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Abstract. Results of examination of experimental data on
non-linear elasticity of rocks using experimentally deter-
mined pressure dependences of P- and S-wave velocities
from various literature sources are presented. Overall, over
90 rock samples are considered. Interpretation of the data is
performed using an effective-medium description in which
cracks are considered as compliant defects with explicitly
introduced shear and normal compliances without specify-
ing a particular crack model with an a priori given ratio of
the compliances. Comparison with the experimental data in-
dicated abundance (∼ 80 %) of cracks with the normal-to-
shear compliance ratios that significantly exceed the val-
ues typical of conventionally used crack models (such as
penny-shaped cuts or thin ellipsoidal cracks). Correspond-
ingly, rocks with such cracks demonstrate a strongly de-
creased Poisson ratio including a significant (∼ 45 %) portion
of rocks exhibiting negative Poisson ratios at lower pressures,
for which the concentration of not yet closed cracks is max-
imal. The obtained results indicate the necessity for further
development of crack models to account for the revealed nu-
merous examples of cracks with strong domination of normal
compliance. Discovering such a significant number of natu-
rally auxetic rocks is in contrast to the conventional view-
point that occurrence of a negative Poisson ratio is an exotic
fact that is mostly discussed for artificial structures.

1 Introduction

It is widely appreciated that most rocks exhibit strongly in-
creased tensosensitivity, that is, giant elastic non-linearity as
compared with atomic non-linearity of homogeneous solids
and liquids. A bright manifestation of this non-linearity is a
very pronounced dependence of rocks’ elastic moduli on ap-
plied pressure. The main reason for this giant non-linearity is
the presence of highly compliant cracks and contacts in the
relatively hard matrix.

Important features of this “soft–hard paradigm” of gi-
ant non-linearity in microstructured solids (Guyer and John-
son, 2009; Zaitsev et al., 2009a) can be explained by very
instructive and simple 1-D rheological models in which
highly compliant cracks/contacts correspond to soft elastic
elements/springs contained in a relatively hard matrix (Za-
itsev, 1996; Belyaeva and Zaitsev, 1997, 1998). Such mod-
els can be very useful for elucidating why the relationship
between concentration of the soft inclusions and the resul-
tant non-linearity level can be non-monotonic. Also, they
can provide some understanding of the origin of frequency
dependence of such microstructure-induced non-linearity as
an influence of relaxation localized at the same soft defects.
Furthermore, those rheological models clearly demonstrate
that relaxation properties of the soft defects in addition to
the elastic non-linearity (i.e. tensosensitivity of elastic mod-
uli) inevitably lead to pronounced tensosensitivity of dissi-
pation in microstructured solids (Zaitsev and Matveev, 2006;
Zaitsev et al., 2008; Nazarov and Radostin, 2015) that may
exhibit itself as dissipative non-linearity (which agrees with
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considerations based on physical crack models Fillinger et
al., 2006; Zaitsev et al., 2011; Zaitsev and Matveev, 2012).

Despite the usefulness of the above-mentioned 1-D mod-
els for understanding basic features of the influence of highly
compliant inclusions on reduction of the elastic modulus and
the origin of its giant stress sensitivity, closer comparison
with seismo-acoustic properties of real rocks requires the
effective-medium models that more adequately correspond to
the 3-D character of real rocks. Even in the simplest isotropic
approximation, rocks are characterized by a pair of indepen-
dent elastic moduli. The most widely used are the bulk mod-
ulus, the shear modulus determining the velocity of shear
S-waves, the Young modulus, as well as the modulus cor-
responding to the velocity of longitudinal P-waves. Among
those moduli any two ones can be considered independent
and the others are expressed via the chosen pair of indepen-
dent ones.

Since cracks are the simplest and most important type
of compliant defect in consolidated rocks, considerable at-
tention was paid to developing models that describe crack-
induced variations in elastic moduli. Although such descrip-
tions differ in the way of accounting for eventual interaction
of cracks (i.e. small perturbation or approximation of low
crack concentrations, without accounting for mutual crack
interaction (Walsh, 1965), the so-called self-consistent ap-
proach (O’Connell and Budiansky, 1974), or the differential
approach (Zimmerman, 1985)), the representations of cracks
in such models were based on the same geometries for which
exact expressions were available that describe the stored elas-
tic energy in the presence of shear stress or stress normally
directed to the crack plane. In particular, the so-called penny-
shaped cracks or thin elliptical voids with small aspect ratios
have been widely used.

Despite the differences in the methods accounting for in-
teraction of cracks at larger concentrations, in the limiting
case of small crack concentrations all such models predict
identical complementary variations for the chosen indepen-
dent elastic moduli. For example, the chosen crack geome-
try pre-determines a given very specific proportion between
variations in the S- and P-wave velocities under hydrostatic
pressure. Observations for real rocks, however, often demon-
strate different proportions between crack-induced variations
in the P- and S-wave velocity variations, such that playing
with crack concentrations in the above-mentioned models in
principle cannot help to reach better agreement between the
predictions and observations.

The fact that variations of different moduli inferred from
the measured wave velocities require different crack concen-
trations implies that real cracks could be characterized by
significantly different proportions between their shear and
normal compliances. Such variability of crack properties in
principle cannot be accounted for in conventional effective-
medium models based on cracks modelled as straight cuts
of any geometry (e.g. penny-shaped) or thin ellipsoidal voids
with a small aspect ratio. In such conventionally used models

the ratio between those compliances is pre-determined and
cannot exhibit significant variations.

This fact motivated the development of alternative
effective-medium models in which cracks are considered as
highly compliant defects with independently defined nor-
mal and shear compliance without a predetermined propor-
tion between them. Such an idea was realized in Zaitsev
and Sas (2000) and equivalent expressions (that differ only
by a normalization) were derived in MacBeth (2004) based
on results of Sayers and Kachanov (1995). Using results
from Zaitsev and Sas (2000), in Zaitsev and Sas (2004)
from the analysis of pressure dependences of two elastic-
wave velocities in three samples, ratios between normal and
shear compliances were extracted in the approximation of
non-interacting cracks and in Zaitsev et al. (2017) possi-
ble crack interaction was accounted for using the differen-
tial scheme. For one of the examined samples, the inferred
crack characteristics did not differ strongly from the ones of
penny-shaped cracks, whereas the other two demonstrated 2–
4 times stronger dominance of normal compliance of the real
defects. Furthermore, one of the samples (Weber sandstone
studied in Coyner, 1984) with the highest normal-to-shear
compliance ratio of the cracks was found to possess negative
Poisson ratios at lower confining pressures (up to 20 MPa).
With increasing pressure (that caused gradual closing of the
cracks) the Poisson ratio gradually increased towards to “nor-
mal” positive values.

Results from Zaitsev and Sas (2004) already demonstrated
that real-crack properties may significantly differ from those
implied in the popular model of penny-shaped cracks, which
agrees with some recent works (Gurevich et al., 2009; Say-
ers and Han, 2002) where some other facts indicating in-
sufficiency of models based on penny-shaped cracks were
also discussed. However, the fairly small number of rocks
discussed in those papers did not yet allow one to estimate
how exotic are samples inconsistent with the penny-shaped
cracks. In what follows, based on examination of pressure de-
pendences for ∼ 90 rocks (Freund, 1992; Mavko and Jizba,
1994; Han, 1986), we present results demonstrating that the
“unusual” properties of real cracks are quite common. Fur-
thermore, we show that the relevance of the penny-shaped
crack concept can be rather considered as an exception, and
rocks with negative Poisson ratios are not rare exceptions,
in contrast to conventional belief. Reliable reconstruction of
compliance properties of cracks (that are conventionally used
in models of linear elastic properties of rocks) in fact requires
consideration of non-linear behaviour of rocks – pressure-
induced variation of their elastic properties in a sufficiently
wide pressure range. In the course of this consideration we
will also point out some aspects of rock non-linearity (ten-
sosensitivity) that have not been explicitly discussed earlier.
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2 Non-linear variation of rock elasticity under varying
pressure: implications of 1-D modelling

In geophysics elastic non-linearity of rocks is well appreci-
ated; however, when considering non-linear propagation of
elastic waves, the modelling is often simplified by using 1-
D approximation starting from a 1-D constituent non-linear
stress–strain relationship in which non-linearity is often con-
sidered quadratic in strain. For the present consideration of
non-linear variations of elastic moduli under isotropic hy-
drostatic compression that affects the state high compliant
defects, 1-D description can also be used, for example, in the
form with small (quadratic in strain) non-linear correction to
the linear stress–stress relation:

σ(ε)= ε ·M{1+ ε · γ (2)} = ε ·M + γ (2) ·M · ε2. (1)

Here M is the linear elastic modulus of the medium and γ (2)

is its dimensionless non-linearity parameter characterizing
the deviation of stress created in the medium from the linear
proportionality to strain. Strictly speaking, strain is defined
with respect to some initial state of the medium, so that the
local slope of the dependence around a current degree of de-
formation becomes dependent on strain (and thus stress) and
can be considered as a current elastic modulus:

M(ε)= ∂σ/∂ε. (2)

It is clear that the dimensionless parameter of the quadratic
non-linearity can be expressed as

γ (2) =
1

2 ·M
∂M(ε)/∂ε =

1
2
dM

dσ
(3)

taking into account that the stress (pressure) increment is re-
lated to the strain increment as dσ =M · dε.

In contrast to homogeneous materials with weak atomic
non-linearity and the non-linearity parameter of the order
of unity (Zarembo and Krasilnikov, 1971), in heterogeneous
media their non-linearity can be strongly increased due to
the presence of highly compliant defects with a strongly lo-
cally decreased elastic modulus. Due to this fact the strain
becomes strongly locally increased at the soft defects, which
results in strong enhancement of their local non-linear de-
viation from the linear stress–strain law and, correspond-
ingly, leads to enhancement of the average (macroscopic)
non-linearity of the material.

Important features of the microstructure-induced non-
linearity can be revealed in the framework of the above-
mentioned 1-D description (Zaitsev, 1996; Belyaeva and Za-
itsev, 1997). The simplest for understanding is the case of
identical compliant defects: if the relative volume content
(concentration) of such highly compliant defects is υ and
the defects are of the same type, the effective quadratic non-
linearity parameter becomes strongly increased:

γ (2)/γ
(2)
0 ≈ (1+ υ/ς

2)
/
(1+ υ/ς)2, (4)

where the small parameter, ς � 1, characterizes the relative
compliance of the compliant defects with respect to the ho-
mogeneous matrix material; parameter γ (2)0 ∼ 1 character-
izes its own weak non-linearity of the material of the de-
fects. A clear example is a liquid with gas bubbles: taken
separately the liquid and gas both are weakly non-linear, but
the non-linearity of the mixture may become giant. For a
sufficiently small compliance parameter ς � 1 (that may be
10−3–10−4 like for a gas–water mixture), even if the concen-
tration υ is small, the non-linearity parameter can exhibit a
giant increase, γ (2)/γ (2)0 � 1, because the combination υ/ς2

in Eq. (4) may become large.
Simultaneously with increase in the non-linearity parame-

ter, the elastic modulus M due to the presence of high com-
pliant defects exhibits gradual decrease in comparison with
modulus M0 of the homogeneous matrix:

M/M0 ≈ 1/(1+ υ/ς). (5)

Comparing Eqs. (3) and (4) one can easily notice that even if
the decrease in the elastic modulus is yet small, υ/ς � 1, the
increase in the non-linearity parameter, Eq. (4), may become
very significant (γ (2)/γ (2)� 1). Indeed, even if in Eq. (5)
υ/ς � 1, the combination υ/ς2 in Eq. (4) may become large
for ς � 1. Furthermore, the non-linearity parameter reaches
its maximum value ∼ 1/ς for a rather small concentration
of the defects υ = ς , for which the elastic modulus becomes
twice decreased and the interplay between the local strain
enhancement and the concentration of the defects is optimal
(Zaitsev, 1996; Belyaeva and Zaitsev, 1997).

In contrast to the above-mentioned bubbly liquids, for
which the bubbles have the same contrast ς in compress-
ibility with the liquid and the existence of a clear maxi-
mum of the non-linear parameter in its dependence on bub-
ble concentration is a known fact (Trivett et al., 2006; Za-
itsev et al., 2009b), for cracked rocks, the fact of maximal
non-linearity at an intermediate concentration of cracks is
not typical. Bearing in mind that for the bulk modulus K of
rocks under hydrostatic compression, the 1-D description is
applicable as far as the normal compliance of cracks is con-
cerned (see below for more details); we note that pressure de-
pendences of K(P ) usually demonstrate an ever-increasing
slope dK(P )/dP (i.e. the non-linearity parameter) with de-
creasing confining pressures P at which the concentration
cracks that are not closed gradually increase. Typical ex-
amples of K(P ) recalculated from experimentally measured
P- and S-wave velocities are shown in Fig. 1a for several
sandstone samples that are often discussed in the literature
(Coyner, 1984; Mavko and Jizba, 1994).

This gradual increase in slope dK/dP with decreasing
pressure is quite naturally attributed to a broad distribution
of the compliant defects over their compliance parameter.
Indeed, it is widely accepted that with increasing confin-
ing pressure the compliant crack-like defects gradually be-
come tightly closed (starting from the most compliant) and
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Figure 1. Non-linearity exhibited by dry Navajo, Nugget, and Weber sandstones (Coyner, 1984; Mavko and Jizba, 1994). (a) Typical depen-
dences K(P ) recovered from the experimentally measured pressure dependences of P- and S-wave velocities; (b) the same data represented
as the pressure dependences for normalized inverse bulk modulus K0/K(P ) shown in the plot with a logarithmic pressure axis; (c) deriva-
tives d(K0/K)/dP =−(dK/dP )K0/K

2 calculated using the approximating curves (in the form of third-order polynomials). Numbers 1,
2, and 3 denote the data for Navajo, Nugget, and Weber sandstones, respectively (Coyner, 1984; Mavko and Jizba, 1994; Han, 1986). The
slopes of the approximating straight lines in panel (b) corresponding to the normalized Eq. (8) characterize the differences in the density of
cracks (υ(ς)0 ≈ 0.13 for Navajo, υ(ς)0 ≈ 0.21 for Nugget, and υ(ς)0 = 1.7 for Weber). The dashed line in panel (c) shows the 1/P dependence
corresponding to the normalized Eq. (10). The deviation downwards of curve 3 for Weber in panel (c) is related to pronounced saturation of
K(P ) and K−1(P ) at higher pressures clearly visible in panels (a) and (b).

do not contribute anymore to the rock non-linearity. This
agrees with known properties of narrow cracks with a small
aspect ratio α� 1, for which their aspect ratio determines
the relative compliance α ∼ ς . Such thin cracks are known
to get closed under the average strain εc ∼ α; the proportion-
ality coefficient is of the order of unity and its value may
differ somewhat, as demonstrated by solutions for elliptical
cracks Morlier (1971), tapered non-elliptical cracks Mavko
and Nur (1978), etc. Since the strains and applied pressure P
can be considered to be roughly proportional, εc ≈ Pc/K , all
these quantities can be considered to be approximately pro-
portional to each other: ς ∼ α ∼ εc ∼ Pc/K , which we take
into account in the consideration below.

For non-identical defects leading to a distribution in the
compliance parameter, Eqs. (3) and (4) should be modified
to comprise the contributions of defects with different com-
pliance parameters ς Belyaeva and Zaitsev (1998):

K/K0 ≈ 1/(1+
∫
υ(ς)

ς
dς). (6)

And the equation for the non-linear parameter can be rewrit-
ten as

K0

K2 γ
(2)/γ

(2)
0 ≈ 1+

∫
υ(ς)

ς2 dς. (7)

It is clear that, by analogy with Eqs. (4) and (5) for iden-
tical defects, the modulus reduction and the increase in non-
linearity are determined by the distribution υ(ς) of the defect
concentration over the compliance parameter ς .

If one consider ranges of pressure Pmin ≤ P ≤ Pmax rel-
evant to experiments (quite often this range is from sev-
eral MPa to about 102 MPa), i.e. with relative variation
Pmax/Pmin ∼ 15–30 times, as the examples in Fig. 1 show,
the gradually closed/opened cracks should be distributed
over the compliance parameter with a similar relative range,
ςmax/ςmin ∼ Pmax/Pmin. Since this range in the practically

relevant case is not huge (not many orders of magnitude),
one can assume that in the first approximation the func-
tion υ(ς) may be approximated by a uniform distribution
υ(ς)= υ

(ς)
0 ≈ const. for ςmin ≤ ς ≤ ςmax. Then one obtains

K0/K ≈ 1+

ςmax∫
ς

υ(ς)

ς
dς = 1+ υ(ς)0 ln(ςmax/ς)

≈ 1+ υ(ς)0 ln(Pmax/P ), (8)

K0

K2 γ
(2)/γ

(2)
0 ≈ 1+

ςmax∫
ς

υ(ς)

ς2 dς = 1−
υ
(ς)
0
ςmax
+
υ
(ς)
0
ς
. (9)

Practically more useful than Eq. (9) can be a representation
in the form of the direct derivative of Eq. (8), d(1/K)/dP =
−(dK/dP )/K2, that does not involve an unknown initial
value of the non-linearity parameter. In view of relationship
(8) it should be expected in the form

K0

K2
dK

dP
≈
υ
(ς)
0
P
. (10)

This dependence can be compared with experimental data.
Figure 1b shows the pressure dependences for the bulk mod-
ulus of the same samples as in Fig. 1a using a logarith-
mic scale of the pressure axis, for which the proportional-
ity to log(P ) should look like a straight line. It is clear that
in Fig. 1b such straight lines approximate the experimental
dependences K−1(P ) fairly well. The trends to saturation
closer to maximal and minimal strains are expectable (since
the distribution υ(ς)= υ(ς)0 ≈ const. cannot be ideally flat).
The slopes of the straight lines in Fig. 1b are determined by
υ
(ς)
0 and give a clear representation of the differences in the

characteristic concentrations of the defects for the examined
samples. Finally, Fig. 1c shows in double logarithmic scale
the derivatives of the approximating curves shown in Fig. 1b,

Nonlin. Processes Geophys., 24, 543–551, 2017 www.nonlin-processes-geophys.net/24/543/2017/



V. Y. Zaitsev et al.: Extracting real-crack properties from non-linear elastic behaviour of rocks 547

with a curve 1/P as a guide for the eye. Thus Fig. 1b and
c demonstrates that the simplest approximation of the distri-
bution of the defects by a constant value reasonably agrees
with the experimental observations in a fairly wide range of
pressures (Pmax/Pmin ∼ 10–20 times).

3 Inferences from non-linear variations in elastic
moduli of rocks in 3-D descriptions

Now we recall that in the previous section we considered
only 1-D descriptions that can be fairly well applied to the
reduction in the bulk modulus under hydrostatic compres-
sion of real rock samples. However, in real 3-D rocks even
under isotropic hydrostatic compression and fairly isotropi-
cally oriented cracks, there are two independent elastic mod-
uli, of which usually the bulk modulus and shear modulus
are considered. The crack-like defects with isotropic orienta-
tions can also be characterized by two independent compli-
ances with respect to normal and shear loading. Using such a
representation of cracks like planar defects with two compli-
ances that are not a priori predetermined by a particular crack
model, one can relate the values of different elastic moduli
to the crack-effective densities and compliances by analogy
with the above-considered 1-D case. Such expressions were
obtained in Zaitsev and Sas (2000) in the form

K̃ =
K

K0
=

1

1+ 1
3Nn/(1− 2ν0)

, (11)

G̃=
G

G0
=

1

1+ 2
15Nn/(1+ ν0)+

2
5Ns

. (12)

where by analogy with the above-considered 1-D case the
subscript “0” denotes the matrix values, Nn =

∫
υ(ς)ς−1dς

is the effective concentration of the normal compliance and
Ns =

∫
υ(ξ)ξ−1dξ is a similar quantity for the shear com-

pliance, and ν0 is the Poisson ratio of the matrix rock. For
the other moduli, one obtains similar expressions (Zaitsev
and Sas, 2000). In these equations the shear compliance is
normalized by the shear modulus of the rock matrix and the
normal compliance is normalized by the Young modulus cor-
responding to the rock deformability under uniaxial stress.
Instead of a single dimensionless compliance parameter used
in the previous section (in fact corresponding to the normal
compliance), these expressions contain two compliance pa-
rameters representing the normal and shear loading charac-
terizing the defects. Factors 1/3, 2/5, etc. in Eqs. (11) and
(12) are related to spatial averaging of isotropically oriented
defects.

Similar equations were derived in MacBeth (2004) using
basic relations obtained in Sayers and Kachanov (1995):

K̃ =
K

K0
=

1
1+K0Zn

, (13)

G̃=
G

G0
=

1

1+ 4
15G0Zn+

2
5G0Zs

. (14)

In these equations quantities Z1 and Z2 characterizing total
normal and shear compliances imparted to the rock by cracks
are dimensional (with the dimension of the inverse modu-
lus). The shear compliance of the defects in both approaches
is similarly compared with the shear elastic modulus of the
matrix material. But the normal compliance in Eq. (12) is
normalized differently: in Zaitsev and Sas (2000), Eqs. (11)–
(12), the normal compliance of the defects is compared with
the Young modulus (i.e. the modulus that corresponds to uni-
axial stress, so that the compliance parameter ς of the de-
fects with respect to normal uniaxial stress can be expressed
as ς = Ecrack/E0; the latter can be substituted in the expres-
sion for Nn =

∫
υ(ς)ς−1dς). Then taking into account the

conventional relationshipK = 1/3E/(1−2ν) between mod-
uli E and K (Landau and Lifshitz, 1986), the combination
1/3Nn/(1−2ν0) in Eq. (11) can be transformed into the form
1/3Nn/(1− 2ν0)=K0Zn (where Zn =

∫
υ(ς)ς−1dς/E0).

As a result, Eq. (11) assumes the form of Eq. (13) in the no-
tations of the paper by MacBeth (2004), where the normal
compliance of the defects is normalized by the bulk modu-
lus K0 of the matrix. This comparison justifies Eqs. (11) and
(13) for the effective bulk modulus having the same form as
the 1-D Eq. (6) discussed in the previous section.

Note further that the total shear compliances 2/5Ns and
2/5G0Zs in Eqs. (12) and (14) have exactly the same mean-
ing (coincide quantitatively). Then it can readily be veri-
fied that Eqs. (12) and (14) have exactly the same propor-
tions between total normal and shear compliances: quanti-
ties 2/15Nn/(1+ ν0) and 2/5Ns in Eq. (12) and quantities
4/15G0Zn and 2/5G0Zs in Eq. (14). Thus representation
Eqs. (11), (12) and (13), (14) are equivalent and differ only
by notation.

Assuming that both normal and shear compliances are
localized at the same defects (like at penny-shaped cracks
in conventional models), the ratio q =Nn/Ns then char-
acterizes the ratio between normal and shear compliances
of the crack-like defects. Taking into account the differ-
ence in the normal–compliance normalization, one obtains
q̃ = Zn/Zs = 1/2(Nn/Ns)/(1+ ν0). Comparing Eqs. (11)–
(14) with expressions for elastic-moduli reduction based on
the penny-shaped crack model (O’Connell and Budiansky,
1974; Zimmerman, 1985), one concludes that penny-shaped
cracks correspond to the ratio of normal and shear compli-
ances q = (2− ν0)(1+ ν0)∼ 2 (if the normal compliance of
cracks is normalized to the Young modulus) or equivalently
q̃ = (1− ν/2)∼ 1 (if the normal compliance is normalized
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Figure 2. Schematic of determining the q-ratio of crack compliances via re-plotting of the P- and S-wave velocities into the trajectory of
the point characterizing the rock properties on the (K,G)-plane. (a) Initial pressure-dependences of P- and S-wave velocities. (b) Pressure
dependences of the normalized bulk and shear moduli derived from the wave velocities. (c) The (K,G)-plane representing the normalized
moduli plotted one against another and superposed theoretical lines with correctly chosen q-ratios (curve 1), an about 1.5 times overesti-
mated q-ratio (curve 2), and a 1.5 times underestimated q-ratio. We emphasize that unknown distributions of cracks over their compliance
parameters do affect pressure dependencies but do not affect the q-ratio thus estimated (Zaitsev and Sas, 2004; Zaitsev et al., 2017).

to the bulk modulus) (MacBeth, 2004; Sayers and Kachanov,
1995).

Since different effective elastic moduli are sensitive to
normal and shear compliances of the compliant defects
differently, gradual variation of crack density with pres-
sure should correspond to different trajectories of the point
(K(P ),G(P )) on the (K,G)-plane. They are readily ex-
pressed via the velocities VP and Vs of the longitudinal
compressional wave (P-wave) and shear-wave velocity (S-
wave), which are routinely measured in experiments. (Cer-
tainly a different pair of independent moduli can in principle
be used.) Comparing the experimentally obtained trajectory
with that theoretically predicted by Eqs. (11)–(14), one can
determine the q-ratio for real rocks as illustrated in Fig. 2.
Such a representation (for example, in the (K,G)-plane) al-
lows one to exclude intermediate dependences on pressure
that in turn are dependent on the a priori unknown distribu-
tions of the cracks over their aspect ratios. The so-plotted
single trajectory makes it possible to reduce the freedom in
fitting the two initial experimental curves with the additional
possibility of scaling pressure axes.

This approach was discussed in detail in Zaitsev and Sas
(2004) taking as instructive examples experimental data on
pressure dependences (in the range 2–100 MPa) of P- and
S-wave velocities for Navajo, Nugget, and Weber sand-
stones used as examples in Fig. 1 (Coyner, 1984; Mavko
and Jizba, 1994). The performed examination showed that
only for dry Navajo sandstone was the q-ratio (appeared
to be ∼ 2.35) more or less consistent with the expectation
q = (2− ν0)(1+ ν0)∼ 2.1 for the model of penny-shaped
cracks with free faces, whereas for Nugget sandstone it was
about twice as great (q ∼ 4.3), and even greater for Weber
sandstone (q ∼ 7–8). The latter sample even demonstrated
a negative Poisson ratio for pressures below 20 MPa. For
rocks containing compliant inclusions with dominating nor-
mal compliance (N1 > 15ν0+ 2(1+ ν0)N2), the occurrence
of a negative Poisson ratio for cracked rocks does not look
surprising (Zaitsev and Sas, 2000) (see also Pasternak and

Dyskin, 2012):

ν. =
ν0−

1
15Nn+

2
15 (1+ ν0)Ns

1+ 1
5Nn+

4
15 (1+ ν0)Ns

. (15)

However, the Weber sandstone containing cracks with sig-
nificantly increased normal compliance and high concentra-
tion of cracks sufficient for making the Poisson ratio negative
looked a rather exotic example. Similar conclusions on the
possibility of negative Poisson ratios are known for granular
materials, in which inter-grain contacts are characterized by
normal compliance significantly dominating over the shear
one. However, traditionally, negative Poisson ratios are con-
sidered rather exotic cases mostly for various artificial mi-
crostructured solids (Gercek, 2007; Lakes, 1993).

In what follows we present results of examination of over
90 rock samples, for which data on pressure dependences of
P- and S-wave velocities were taken in Coyner (1984), Fre-
und (1992), and Mavko and Jizba (1994). Figure 4 shows the
histogram for the Poisson ratio calculated from the P- and
S-wave velocities at the lowest pressure (typically, the avail-
able low-pressure data were reported for pressures of sev-
eral MPa, so that evidently for even lower pressures, crack
concentrations were even greater). In this examination we
did not try to specially find some specific examples; never-
theless, about 45 % of cracked rocks exhibiting pronounced
pressure dependences of the elastic-wave velocities demon-
strated negative Poisson ratios in a few (or at least one) lower-
pressure points, where the crack concentration was maximal.
Typically the lowest pressures were several MPa and maxi-
mal pressures were in the range 50–120 MPa.

For those samples, the initial pressure dependences of the
P- and S-wave velocities were re-plotted in the plane of the
normalized moduli (K̃,G̃) and the resultant curves were fit-
ted by Eqs. (11) and (12) in order to determine the ratio of
the compliances of the cracks assuming that the trajectory
can be described by a constant q-ratio, q =N1/N2 = const.
This approximation is not a priori evident at all, but looks
fairly reasonable since conventional penny-shaped cracks in-
deed have the q-ratio independent of the aspect ratio and,
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Figure 3. Histograms for the Poisson ratios calculated using P- and
S-wave velocities for over 90 rocks (Coyner, 1984; Freund, 1992;
Mavko and Jizba, 1994). (a) Data for minimal pressures (mostly
about 8 MPa for the available data sets) were used in these calcula-
tions. (b) Three histograms for the same set of rocks for pressures
8 MPa (i.e. the same as in panel a), 24 MPa, and 40 MPa demon-
strating that with increasing pressure the Poisson ratios gradually
become positive for all samples due to pressure-induced decrease
in crack concentration.

therefore, independent of the pressure of opening/closing of
such cracks. For a significant portion of the considered ∼ 90
rock samples, the pressure-induced variations for the elastic
moduli in (K̃,G̃) appeared to be surprisingly well described
using the approximation of a constant q-ratio.

It was also found that for two tens of samples, the trajecto-
ries could be fairly well fitted by a constant q-curve at higher
pressures, but noticeably deviated at lower pressures, usu-
ally exhibiting a trend characteristic for an increasing q-ratio.
Such deviations occurred for samples with both negative and
positive Poisson ratios at low pressures. Therefore, for the
moment, in the histograms shown below to characterize the
revealed q-ratios, we excluded those samples and retained 72
samples with fairly constant q-ratios.

Figure 4 shows the histogram for distribution over q-ratios
among those 72 samples with q ≈ const. A striking feature of
this histogram is that only the left-most column (only∼ 20 %
of the total number of samples) corresponds to q ∼ 2 in no-
tations (Zaitsev and Sas, 2000) (or q̃ ∼ 1 in notations, Mac-
Beth, 2004; Sayers and Kachanov, 1995), which is typical of
penny-shaped cracks and similar conventionally used crack
models. Among the 72 samples presented in Fig. 4, almost
one-half (∼ 48 %) exhibits a negative Poisson ratio for max-
imal crack densities at low pressures.

Figure 5 shows histograms similar to Fig. 4, but sepa-
rately for 34 samples demonstrating negative Poisson ratios
at low pressures and 37 samples with positive Poisson ratios
in the entire pressure range. As expected from the above-
presented arguments (see the discussion of Eq. 15), the q-
ratios for samples with always positive Poisson ratios demon-
strate the distribution shifted towards small q-ratios (Fig. 5b),
whereas for samples with negative Poisson ratios this distri-
bution is clearly shifted towards high q-ratios, significantly
higher than q = (2− ν0)(1+ ν0)∼ 2 (or q̃ ∼ 1) typical of
penny-shaped cracks (Fig. 5a).

Figure 4. Distribution over q-ratios for 72 samples with fairly con-
stant q within the entire pressure ranges including rocks with always
positive Poisson ratios together with samples demonstrating nega-
tive Poisson ratios at lower pressures. The last column includes all
samples with q ≥ 10.

It can be mentioned that an increased q-ratio was also
found in the case of samples with always positive Poisson
ratios (as can be seen in Fig. 5b). However, applying proce-
dures shown in Fig. 2, we verified that for these samples, the
crack density is significantly smaller than for the rocks ex-
hibiting negative Poisson ratios. That is, for rocks with nega-
tive Poisson ratios and q ∼ 5–10 or even greater, typically the
crack density is υ(ς)0 ∼ 1–2, whereas for rocks with a simi-
larly increased q-factor but a positive Poisson ratio even at
the lowest pressures, the crack density is significantly lower:
υ
(ς)
0 ∼ 0.1–0.2.

4 Conclusions

In the described examination of pressure-dependent (i.e. non-
linear) elastic rock properties we used approaches from Za-
itsev and Sas (2000) and Zaitsev and Sas (2004) and from
MacBeth (2004) and Sayers and Kachanov (1995) in which
the effective-medium model is based on a generalized phe-
nomenological representation of cracks as highly compliant
defects for which their compliance properties are not a pri-
ori predetermined, so that the proportion between the nor-
mal and shear compliances and their integral amounts can be
found from the comparison with experimental data. It should
be emphasized that such a comparison is essentially based on
the usage of numerous data points obtained in a fairly wide
range of pressures. This consideration of the large data sets
describing non-linear behaviour of rocks ensures much better
reliability and accuracy than comparison of a pair of points
(e.g. for two pressure levels).
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Figure 5. Distributions over q-ratios plotted separately for samples
from Fig. 4 exhibiting positive and negative Poisson ratios: (a) the
histogram for 37 samples with negative Poisson ratios at lower pres-
sures; (b) case of 35 samples with always positive Poisson ratios.
The last column in both panels includes all samples with q ≥ 10.

The performed examination has indicated that properties
of compliant cracks in many rocks agree reasonably well
with the assumption of uniform distribution υ(ς)0 ≈ const. of
the cracks over their compliance parameter (i.e. actually their
aspect ratio), which gives a simple way (actually a single pa-
rameter υ(ς)0 ) for comparison of crack concentrations in dif-
ferent samples.

The usage of the theoretical description (Zaitsev and Sas,
2000; MacBeth, 2004; Sayers and Kachanov, 1995; Zaitsev
and Sas, 2004) with explicitly introduced normal and shear
compliances of the defects made it possible to determine this
ratio for real cracks from the trajectory of (K(P ),G(P )) in
the (K,G)-plane. Using the literature data on pressure de-
pendences of P- and S-wave velocities (Coyner, 1984; Fre-
und, 1992; Mavko and Jizba, 1994), about 90 rock samples
were examined. For a significant (80 %) portion of the sam-
ples the q-ratio between the normal and shear compliances
appeared to be significantly different from what would be
predicted by the penny-shaped crack model. These obser-
vations agree with some other results based on smaller vol-
umes of data (Zaitsev and Sas, 2004; Gurevich et al., 2009)
that also indicated that quite often conventionally used crack
models (like the penny-shaped one) cannot adequately de-
scribe properties of real rocks. In fact, for the considered
68 samples that can be well described in the approximation
of the constant q-ratio, it appears that only ∼ 20 % of rocks
demonstrate q ∼ 2, typical of penny-shaped cracks.

Furthermore, the performed examination of pressure de-
pendences for ∼ 90 samples (found in the literature without
any special selection) revealed that a significant portion of
samples (about 45 %) demonstrated negative Poisson ratios
at low pressures, for which concentrations of open cracks
were maximal. Discovering such a significant number of nat-
urally auxetic rocks is in contrast to the conventional view-
point that occurrence of negative Poisson ratios for rocks is
an exotic fact (Gercek, 2007; Jizba, 1991). Previously mainly
artificial materials with the microstructure engineered to ex-
hibit negative Poisson ratios (auxetic materials) were dis-
cussed in the literature (e.g. review Lakes, 1993).

The performed comparison of q-ratios has shown that for
samples exhibiting negative Poisson ratios, the distribution of
determined compliance ratios for cracks shows a clear distor-
tion towards large q-ratios (strongly dominating normal com-
pliance of cracks over their shear compliance). This finding
perfectly agrees with theoretical models for crack-containing
solids and granular materials, according to which negative
Poisson ratios can be obtained in nearly isotropic mate-
rial only if the cracks or contacts have dominating normal
compliances (Zaitsev and Sas, 2000; Pasternak and Dyskin,
2012). In contrast, for samples with positive Poisson ratios,
the determined distributions of q-ratios demonstrated a clear
distortion towards small values.

Overall, the obtained results indicate the necessity for fur-
ther development of crack models to account for the revealed
numerous examples of rocks with defects demonstrating q-
ratios significantly greater than for penny-shaped cracks and
similar conventionally used crack models.
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