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Abstract. This study examines the rainfall-induced change
in soil microroughness of a bare smooth soil surface in an
agricultural field. The majority of soil microroughness stud-
ies have focused on surface roughness on the order of ∼ 5–
50 mm and have reported a decay of soil surface roughness
with rainfall. However, there is quantitative evidence from
a few studies suggesting that surfaces with microroughness
less than 5 mm may undergo an increase in roughness when
subject to rainfall action. The focus herein is on initial micro-
roughness length scales on the order of 2 mm, a low rough-
ness condition observed seasonally in some landscapes un-
der bare conditions and chosen to systematically examine the
increasing roughness phenomenon. Three rainfall intensities
of 30, 60, and 75 mm h−1 are applied to a smoothened bed
surface in a field plot via a rainfall simulator. Soil surface
microroughness is recorded via a surface-profile laser scan-
ner. Several indices are utilized to quantify the soil surface
microroughness, namely the random roughness (RR) index,
the crossover length, the variance scale from the Markov–
Gaussian model, and the limiting difference. Findings show
a consistent increase in roughness under the action of rain-
fall, with an overall agreement between all indices in terms
of trend and magnitude. Although this study is limited to a
narrow range of rainfall and soil conditions, the results sug-
gest that the outcome of the interaction between rainfall and
a soil surface can be different for smooth and rough surfaces

and thus warrant the need for a better understanding of this
interaction.

1 Introduction

Soil surface roughness influences many hydrologic processes
such as flow partitioning between runoff and infiltration,
flow unsteadiness, and soil mobilization and redeposition
on scales ranging from a few millimeters to hillslope level
(e.g., Huang and Bradford, 1990; Magunda et al., 1997;
Zhang et al., 2014).

There are three distinct classes of microtopography sur-
face roughness (Fig. 1a) for agricultural landscapes, each one
of them depicting a representative length scale (Römkens
and Wang, 1986; Potter, 1990). Following Oades and Wa-
ters (1991), the first class includes microrelief variations
from individual soil grains to aggregates on the order of
0.053–2.0 mm. The second class consists of variations due
to soil clods ranging between 2 and 100 mm. The third class
of soil surface roughness is systematic elevation differences
due to tillage, referred to as oriented roughness (OR), rang-
ing between 100 and 300 mm.

From those outlined above, the first two classes are the
so-called random roughness (RR), and constitute the main
focus of the present research. RR is quantified on a sur-
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Figure 1. Location of experimental plot in the headwaters of Clear
Creek, IA (41.74◦ N, −91.94◦W).

face after correction for both slope and tillage marks. Con-
trary to OR, which changes seasonally and during crop ro-
tations, RR changes on an event basis (Abaci and Papanico-
laou, 2009). RR reflects the effects of rainfall action on the
soil surface and inherently varies in space and time. As a re-
sult, RR affects key hydrologic processes at the soil scape
and ultimately on the hillslope scale, e.g., infiltration, over-
land flow, etc. (Gómez and Nearing, 2005; Chi et al., 2012).

Several studies have been performed to characterize RR.
Most have focused on initial microroughness length scales
of 5–50 mm (e.g., Zobeck and Onstad, 1987; Gilley and
Finkner, 1991). In these studies, a decay of roughness due
to precipitation action is predicted, since rainfall impact and
runoff “smoothen” the rough edges of soil grains, aggregates,
and clods, especially in the absence of cover (Potter, 1990;
Bertuzzi et al., 1990; Vázquez et al., 2008; Vermang et al.,
2013). There are few studies that have examined surfaces
with initial microroughness less than 5 mm, a low rough-
ness condition observed seasonally in some landscapes under
bare conditions (e.g., Kamphorst et al., 2000; Vázquez et al.,
2008; Zheng et al., 2014). Hereafter, for shortness, tests with
initial RR less than 5 mm will be referred to as “smooth”,
whereas tests with initial RR greater than 5 mm will be re-

ferred to as “rough”. There are some quantitative indica-
tions that under bare smooth surface conditions, soil surface
roughness may actually increase under the action of rainfall.
Specifically, the study by Huang and Bradford (1992) cal-
culated the semivariance with respect to length scale before
and after rainfall, and an increase in roughness with rainfall
was denoted using the Markov–Gaussian model for a surface
with low initial roughness. Rosa et al. (2012) introduced an
index (called the roughness index) estimated from the semi-
variogram to describe roughness, and an increase in the in-
dex with rainfall was observed under some conditions, and
attributed to the fragmentation of aggregates and clods to
smaller aggregates. Zheng et al. (2014) also reported an in-
crease in values of the RR after the application of rainfall
on smooth soil surfaces. However, none of the above stud-
ies acknowledged or related the increasing trend in surface
microroughness to rainfall impact on smooth surfaces.

The main goal of this study is to examine changes in RR
under rainfall impact for initial microroughness less than
2 mm, since this appears to be the lower limit of roughness
scales examined in the literature. It is postulated that an in-
crease in microroughness may occur under the action of rain-
fall on preexisting smooth surfaces due to the nature of the
interaction between rainfall and the soil surface. To meet the
goal, we employ four commonly used indices: the RR index,
the crossover length, the variance scale from the Markov–
Gaussian model, and the limiting difference. The last three
indices are alternate methods and used here to supplement
the RR index analysis for relative change in roughness.

2 Materials and methods

2.1 Experimental conditions

This study was conducted on an experimental plot of the
US National Science Foundation Intensively Managed Land-
scapes Critical Zone Observatory in the headwaters of
Clear Creek, IA (41.74◦ N, −91.94◦W and an elevation of
250 m a.s.l. – above mean sea level; Figs. 1 and 2). The
soil series at the plot where the experiments were con-
ducted is Tama (fine-silty, mixed, superactive, Mesic Cu-
mulic Endoaquoll) (http://criticalzone.org/iml/infrastructure/
field-areas-iml/). It consists of 5 % sand, 26 % clay, 68 % silt,
and an organic matter content of 4.4 %. The aggregate size
distribution of the soil consists of 19 % of the soil size frac-
tion less than 250 µm, 48 % between 250 µm and 2 mm, and
33 % greater than 2 mm. These soils contain both smectite
and illite, with high cation exchange capacity between 15 and
30 cmolc kg−1). The experimental plot was uniform in terms
of downslope curvature, its gradient was 9 %, and the plot
size was approximately 7 m long by 1.2 m wide.

The soil surface was prepared before each experiment by
tamping using a plywood board to create a smoothened sur-
face. This was done to ensure a consistency in surface rough-
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Figure 2. (a) Types of soil surface microroughness. (b) Experimen-
tal plot. The rainfall simulator is placed above the bare soil surface
and a base made of wood is put into place to facilitate the movement
of the surface-profile laser scanner.

ness between the experiments, as well as to ensure that any
potential bias introduced in the plot preparation would be
also be consistent, if not minimal. This was confirmed by
the observed roughness of the experiment replicates. Rainfall
was applied to the plot using Norton ladder multiple intensity
rainfall simulators designed by the USDA-ARS National Soil
Erosion Research Laboratory, IN. Figure 3 shows the setup
for all the experimental runs considered in the present study.
For each test, three rainfall simulators were mounted in se-
ries over the experimental plot (Fig. 3a) and approximately
2.5 m atop the plot surface (Fig. 3b) in order to ensure that
raindrop terminal velocity was reached. Water was continu-
ously pumped from a water tank under controlled pressure,
and uniform rainfall was applied through oscillating VeeJet
nozzles which provided spherical drops with median diam-
eters between 2.25 and 2.75 mm and a terminal velocity be-
tween 6.8 and 7.7 m s−1 depending on the rainfall intensity.
The distribution of raindrop sizes generated by the rainfall
simulators was calibrated using a disdrometer and followed a
Marshall–Palmer distribution (Elhakeem and Papanicolaou,
2009), which is a widely accepted distribution for natural
raindrop sizes in the US Midwest, where the study was per-
formed (Marshall and Palmer, 1948). The calibration of the
raindrop sizes was achieved by adjusting the pressure and
swing frequency of the VeeJet nozzles. This level of atten-
tion was taken to minimize any potential biases compared
to natural rainfall with respect to raindrop size distribution,

Figure 3. Setup of the experimental tests: (a) rainfall simulators are
mounted in series and a pump provides them with water from a tank.
(b) Rainfall simulators are placed and adjusted at a height of 2.5 m
above the experimental plot surface to ensure drop terminal velocity
is reached.

and, thus, render the rainfall simulation experiments scalable
to other regions experiencing the same type of soil, bare sur-
face, roughness conditions, and natural rainfall characteris-
tics.

Surface elevations were obtained prior to and after the
completion of the experiments via an instantaneous digital
surface-profile laser scanner (Darboux and Huang, 2003),
developed by the USDA-ARS National Soil Erosion Re-
search Laboratory, IN (Fig. 4a). Laser scanner measurements
before the runs confirmed that the overall microrelief was
less than 2 mm. Horizontal and vertical accuracies of the
laser are 0.5 mm. Thus, microroughness features less than
0.5 mm may not have been captured in the analysis. Points
were measured every 1 mm. The system consists of two
laser diodes mounted 40 cm apart to project a laser plane
over the targeted surface. The beam is captured by an 8 bit,
high-resolution progressive scan charge-couple device cam-
era with 1030 rows× 1300 columns and a 9 mm lens. The
camera and lasers are mounted on a 5 m long carriage as-
sembly, and their movement on the carriage is controlled
by software that regulates the travel distance based on a
user-specified distance (Fig. 4a). Information captured by the
camera is recorded with an attached computer. The informa-
tion from each scan is converted into a set of (x, y, z) co-
ordinates using a calibration file and the software developed
from the USDA-ARS National Soil Erosion Research Labo-
ratory for data transformation as explained by Darboux and
Huang (2003). The set of (x, y, z) coordinates obtained for
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Figure 4. (a) Instantaneous digital surface-profile laser scanner
used in the experimental runs and laser beam projected on the soil
surface. (b) Cloud of (x, y, z) data acquired from the laser scan-
ner for an experimental test along with the associated 3-D repre-
sentation of the soil surface microrelief through inverse distance
weighted interpolation.

each experiment are imported into ArcGIS 10.3.1 in order
to create the corresponding digital elevation models (DEMs)
through inverse distance weighting interpolation and thereby
visualize or analyze the surfaces (Fig. 4b). The resulting
DEMs have a horizontal resolution of 1 mm and an accuracy
of 0.5 mm in the vertical.

Three tests of varying rainfall intensity were conducted on
the experimental plot. Rainfall intensities were 30, 60, and
75 mm h−1 for experiments 1–3, respectively. These simu-
lated intensities represent typical storms observed in the re-
gion of South Amana where the plot is located (Huff and
Angel, 1992). Three replicates of each rainfall intensity case
were performed until steady-state conditions were achieved,
and repeatability was confirmed by evaluation of changes in
RR at specific cross sections in the rain-splash-dominated
zone. It was found that on average, the relative error of the
RR ratios between replicates did not exceed 7 %. The volu-
metric water content was recorded via six 5TE soil moisture
sensors manufactured by Decagon Devices, Inc. and placed
along the plot to a depth of 10 mm. The initial volumetric
water content was found to be similar for each experiment
and approximately equal to 35 % at the whole plot, where
the field capacity of the specific soil is 38 %. Each experi-
ment was run for nearly 5 h, sufficiently long to reach steady-
state conditions, as confirmed by weir readings and discrete
samples taken at the outlet of the plot. The infiltration rate
was estimated during all rainfall simulation runs by subtract-
ing the measured runoff rates from the constant rainfall rates.

This approach has been commonly used in plot experiments
and provides a good estimate of the spatially averaged in-
filtration rates (e.g., Mohamoud et al., 1990; Wainwright et
al., 2000). Averaged saturated hydraulic conductivity values
ranged from 3.20 to 4.56 mm h−1, which are in agreement
with the averaged saturated hydraulic conductivity value of
4.3 mm h−1 measured by Papanicolaou et al. (2015a) using
semiautomated double-ring infiltrometers at the field where
the study was performed. Although the average saturated hy-
draulic conductivity values were low with respect to the ap-
plied rainfall rates, minimal ponding was observed on the
experimental plot, owing to the smooth bare conditions and
the high plot gradient of 9 %, which led to low depressional
storage.

The initial microroughness length scale in Experiment 1
(1.17 mm) was greater than that of Experiment 2 (0.42 mm)
and Experiment 3 (0.32 mm; see Table 1). This is attributed
to the different timing of the experiment runs with respect to
tillage. Experiment 1 was performed in early August, soon
after harvest, so the soil surface had recently been disturbed.
However, for Experiments 2 and 3, which were performed
in late September, the soil presented less surface disturbance
due to the cumulative action of runoff from upslope areas
on the plots arising from natural rainfall within that pe-
riod (Papanicolaou et al., 2015b). Therefore, despite tamping
with plywood, remnants of tillage effects remained in Ex-
periment 1, yielding different initial microroughness length
scales to those in Experiments 2 and 3. This, however, is not
an issue since all the results are presented herein in a dimen-
sionless form (see Sect. 2.2 below on the index ratios). All
cases, nonetheless, exhibited initial microroughness length of
less than 2 mm, corresponding to smooth surface bed condi-
tions, as confirmed with the laser scanner. Dry soil bulk den-
sity was 1.25 g cm−3 for Experiment 1, and about 6 % higher
for Experiments 2 and 3 due to self-weight consolidation of
soil.

Figure 5a provides an example of the experimental plot at
prerainfall and postrainfall conditions. Since the focus of this
research is only on plot regions where raindrop detachment
is dominant over runoff, we are using the scanned profiles
that correspond only to these upslope locations, which are
shown in Fig. 5b. Rill formation was not observed in these
regions throughout the experiments. Visual observations con-
firmed that raindrop detachment was dominant and the main
driver of the change in soil surface roughness. For scanned
profiles within the region of interest (ROI; i.e., a selected
200 mm× 200 mm window size), we extracted the data for
further statistical and geostatistical analyses by utilizing the
public-domain R software (https://www.r-project.org/). The
geostatistics (“gstat”) and spatial analysis (“sp”) libraries
were imported to create sample semivariograms.
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Table 1. Summary of the rainfall-induced change in the RR index in the experimental tests of this study, as well as in experiments reported
in the literature. Smooth conditions refer to initial microroughness less than 5 mm. Cumulative rainfall amounts are also provided.

Rainfall Cumulative Soil type Prerainfall Postrainfall RR
intensity rainfall RR (mm) RR (mm) ratio
(mm h−1) (mm)

Present study

30 150 silty clay loam 1.17 1.57 1.34
60 300 silty clay loam 0.42 1.48 3.55
75 375 silty clay loam 0.32 1.46 4.56

Vázquez et al. (2008)∗

30 85 silt loam 3.39 3.70 1.09
30 50 silt loam 3.00 2.13 0.71
65 195 silt loam 4.72 5.10 1.08

Zheng et al. (2014)

40 ∼ 60 silty clay loam 2.01 2.35 1.17
90 ∼ 135 silty clay loam 2.40 2.68 1.12

∗ The Vázquez et al. (2008) study looked at RR evolution under successive rainfall events, unlike the other
two studies. Postrainfall RR data presented for Vázquez et al. (2008) are those that were determined on
completion of the last rainfall succession in each experiment.

Figure 5. (a) Experimental plot under pre- and postrainfall conditions for an experimental test. The dashed boxes indicate the extent of the
region of interest (ROI), where raindrop detachment is dominant over runoff. (b) Scanned profiles extracted from the laser-scanned areas of
the three experimental tests considered, under both pre- and postrainfall conditions.

2.2 Soil surface roughness quantification

According to Paz-Ferreiro et al. (2008), the RR index, which
was first proposed by Allmaras et al. (1966), is the most
widely used statistical microrelief index for the evaluation of
soil surface roughness. The RR index was initially calculated
per Allmaras et al. (1966) as the standard deviation of the
log-transformed residual point elevation data. In this study, it

is calculated according to Currence and Lovely (1970) as the
standard deviation of bed surface elevation data around the
mean elevation, after correction for slope using the best-fit
plane and removal of tillage effects in the individual height
readings:
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RR=

√√√√√ n∑
i=1

(
Zi −Z

)2
n

, (1)

where Zi and Z are individual elevation height readings and
their mean, respectively, and n is the total number of read-
ings. The RR index calculated from Eq. (1) is the principal
method to quantify soil surface roughness due to its frequent
and widespread use in various studies and landscape models
as a descriptor of microroughness. The RR index, however,
requires that there is no spatial correlation between the sur-
face elevations (Huang and Bradford, 1992). Hence, special
care must be taken in adopting the RR index. If correlation
exists within a certain spatial scale, the RR index will likely
change with the changing window size of observed data (Paz-
Ferreiro et al., 2008) and may be dependent on the resolu-
tion of the measurement device (Huang and Bradford, 1992).
Thus, alternative scale-independent methods that consider
spatial correlation have been developed by other researchers
in order to address this issue. These methods include first-
order variogram analysis (Linden and Van Doren, 1986; Paz-
Ferreiro et al., 2008), semivariogram analysis (Vázquez et
al., 2005; Oleschko et al., 2008; Rosa et al., 2012; Vermang
et al., 2013), fractal models based on fractional Brownian
motion (Burrough, 1983; Vázquez et al., 2005; Papanico-
laou et al., 2012; Vermang et al., 2013), multifractal anal-
ysis (Lovejoy and Schertzer, 2007; Vázquez et al., 2008),
Markov–Gaussian models (Huang and Bradford, 1992; Ver-
mang et al., 2013), and two-dimensional Fourier transform
models (Cheng et al., 2012), among others. We herein em-
ploy additional indices derived from the first-order variogram
and the semivariogram as alternatives to the RR index, which
is also utilized accounting for its limitations. These include
the crossover length, the Markov–Gaussian variance length
scale, and the limiting difference.

The crossover length derived from semivariogram analy-
sis is an index that is commonly used in most recent soil mi-
crorelief studies to describe surface microroughness. It has
the advantage of its quantification being scale-independent
through the consideration of the spatial correlation between
surface elevations (Vidal Vázquez et al., 2007; Paz-Ferreiro
et al., 2008; Tarquis et al., 2008). The semivariogram is cal-
culated from the following equation:

γ (h)=
1

2n(h)

n(h)∑
i=1

[Z(xi +h)−Z(xi)]2, (2)

where γ (h) is the semivariance, h is the lag distance between
data points, Z(x) is the elevation height value at location x
after correction for both slope and tillage marks, and n(h) is
the total number of pairs separated by lag distance h consid-
ered in the calculation. The semivariogram is the plot of the
semivariance with respect to the lag distance.

Key indices for describing soil surface roughness can
be derived from the semivariogram. Assuming a fractional
Brownian motion model for describing soil surface rough-
ness (as proposed in the pioneering work of Mandelbrot and
Van Ness, 1968), the following expression for γ (h) that in-
corporates the generalized Hurst exponent, H is obtained
(Huang and Bradford, 1992; Vidal Vázquez et al., 2007; Paz-
Ferreiro et al., 2008; Tarquis et al., 2008):

γ (h)= l2−2Hh2H , (3)

where H is a measure of the degree of correlation between
the surface elevations at lag distance h with 0<H < 1, and
l is the crossover length. The crossover length is a measure of
the vertical variability of soil surface roughness on the par-
ticular scale where the fractal dimension is estimated, and
hence greater roughness is associated with larger crossover
length values and vice versa (Huang and Bradford, 1992).
The generalized Hurst exponent is a less sensitive descriptor
of soil surface evolution as influenced by rainfall (Vázquez
et al., 2005), and hence attention is mostly centered on the
crossover length. Given the semivariogram plot calculated
using Eq. (2), H and l can be extracted by fitting a power
law relationship in the form of y=AxB to the semivariance-
lag distance data, where y= γ (h) and x=h. According
to Eq. (3), the B regression variable gives the generalized
Hurst exponent value and the A regression variable yields
the crossover length.

The Markov–Gaussian model is a random process that has
been adopted for the quantification of soil surface roughness
(Huang and Bradford, 1992; Vermang et al., 2013). In that
case, the semivariogram is written as an exponential-type
function with the following form:

γ (h)= σ 2
(

1− e−h/L
)
, (4)

where σ is the variance length scale, representing the rough-
ness of a surface on the large scale, and L is the correla-
tion length scale, which is a measure of the rate at which
small-scale roughness variations approach the constant value
of σ . These indices are obtained by fitting the exponential-
type function of Eq. (4) to the semivariogram obtained from
Eq. (2).

Finally, the limiting difference (LD) index is another index
adopted to quantify soil surface roughness. It is calculated
from the first-order variogram with elevation data corrected
for both slope and tillage marks (Linden and Van Doren,
1986; Paz-Ferreiro et al., 2008), which is written in the fol-
lowing form:

1Z(h)=
1
n(h)

n(h)∑
i=1

|Z(xi +h)−Z(xi)| . (5)

Then, a linear relationship is fitted between 1/1Z(h) and
1/h:
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1/1Z(h)= a+ b/h. (6)

The LD index is then calculated as LD= 1/a. LD has units of
length and represents the value of the first-order variance at
large lag distances. It is considered to be an indicator of soil
surface roughness, and is thus adopted in the present study as
an additional roughness index.

In order to negate the effects of the differences that ex-
isted in the initial microrelief amongst the three runs due to
the different timing of the experiments (see Sect. 2.1) and to
compare rainfall-induced changes in relative terms, the re-
sults from the rainfall experiments are presented in the form
of ratios of the roughness indices. More precisely, the RR ra-
tio, defined as the ratio of the postrainfall RR index over the
RR index prior to the rainfall (RRpost /RRpre), is calculated
for each experiment. Semivariograms are plotted under pre-
and postrainfall conditions at the ROI to assess the spatial
correlation of surface elevations. Along the same lines, ra-
tios between pre- and postrainfall conditions are calculated
for the crossover length, the variance length scale of the
Markov–Gaussian model, and the limiting difference to as-
sess changes in microroughness along with the RR ratio.

3 Results

3.1 Changes in the RR index

Based on visual inspection of the DEMs in Fig. 5b, it is
evident that microroughness in the splash-dominated region
increases with rainfall. Table 1 summarizes the results of
this study along with results from other studies focused on
smooth surfaces, documenting the RR index values before
and after the rainfall events, the cumulative rainfall, and the
associated RR ratio. The present study, along with Vázquez
et al. (2008) and Zheng et al. (2014) generally report an in-
crease in RR with rainfall under the conditions examined.
The Vázquez et al. (2008) study, however, differs from the
present study and that of Zheng et al. (2014) in that it ex-
amined roughness evolution under successive rainfall events
per run. Only the RR data collected on completion of the
last rainfall succession in each run conducted by Vázquez et
al. (2008) are presented in Table 1. The final RR values after
the last rainfall succession were selected for being the more
closely comparable to the steady-state conditions examined
herein. Although both Vázquez et al. (2008) and Zheng et
al. (2014) recorded an increase in RR with rainfall, they had
significantly lower values of the RR ratio than the present
study. This could be due to several factors including, but not
limited to, lower applied rainfall intensity and amount, the
initial surface microroughness, and different soil conditions.

Other studies not included in Table 1 have also shown in-
creasing trends of roughness with rainfall, as quantified with
the use of different indices. For instance, Huang and Brad-
ford (1992) calculated the semivariograms for different sur-

faces and used fractal and Markov–Gaussian parameters to
quantify the roughness. Markov–Gaussian analysis showed a
relative increase in the roughness parameter for a surface of
low initial roughness. Finally, Rosa et al. (2012) introduced
the roughness index, which is estimated from the semivari-
ogram sill (i.e., the upper value where the semi-variance lev-
els out), in order to quantify roughness, and observed an in-
crease with rainfall under low initial roughness conditions.
That increase was attributed to the fragmentation of aggre-
gates and clods to smaller aggregates but was not linked to
smooth bare soil surface conditions. Overall, the experimen-
tal evidence suggests that the interaction between rainfall and
smooth soil surfaces can lead to an increase in microrough-
ness.

The results outlined above for the use of the RR index as a
descriptor of change in microroughness have been based on
the assumption that there is no statistically significant spatial
correlation in elevation readings between neighboring loca-
tions at the ROI. This condition was indeed not violated due
to the choice in ROI. The following subsection outlines and
discusses the results of the semivariogram analysis and addi-
tional indices used to confirm the validity of the assumption
and their comparison with the RR index method.

3.2 Changes in alternative roughness indices

Semivariograms and first-order variograms were obtained
from geostatistical analysis and plotted at four different an-
gles – 0, 45, 90, and 135◦ – with respect to the downslope
direction. Since the action of rainfall is isotropic and adds
no systematic trend along any direction, no significant differ-
ences were expected between semivariograms. A nonpara-
metric test for spatial isotropy was performed per Guan et
al. (2004) using the public domain R statistical package with
the “spTest” library. The spatial isotropy hypothesis was con-
firmed (p< 0.05). Thus, no bias was determined in taking
any direction to calculate the semivariograms and the associ-
ated crossover lengths.

The semivariograms calculated at the ROI were chosen
to be in the downslope direction at an angle of 0◦ and are
presented for each experiment in Fig. 6. The vertical dashed
lines designate the lag distances above which the spatial au-
tocorrelation of the elevations is not statistically significant.
These lag distances are approximately 10 mm, so the selected
200 mm window size of the ROI is almost 20 times greater
than the spatial autocorrelation range. This implies that the
window size of the ROI falls on the scale of the semivar-
iogram sill (which is defined as the near-constant value of
semivariance at large lag distances where the semivariogram
levels out – see horizontal dashed lines in Fig. 6). RR is di-
rectly related to the semivariogram sill (e.g., Vázquez et al.,
2005; Vermang et al., 2013); therefore it can be considered
independent of the selected window size, given that the latter
far exceeds the spatial autocorrelation range.

www.nonlin-processes-geophys.net/24/569/2017/ Nonlin. Processes Geophys., 24, 569–579, 2017
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Figure 6. Semivariograms at the region of interest for the three experimental tests, under pre- and postrainfall conditions. Horizontal dashed
lines indicate the semivariogram sills and vertical dashed lines indicate the lag distance above which the spatial autocorrelation of the
elevations is negligible.

Figure 6 shows that the postrainfall sills are greater than
their corresponding prerainfall values. Also, the difference
in sills between pre- and postrainfall conditions for the
30 mm h−1 precipitation intensity is much lower than those
of the 60 and 75 mm h−1 events. These observations are in
accordance with visual inspection of the surfaces as well as
with the results noted earlier for the RR ratio (see Table 1).
Complete agreement between the trends of the RR index, the
semivariogram sill, and visual inspection of the surfaces jus-
tifies the use of the RR index as a representative and unbiased
descriptor of microroughness.

Table 2 lists the crossover length, the Markov–Gaussian
variance length scale and the limiting difference indices for
the three experimental tests, and their relative change after
the rainfall. These indices show an increase with rainfall
that is of the same magnitude and trend as the RR index
and crossover length and provide a supplemental analysis
about the role of rainfall intensities on the relative increase
in roughness. Our findings were compared against those re-
ported in the literature. Huang and Bradford (1992) studied
the evolution of soil surface roughness with the Markov–
Gaussian variance length scale, and saw an increase of 6 % in
roughness for a surface of low initial roughness. Moreover,
Paz-Ferreiro et al. (2008), who used the LD index to quan-
tify soil surface roughness, also recorded a 10 % increase in
the LD index for a low roughness conventional tillage soil
surface. The higher relative increase in roughness seen in our
study (Table 2) compared to other studies is attributed to the
lower initial roughness conditions in addition to different soil
types and management.

Overall, the results provided suggest that all the indices
employed in this study may be used interchangeably to char-
acterize rainfall-induced changes in soil surface roughness
and can capture an increase in soil surface roughness, es-
pecially for smooth soil surfaces. For these microroughness
scales, the relative increase in roughness is also shown to in-

Table 2. Summary of the rainfall-induced change in the crossover
length, the Markov–Gaussian variance length scale and limiting dif-
ference indices for the experimental tests of this study.

Rainfall Cumulative Pre- Post- Index
intensity rainfall rainfall rainfall ratio
(mm h−1) (mm) value value

l (mm)

30 150 0.71 0.73 1.03
60 300 0.09 0.20 2.13
75 375 0.15 0.39 2.56

σ (mm)

30 150 1.19 1.63 1.37
60 300 0.42 1.52 3.62
75 375 0.31 1.43 4.56

LD (mm)

30 150 0.79 0.87 1.10
60 300 0.26 0.87 3.39
75 375 0.15 0.71 4.84

crease with rainfall intensity under the conditions examined
herein.

4 Discussion and conclusions

Many studies have examined the response of rough surfaces
to rainfall and have reported a decay of roughness. Few stud-
ies have assessed microscale variation of smooth surfaces in
response to rainfall under controlled conditions. The exper-
iments presented herein were designed to help us decipher
the role of rain splash on RR for smooth surfaces with initial
microroughness on the order of 2 mm by isolating the role of
other factors such as runoff, variable water content, bare soil
surface, and soil texture, among others. Our results show a

Nonlin. Processes Geophys., 24, 569–579, 2017 www.nonlin-processes-geophys.net/24/569/2017/



B. K. B. Abban et al.: Quantifying the changes of soil surface microroughness due to rainfall impact 577

consistent increase in roughness under the action of rainfall,
with an overall agreement between all the roughness indices
examined herein in terms of trend and magnitude. Our find-
ings are consistent with findings of other studies that have
examined length scales less than 5 mm and suggest the pos-
sible existence of a characteristic roughness threshold below
which RR is expected to increase due to the action of rain-
fall. The value of this threshold may depend on the specific
soil and rainfall conditions. A caveat of our study is that due
to the limited range of conditions examined herein more ex-
periments are needed to further solidify the conditions un-
der which RR is expected to increase under rainfall action.
An outcome of this study is the awareness that within land-
scape regions where smooth surfaces are present, an increase
in RR may occur during the early part of the storm where
rain splash action is more important than runoff.

This study suggests that the effects of the interaction be-
tween rainfall and a soil surface can be different for smooth
and rough surfaces, and highlights the need for a better un-
derstanding of the interaction due to its potential impact on
hydrologic response. This potential impact is demonstrated
with the following established pedotransfer function for the
effects of soil crusting, roughness, and rainfall kinetic energy
on the bare hydraulic conductivity, Kbr (Risse et al., 1995):

Kbr =Kb

[
CF+ (1−CF)e−C·Ea(1−RRt/RRt−max)

]
, (7)

where Kb is the baseline hydraulic conductivity, CF is the
crust factor, C is the soil stability factor, Ea is the cumula-
tive rainfall kinetic energy since the last tillage, RRt is ran-
dom roughness height, and RRt−max is the maximum ran-
dom roughness height. Using the following typical values for
the study site based on the literature (Flanagan and Nearing,
1995; Chang, 2010), Ea = 10 000 J m−2, C= 0.0002 m2 J−1,
and RRt−max= 40 mm, the percentage change in bare hy-
draulic conductivity for increasing roughness can be esti-
mated for an initial RRt value of 2 mm and minimal CF fac-
tor. Performing the analysis for the range of random rough-
ness ratios observed in this study (∼ 1.3–4.5), the percentage
increase in hydraulic conductivity is found to range between
5 and 42 %, which will have a significant impact on rainfall–
runoff partitioning.

It is recognized that the soil preparation method in our
study could have introduced some bias to the soil proper-
ties such as aggregate size distribution, compaction, and ag-
gregate stability. Nonetheless, with regard to the purpose for
which this study was designed, this preparation method en-
sured consistency in the initial and final roughness states, as
confirmed by replications of our experimental runs. It is also
recognized that drier, silty-type soils may not exhibit the in-
crease in RR shown here. Further, the role of sealing may
be important on roughness development under bare soil con-
ditions and needs further examination. Soil water retention
characteristics of the soils under sealing and its implication
to RR must be considered (Saxton and Rawls, 2006). Finally,

the role of successive storm events on changing roughness for
smooth surfaces is not covered in this study and needs to be
examined.

The exact mechanisms leading to increase in roughness
remain unknown and are not the focus of this study. How-
ever, changes in roughness during a storm event have been
attributed to compression and drag forces from the rain-
drop impact on the soil, angular displacement due to rain
splash, aggregate fragmentation, and differential swelling
(Al-Durrah and Bradford, 1982; Warrington et al., 2009;
Rosa et al., 2012; Fu et al., 2016). Regions exhibiting differ-
ent median raindrop diameters may experience different soil
surface roughness evolution due to different aggregate frag-
mentation and rain splash effects (Warrington et al., 2009;
Rosa et al., 2012; Fu et al., 2016). Future research should
explore these mechanisms.
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