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Abstract. We take into consideration the evolution of parti-
cle size in a monodisperse aerosol population during activa-
tion and deactivation of cloud condensation nuclei (CCN).
Our analysis reveals that the system undergoes a saddle-
node bifurcation and a cusp catastrophe. The control param-
eters chosen for the analysis are the relative humidity and
the particle concentration. An analytical estimate of the ac-
tivation timescale is derived through estimation of the time
spent in the saddle-node bifurcation bottleneck. Numerical
integration of the system coupled with a simple air-parcel
cloud model portrays two types of activation/deactivation
hystereses: one associated with the kinetic limitations on
droplet growth when the system is far from equilibrium, and
one occurring close to equilibrium and associated with the
cusp catastrophe. We discuss the presented analyses in con-
text of the development of particle-based models of aerosol–
cloud interactions in which activation and deactivation im-
pose stringent time-resolution constraints on numerical inte-
gration.

1 Background

Atmospheric clouds are visible to human eye for they are
composed of water and ice particles that effectively scatter
solar radiation. The multi-micrometre light-scattering cloud
droplets form on sub-micrometre aerosol particles (cloud
condensation nuclei, CCN) in a process referred to as CCN
activation or (heterogeneous) nucleation. The concentration
(from tens to thousands per cubic centimetre) and size (from
fractions of to multiple micrometres) of activated particles
can both vary by over an order of magnitude depending on
the size spectrum and composition of CCN. On the one hand,

CCN physicochemical properties are influenced by anthro-
pogenic emissions of particles into the atmosphere. On the
other hand, the resultant size spectrum of cloud droplets de-
termines how effectively the clouds interact with solar radia-
tion and how effectively they produce precipitation (see, e.g.,
a recent Nonlinear Processes in Geophysics paper by Fein-
gold and Koren, 2013, for a discussion of the aerosol–cloud–
precipitation interaction chain, unconventionally modelled as
a predator–prey problem). CCN activation is thus the link-
ing process between the microscopic human-alterable atmo-
spheric composition and the macroscopic climate-relevant
cloud properties. As once aptly stated, “there is something
captivating about the idea that fine particulate matter, sus-
pended almost invisibly in the atmosphere, holds the key to
some of the greatest mysteries of climate science” (Stevens
and Boucher, 2012). This has certainly contributed to the
wealth of literature on the subject published since the first
studies of the 1940s (Howell, 1949; Tsuji, 1950). For a thor-
ough list of references see, e.g., Khvorostyanov and Curry
(2014, chap. 7).

Deactivation is the reverse process in which cloud droplets
evaporate back to aerosol-sized particles. The process is also
referred to as aerosol regeneration, aerosol recycling, drop-
to-particle conversion or simply droplet evaporation (see
Sect. 1 in Lebo and Seinfeld, 2011, for a review of modelling
studies). Both activation and deactivation are particular cases
of particle condensational growth, which, in the context of
cloud modelling, is generally regarded as reversible to con-
trast the irreversible collisional growth (see, e.g., Grabowski
and Wang, 2013). The reversibility of condensational growth
is a sound (and often a constituting) assumption for cloud
models for which activation and deactivation are subgrid pro-
cesses, both in terms of time- and length scales. Yet, when
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investigated in short-enough timescales, condensation and
evaporation exhibit a hysteretic behaviour in an activation–
deactivation cycle. The hysteresis can be associated with the
kinetic limitations in the vapour and heat transfers to/from
the droplets (Chuang et al., 1997) and has been previously
depicted in the studies of Korolev and Mazin (2003, discus-
sion of Fig. 1), Pinsky et al. (2013) and Korolev et al. (2013).
As we point out in this paper, the system can exhibit a hys-
teretic behaviour also in a close-to-equilibrium regime where
the kinetic limitations do not play a significant role.

It is worth noting that particle nucleation through conden-
sation is relevant in a much wider context than formation of
atmospheric clouds. Since the late 19th century, the growth
of particles through condensation up to optically detectable
sizes has been the principle of operation of so-called con-
densation particle counters (see McMurry, 2000, for a his-
torical review). Instruments in which single CCN undergo
activation in conditions similar to those discussed herein
(Roberts and Nenes, 2005) are routinely used in ground-
based and airborne research measurements. Interestingly, an
analogue of CCN activation theory applies to the formation
of nanometre-sized aerosol particles via activation of molec-
ular clusters by organic vapours (Kulmala et al., 2004).

This paper is structured as follows. Section 2 provides a
brief introduction to the constituting elements of the CCN
activation theory. In Sects. 3–5, we detail how the dynamics
of cloud droplet growth can be studied employing the tech-
niques of nonlinear dynamics analysis. In these sections we
do not refrain from using the peculiar yet pertinent jargon of
nonlinear dynamics. For introduction, we refer the reader to
the concise and approachable introductory chapters in Stro-
gatz (2014, chap. 2.0–2.2, 2.4, 3.0) as well as to sections
on specific topics therein to which references are provided
throughout the text. Sections 6–7 deal with the so-called air
parcel cloud model framework. The framework is used here
to corroborate the results from nonlinear dynamics analysis
of a simplified CCN activation model against numerical solu-
tions of an equation system providing a more comprehensive
description of the process. Section 8 provides an additional
context for the discussion by pointing out the congruence
of the simplifying assumptions embraced in the presented
analysis with the recently popularised particle-based tech-
niques for modelling aerosol–cloud interactions. Section 9
concludes the paper.

2 Droplet growth laws in a nutshell

The key element in the mathematical description of CCN ac-
tivation/deactivation is the equation for the rate of change of
particle radius rw (so-called wet radius) due to water vapour
transfer to/away from the particles. It is modelled by a diffu-
sion equation in a spherical geometry,

ṙw =
1
rw

Deff

ρw
(ρv− ρ◦) , (1)

where ρw is the liquid water density, ρv is the ambient
vapour density (away from the droplet), ρ◦ is the equilibrium
vapour density at the drop surface and theDeff =Deff(T ,rw)

is an effective diffusion coefficient in which the tempera-
ture dependence stems from an approximate combination
of Fick’s first law and Fourier’s law (latent heat release)
into a single particle-growth equation (the Maxwell–Mason
formula), while the radius dependence stems from correc-
tions limiting the diffusion efficiency for smallest particles.
For derivation and discussion see Khvorostyanov and Curry
(2014, Sect. 5.1.4). Introducing two non-dimensional num-
bers, the relative humidity RH= ρv/ρvs (the ratio of the am-
bient vapour density to the vapour density at saturation with
respect to plane surface of pure water) and the equilibrium
relative humidity RHeq = ρ◦/ρvs, the drop growth equation
is given by

ṙw =
1
rw
Deff

ρvs

ρw

(
RH−RHeq

)
. (2)

The crux of the matter is the dependence of RHeq on rw.
In the context of atmospheric clouds, it is determined primar-
ily by the droplet curvature and by the presence of dissolved
substances. The theory capturing the interplay between these
two effects was formulated by Köhler in 1936. Note that the
qualitatively similar interplay between the surface tension
and electric charge (as opposed to chemical composition) re-
sults in an analogous particle activation phenomenon which
served as the principle of operation of the Wilson cloud
chamber – a key instrument in the early days of elementary
particle physics (for references, see McMurry, 2000).

The Köhler theory provides us with the so-called Köhler
curve; the leading terms of its common κ-Köhler formulation
can be approximated with (for rd� rw which is a reasonable
assumption in context of activation/deactivation)

RHeq =
r3

w− r
3
d

r3
w− r

3
d (1− κ)

exp
(
A

rw

)
(3)

≈ 1+
A

rw
−
κr3

d
r3

w
, (4)

where A∼ 10−3 µm is a temperature-dependant coefficient
related to the surface tension of water, while the dry radius
rd and the solubility parameter κ (in general, 0< κ < 1.4;
see Petters and Kreidenweis, 2007) are proxy variables de-
picting the mass and chemical composition of the substance
the CCN are composed of. The ∂rwRHeq derivative has an
analytically derivable root corresponding to the maximum of

the Köhler curve at (rc,RHc), where rc =
√

3κr3
d/A is the so-

called critical radius and RHc = 1+ 2A
3rc

is the critical relative
humidity.
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3 Saddle-node bifurcation at Köhler curve maximum

Rewriting Eq. (2) in terms of ξ = r2
w+C (where C is an ar-

bitrary constant) gives

ξ̇ = 2Deff
ρvs

ρw

(
RH−RHeq(ξ)

)
. (5)

Figure 1 depicts the phase portrait of the dynamical system
defined by Eq. (5), for different values of relative humidity
RH which is chosen as the control parameter in the follow-
ing fixed-point analysis. Fixed points correspond to equilib-
rium conditions defined by ξ̇ = 0, which can be geometri-
cally identified as crossings of the −RHeq curve (a flipped
Köhler curve) and the constant function RH.

For RH> RHc, there are no intersections – there are no
fixed points, the time derivative ξ̇c is always positive; regard-
less of their size, the CCN grow. For RH= RHc, there is just
one fixed point – it is half-stable (small variation in ξ can
be either damped or amplified depending on the direction).
For 1< RH< RHc, there are two fixed points in the system:
one stable and one unstable. The stability depends on how
the sign of ξ̇ changes around a fixed point (note that the ar-
rows on the plot correspond to the sign of ξ̇ ). Around a stable
fixed point (also called attractor, sink), small variations in ξ
are damped, while in the case of unstable fixed point (also
called repeller, source), small variations in ξ are amplified.
Particles smaller in radius than the radius corresponding to
the unstable fixed point will shrink or grow in the direction of
the equilibrium state corresponding to the stable fixed point
(as depicted by the directions of the arrows). Particles larger
in radius than the radius corresponding to the unstable fixed
point will grow provided RH> 1 – these are the activated
CCN. In the limit of ξ →∞, the Köhler curve approaches
RH= 1; hence the unstable fixed point goes to infinity. For
RH< 1, there is just one stable fixed point corresponding to
the unactivated CCN equilibrium.

The above analysis portrays a bifurcation in the behaviour
of the system at RH= RHc. Rewriting RHeq in terms of ξc =

r2
w− r

2
c and Taylor-expanding it around ξc = 0 gives

RHeq(ξc)= c0+��c1ξc+ c2ξ
2
c + . . ., (6)

where c0 = RHc, c1 is zero as we are expanding around the
root of ∂ξc RHeq and c2 =−

A
4 r
−5
c is negative.

Combining Eqs. (5) and (6) gives

ξ̇c
∣∣
ξc→0 ∼

RH−RHc

A/(4r5
c )
+ ξ2

c , (7)

which is the normal form of the saddle-node bifurcation
(Strogatz, 2014, Sect. 3.1).

It is noteworthy that the standard cloud-physics Köhler
curve plot given in Fig. 2 can well serve as a (flipped) phase
portrait of the system facilitating identification of the fixed
points by considering intersections of the Köhler curve with
lines of constant RH. Figure 2 depicts the approximation

Eq. (7) alongside the κ-Köhler curve, confirming that the
parabolic approximation is valid only in the nearest vicinity
of (rc,RHc).

4 Activation timescale estimation

Interestingly, the analysis of the CCN activation/deactivation
in terms of saddle-node bifurcation provides a way to esti-
mate the timescale of activation. Following Strogatz (2014,
Sect. 4.3), the coalescence of the fixed points is associated
with a passage through a bottleneck. The key observation is
that for the parabolic normal form of the saddle-node bifur-
cation, the time of the passage through the bottleneck domi-
nates all other timescales. Thus, the timescale of the process
can be estimated by integrating ξc from −∞ to∞:

τact ≈

+∞∫
−∞

dξc

ξ̇c
=
r

5/2
c
√
A

ρw/ρvs

Deff

π
√

RH−RHc
. (8)

The activation timescale τact given by Eq. (8), plotted as a
function of RH and rd (and substituting rc and RHc by their
analytic formulae given in the preceding section) is presented
in Fig. 3. It matches remarkably the data obtained through
numerical calculations presented in Hoffmann (2016). The
white region in the plot corresponds to a situation where ac-
tivation does not happen. The range of RH depicted in the
plot is chosen to match the one of Fig. 2 in Hoffmann (2016),
while in principle the presented weakly nonlinear analysis of
the system is applicable only close to the equilibrium (i.e.
close to the edge of the white region in the plot).

5 Cusp catastrophe of the RH-coupled system

The key limitation of the preceding analysis is that the evo-
lution of particle size is not coupled with the evolution of
ambient heat and moisture content, and hence the relative hu-
midity. Limiting the analysis to a monodisperse population,
the coupling efficiency is determined by the total number of
particles in the system. The so-far assumed constant RH ap-
proximates thus the case of small number of droplets.

To at least partially lift the constant-RH assumption, while
still allowing for a concise analytic description of the sys-
tem dynamics, let us consider a simple representation of the
moisture budget in the system under a temporary assump-
tion of constant temperature and pressure (and hence con-
stant volume, constant ρvs, A and Deff). The rate of change
of the ambient relative humidity ṘH can be expressed then
as a function of the droplet volume concentration N ,

ṘH≈
ρ̇v

ρvs
=−N

4πρw

3ρvs︸ ︷︷ ︸
α

3r2
wṙw, (9)
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Figure 1. Phase portraits of the system discussed in Sect. 3 for different values of the control parameter RH. Arrows have their heads pointing
right (left) if the sign of ξ̇ is positive (negative). The half-filled circle denotes a half-stable fixed point. Filled and open circles denote stable
and unstable fixed points, respectively. The dashed line corresponds to RH= 1.
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Figure 2. Köhler curve for CCN with rd = 0.05 µm, κ = 1.28
(NaCl) and its Taylor expansions at rc and at infinity.

where the form of α stems from defining the density of
liquid water in the system as Nρw

4
3πr

3
w. Integrating in time

gives

RH= RH0−αNr
3
w, (10)

which combined with Eq. (2) and expressed in terms of ξ
with C = 0 leads to the following phase portrait of the RH-
coupled system (assuming rw� rd):

ξ̇ ∼ (RH0− 1)−

(
A

ξ
1
2
−
κr3

d

ξ
3
2
+αNξ

3
2

)
︸ ︷︷ ︸

f

, (11)

where the group of terms labelled as f can be intuitively
thought of as corresponding to the Köhler curve with an ad-
ditional term representing the simplified RH dynamics.

Figure 4 depicts the dependence of f on the droplet ra-
dius rw =

√
ξ and the droplet concentration N . To facilitate

τ

Figure 3. Activation timescale as a function of dry radius and rela-
tive humidity estimated with Eq. (8) with A∼ 10−3 µm, κ = 1.28,
D ∼ 2× 10−5 m2 s−1, ρw ∼ 103 kg m−3 and ρvs = 10−3 kg m−3.

analysis, the zero-crossings of the first derivative of f with
respect to rw are plotted as well using the analytically derived
formula

sgn(f ′)= sgn
(
κr3

d −
A

3
rw+αNr

3
w

)
. (12)

For N = 0, f has the Köhler curve shape depicted in
Fig. 2, which, as discussed in the preceding sections, im-
plies a saddle-node bifurcation. With N greater than zero
but less than ca. 50 cm−3, a second saddle-node point ap-
pears as the αNξ

3
2 term causes f to have a local minimum

above the critical radius. At ca. N = 50 cm−3, both the first
and second derivatives of f vanish, implying a cusp point in
the f surface. For larger N , f is monotonic; hence both of
the saddle-node bifurcations cease to exist. For N > 0, this
phase portrait reveals a topological equivalence (see Meiss,
2017, Theorem 4.3) to the normal form of the cusp bifurca-
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Figure 4. Dependence of f defined in Eq. (11) on the wet radius
and particle concentration (green wireframe surface). The red line
below depicts the zero-crossings of the first derivative of f with
respect to rw. Values of all constants are as in Fig. 3. See Sect. 5.

tion. The cusp bifurcation (Kuznetsov, 2004, chap. 8.2), an
imperfect supercritical pitchfork bifurcation (Strogatz, 2014,
chap. 3.6), features a cusp catastrophe, which makes it possi-
ble to envisage a “catastrophic” jump from one equilibrium
to another and a hysteretic behaviour of the system when ap-
proaching (in terms of rw) the local minimum of f from
below (activation) and from above (deactivation) for small
enough N .

6 Adiabatic vertically displaced air parcel system

In order to lift the assumptions of constant temperature and
pressure, the system evolution can be formulated by supple-
menting the drop growth equation with two equations repre-
senting the hydrostatic balance and the adiabatic heat budget.
This leads to a commonly used so-called air parcel frame-
work depicting behaviour of a vertically displaced adiabati-
cally isolated mass of air: ṗd
Ṫ

ṙw

=
 −ρdgw

(ṗd/ρd− q̇lv)/cpd
(Eq. 1)

 , (13)

where ρd and pd are the dry-air (background state) den-
sity and pressure, w is the vertical velocity of the parcel,
q = ρv/ρd is the water vapour mixing ratio, cpd is the spe-
cific heat of dry air, lv is the latent heat of vaporisation and
g is the acceleration due to gravity. The sum of water vapour
and liquid water densities is conserved in the system which
makes it possible to diagnose ρv and RH from the state vari-
ables, similarly as in Eqs. (9)–(10) but without the simplify-
ing assumption of constant temperature and pressure.

As discussed in Sect. 5, for a monodisperse population
of N particles, the changes in the mass of liquid water
in the system are proportional to the particle concentra-
tion, hence q̇ ∼N . Consequently, the analysis of the activa-
tion/deactivation dynamics presented in Sects. 3–4 under the
assumption of constant RH corresponds to the behaviour of
the air parcel system in the following limits:

– w→ 0 (and hence ṗd ≈ 0), i.e. slow, close-to-
equilibrium evolution of the system relevant to fixed-
point analysis (by some means pertinent to the forma-
tion of non-convective clouds such as fog);

– N→ 0 (and hence ṙ ≈ 0), i.e. weak coupling between
particle size evolution and the ambient thermodynamics
(pertinent to the case of low particle concentration).

7 Numerical simulations

Because the system defined by Eq. (13) is less susceptible
to a simple analytic analysis, we proceed with numerical
integration. Furthermore, employing numerical integration
allows us to evaluate the Köhler curve in unapproximated
form (4) to corroborate the findings obtained with the as-
sumption of rd� rw. To this end, a numerical solver was
implemented using the libcloudph++ library (Arabas et al.,
2015) and the CVODE adaptive-timestep integrator (Hind-
marsh et al., 2005). Numerical integration is carried out for
a system equivalent to Eq. (13) but expressed in terms of the
state variables used in libcloudph++: water vapour mixing
ratio, potential temperature and wet radius (see Appendix A
in Arabas et al., 2015); supersaturation S = RH− 1 is diag-
nosed from the three state variables. The solver code is free
and open-source and is available as a supplement to this note.

In order to depict an activation–deactivation cycle, the ver-
tical velocityw was set to a sinusoidal function of time t such
that the maximal displacement is reached at t = thlf and the
average velocity is 〈w〉:

w = 〈w〉
π

2
sin
(
π
t

thlf

)
. (14)

Figure 5 summarises results of nine simulations in three
types of coordinates: displacement vs. supersaturation (the
top row), supersaturation vs. wet radius (the middle row,
same coordinates as in Fig. 2) and displacement vs. wet ra-
dius (bottom row). The nine model runs correspond to three
sets of aerosol parameters (left, middle and right columns)
and three values of mean vertical velocity (depicted by line
thickness). The varied aerosol input parameters are the con-
centration (NSTP of 50 and 500 cm−3, STP subscript corre-
sponding to the values at standard temperature and pressure)
and the dry radius (rd of 0.1 and 0.05 µm). In all panels, black
lines correspond to air parcel ascent (activation) and orange
lines correspond to the descent (deactivation). Besides inte-
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Figure 5. Results of numerical simulations discussed in Sect. 7.
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gration results, the panels in the middle row feature the Köh-
ler curve plotted with thick grey line in the background.

The plots depict that for mean velocities of 100 and
50 cms−1 activation and deactivation are not symmetric and
happen far from equilibrium (the Köhler curve). This type of
hysteresis corresponds to the kinetic limitations on the trans-
fer of water molecules to/from the droplet surface, which pre-
vents the droplets from attaining equilibrium under rapidly
changing ambient conditions.

At much lower velocity of 0.2 cms−1, the processes are
symmetric and match the equilibrium curve, but only for the
N = 500 cm−3 and rd = 0.1 µm (middle column). A twofold
decrease of the dry radius (right column) as well as a tenfold
decrease of particle concentration (left column) both cause
the system to exhibit a hysteretic behaviour also at the low-
est considered velocity. This hysteresis is characterised by
a “jump” in the wet radius that qualitatively matches the
envisioned catastrophic behaviour associated with the cusp
bifurcation. This behaviour is robust to further reduction in
the vertical velocity (not shown), confirming that a close-to-
equilibrium regime was attained.

The adaptive-timestep solver statistics (not shown) reveal
that regardless of the chosen accuracy, for all considered in-
put parameters, there are two instants for which the solver
needs to significantly reduce the timestep: when resolving
the supersaturation maximum during activation and when re-
solving the “jump” back to equilibrium during deactivation.
It is a robust feature that deactivation requires roughly an or-
der of magnitude shorter timestep as compared to activation
(ca. 0.01 s vs. 0.1 s for a relative accuracy of 10−6). The only
exception is the symmetric case which does not feature the
“jump” back onto the equilibrium curve.

8 Monodisperse system: limitations and applicability

The key advantage of the embraced monodisperse simulation
is simplicity – in terms of model formulation and result anal-
ysis, and also integration. Due to the wide span of aerosol and
droplet size spectrum, simulations of the particle size spec-
trum evolution during activation are prone to numerical dif-
ficulties – both due to the stiffness of the system and due to
the sensitivity to the size spectrum discretisation (Arabas and
Pawlowska, 2011).

The key inherent limitation for applicability of monodis-
perse simulations is the lack of description of the cloud
droplet size spectrum shape. Consequently, the model lacks
representation of the phenomena that depend on simultane-
ous presence of both activated and unactivated CCN. Such
phenomena include the noise-induced excitations to which
even a bi-disperse system would be susceptible if subject to
fluctuations in the forcing terms (e.g. in the cooling rate Ṫ ;
see Hammer et al., 2015, discussion of Figs. 10–11 and other
studies referenced therein). The excitations influence the par-
titioning between activated and unactivated CCN, and decay

when the characteristic timescale (period) of fluctuations is
largely longer or shorter than the activation timescale dis-
cussed in Sect. 4.

These limitations certainly restrain the relevance of the
presented calculations to real-world problems. Yet, let us un-
derline that both the monodisperse spectrum and even the no-
RH-coupling assumption are in fact contemporarily used in
atmospheric modelling in the recently popularised particle-
based (Lagrangian, super-droplet) techniques for represent-
ing aerosol, cloud and precipitation particles in models of
atmospheric flows (see, e.g., Shima et al., 2009; Arabas
and Shima, 2013, as well as works referred therein). In
these models, in the spirit of the particle-in-cell approach,
the liquid water is represented with computational parti-
cles, each representing a multiplicity of real-world particles
with monodisperse size. In such models, the particles can
undergo repeated activation–deactivation cycles, potentially
also at low vertical velocities. Consequently, the close-to-
equilibrium catastrophic hysteresis observed in the presented
simulations, even if of no foreseeable relevance to the macro-
scopic behaviour of the large-scale cloud systems modelled
with the particle-based techniques, has to be taken into ac-
count when developing numerical integration schemes.

9 Concluding remarks

With this note we intend to bring attention to the presence of
nonlinear peculiarities in the equations governing CCN ac-
tivation and deactivation, namely a saddle-node bifurcation
and a cusp catastrophe. We have shown that conceptualisa-
tion of the process in terms of bifurcation analysis yields a
simple yet practically applicable description of the system
allowing analytic estimation of the timescale of activation.
Both through weakly nonlinear analysis and through numer-
ical integration, we have depicted the presence of a cusp
catastrophe in the system and the corresponding hysteretic
behaviour near equilibrium.

The deactivation stage was observed to determine the
time-stepping constraints for numerical integration when
simulating an activation–deactivation cycle of a monodis-
perse droplet population. It is a finding of interest for
the cloud modelling community since monodisperse activa-
tion/deactivation models of the studied type play a consti-
tuting role in the more and more widespread particle-based
models of aerosol–cloud interactions.

Data availability. The software code is available in the Supple-
ment.

The Supplement related to this article is available online
at https://doi.org/10.5194/npg-24-535-2017-supplement.
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