were
investigated by considering different initial amplitudes and
changes in polarity. As in the non-rotating case, the largest
nonlinear effects occurred as a result of changes in polarity,
both in the geostrophic state and in the wave packet ejected.
Surprisingly, the high Rossby number cases yielded nonlin-
ear effects in both the wave train and the geostrophic state.
However, as a general rule amplitude effects were smaller
than polarity effects.

A different approach to characterizing nonlinear effects is
to create different combinations of parameters that yield the
same Rossby number. We carried out this process and tracked
the time dependent Froude number. While the qualitative fea-
tures of the evolution were similar in all three cases shown,
the variations in the Froude number led to significant differ-
ences in the details of the wave train generated. The charac-
terization of these various nonlinear effects in a single simu-
lation is new and significant, providing a guideline for when
linear theory can be applied and when nonlinear effects must
be considered.

Our results show that the inertial oscillations in the
geostrophic state can persist for long times, in agreement
with Kuo and Polvani (1997). However, the inertial oscilla-
tions never reach large enough amplitudes to induce shear
instability. Our results also match the work published by Le-
long and Sundermeyer (2005), specifically matching their
results for the different Rossby number regions (Ro< 1,
Ro= 1, and Ro> 1). By comparing the kinetic energy within
the inner geostrophic and outer non-geostrophic regions, we
show that the amplitude of the geostrophic oscillations in-
creases quickly as the Rossby number decreases. However,
this in turn corresponds to less prominent nonlinear effects
within the geostrophic state.

Another significant finding presented is the generation, re-
flection, and interaction of a wave train propagating in the
opposite direction (leftward) during the initial generation.
For any physical tank set-up, this reflected wave will impact
any measurements of the waves generated and especially any
measurements of the geostrophic state.

In addition to the work described in the previous para-
graph, future work should consider span-wise variations, es-
pecially in the case of the strong geostrophic state for which
novel instabilities may be possible (though as noted above,
on laboratory scales shear instability is not expected). Sys-
tematic studies of the shoaling of rotation-modified solitary
waves and undular bores should also be carried out, since it
is not known in what manner these may be different from
shoaling in the non-rotating case. A more theoretical avenue
could quantitatively compare weakly nonlinear and weakly
dispersive–strongly nonlinear model equations to the full
stratified equations.
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5 Data availability

Given the length of time that this paper has been under re-
view, the data sets are not available in a single location, and
are not submitted to a repository. We are always willing to
share data, and so the data for the numerical simulations, in-
cluding source code, are available by email request to the
corresponding author.
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