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Abstract. This study is focused on multistable slip of
earthquakes based on a one-degree-of-freedom spring-slider
model in the presence of thermal-pressurized slip-weakening
friction and viscosity by using the normalized equation of
motion of the model. The major model parameters are the
normalized characteristic displacement, Uc, of the friction
law and the normalized viscosity coefficient, η, between the
slider and background plate. Analytic results at small slip
suggest that there is a solution regime for η and γ (= 1/Uc)

to make the slider slip steadily. Numerical simulations ex-
hibit that the time variation in normalized velocity, V/Vmax
(Vmax is the maximum velocity), obviously depends on Uc
and η. The effect on the amplitude is stronger due to η than
due to Uc. In the phase portrait of V/Vmax versus the normal-
ized displacement, U/Umax (Umax is the maximum displace-
ment), there are two fixed points. The one at large V/Vmax
and large U/Umax is not an attractor, while that at small
V/Vmax and small U/Umax can be an attractor for some val-
ues of η and Uc. When Uc<0.55, unstable slip does not exist.
When Uc ≥ 0.55, Uc and η divide the solution domain into
three regimes: stable, intermittent, and unstable (or chaotic)
regimes. For a certain Uc, the three regimes are controlled by
a lower bound, ηl, and an upper bound, ηu, of η. The values
of ηl, ηu, and ηu− ηl all decrease with increasing Uc, thus
suggesting that it is easier to yield unstable slip for larger Uc
than for smaller Uc or for larger η than for smaller η. When
Uc<1, the Fourier spectra calculated from simulation veloc-
ity waveforms exhibit several peaks, thus suggesting the ex-
istence of nonlinear behavior of the system. When Uc>1, the
related Fourier spectra show only one peak, thus suggesting
linear behavior of the system.

1 Introduction

The earthquake ruptures consist of three steps: nucleation,
dynamical propagation, and arrest. Due to the lack of a com-
prehensive model, a set of equations to completely describe
fault dynamics has not yet been established, because earth-
quake ruptures are very complicated. Nevertheless, some
models, for instance the crack model and dynamical lattice
model, have been developed to approach fault dynamics.
Several factors will control earthquake ruptures (see Wang,
2016b, and cited references herein), including at least brittle-
ductile fracture rheology, normal stress, re-distribution of
stresses after fracture, fault geometry, friction, seismic cou-
pling, pore fluid pressure, elastohydromechanic lubrication,
thermal effect, thermal pressurization, and metamorphic de-
hydration. A general review can be seen in Bizzarri (2009).
Among the factors, friction and viscosity are two important
ones in controlling faulting.

Burridge and Knopoff (1967) proposed a one-dimensional
spring-slider model (abbreviated as the 1-D BK model
henceforth) to approach fault dynamics. Wang (2000, 2012)
extended this model to a two-dimensional version. The two
models and their modified versions have been long and
widely applied to simulate the occurrences of earthquakes
(see Wang, 2008, 2012, and cited references therein). In the
following, the one-, two-, three-, few-, and many-body mod-
els are used to represent the one-, two-, three-, few-, and
many-degree-of-freedom spring-slider models, respectively.
The few-body models have been long and widely used to ap-
proach faults (Turcotte, 1992).

Since the commonly used friction laws are nonlinear, the
dynamical model itself could behave nonlinearly. A non-
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linear dynamical system can exhibit chaotic behavior un-
der some conditions (Thompson and Stewart, 1986; Turcotte,
1992). This means that the system is highly sensitive to initial
conditions (SIC) and thus a small difference in initial condi-
tions, including those caused by rounding errors in numerical
computation, yields widely diverging outcomes. This indi-
cates that long-term prediction is impossible in general, even
though the system is deterministic, meaning that its future be-
havior is fully determined by their initial conditions, without
random elements. This behavior is known as (deterministic)
chaos (Lorenz, 1963).

An interesting question is the following. Can a simple
few-body model with total symmetry make significant pre-
dictions for fault behavior? Gu et al. (1984) first found
some chaotically bounded oscillations based on a one-body
model with rate- and state-dependent friction. Perez Pas-
cual and Lomnitz-Adler (1988) studied the chaotic motions
of coupled relaxation oscillators. Related studies have been
made based on different spring-slider models: (1) a one-body
model with rate- and state-dependent friction (e.g., Gu et
al., 1984; Belardinelli and Belardinelli, 1996; Ryabov and
Ito, 2001; Erickson et al., 2008, 2011; Kostić et al., 2013);
(2) a one-body model with velocity-weakening friction (e.g.,
Brun and Gomez, 1994); (3) a one-body model with slip-
weakening friction (e.g., Wang, 2016a, b); (4) a two-slider
model with simple static/dynamic friction (e.g., Nussbaum
and Ruina, 1987; Huang and Turcotte, 1990); (5) a two-body
model with velocity-dependent friction (e.g., Huang and Tur-
cotte, 1992; de Sousa Vieira, 1999; Galvanetto, 2002); (6) a
two-body model with rate- and state-dependent friction (e.g.,
Abe and Kato, 2013); (7) a two-body model with velocity-
weakening friction (Brun and Gomez, 1994); (8) a two-body
model with slip-weakening friction (e.g., Wang, 2017); (9)
a many-body model with velocity-weakening friction (e.g.,
Carlson and Langer, 1989; Wang, 1995, 1996); and (10) a
one-body quasi-static model with rate- and state-dependent
friction (e.g., Shkoller and Minster, 1997). Results suggest
that predictions for fault behavior are questionable due to the
possible presence of chaotic slip.

The frictional effect on earthquake ruptures has been
widely studied as mentioned above. However, studies of the
viscous effect on earthquake ruptures are rare. The viscous
effect mentioned in Rice et al. (2001) was just an implicit fac-
tor which is included in the evolution effect of friction law. In
this work, I will investigate the effects of thermal pressurized
slip-weakening friction and viscosity on earthquake ruptures
and the generation of unstable (or chaotic) slip based on a
one-body model.

2 Model

2.1 One-body model

Figure 1 shows the one-body model whose equation of mo-
tion is

md2u/dt2 =−K(u− uo)−F(u,v)−8(v), (1)

where m is the mass of the slider, u and v (= du/dt) are, re-
spectively, the displacement and velocity of the slider, uo is
the equilibrium location of the slider, K is the spring con-
stant, F is the frictional force between the slider and the
background and a function of u or v, and 8 is the viscous
force between the slider and the background and a function
of v. The slider is pulled by a driving force FD due to the
moving plate with a constant driving velocity, vp, through
a leaf spring of strength, K . Hence, the driving force is
FD =Kvpt , and thus uo = vpt . When FD is slightly larger
than the static frictional force, Fo, friction changes from
static friction strength to a dynamic one, and thus the slider
moves.

2.2 Viscosity

Jeffreys (1942) first emphasized the importance of viscosity
on faulting. Frictional melts in faults depend on temperature,
pressure, water content, etc. (Turcotte and Schubert, 1982),
and can yield viscosity on the fault plane (Byerlee, 1968).
Rice et al. (2001) discussed that rate- and state-dependent
friction in thermally activated processes allows creep slip-
page at asperity contacts on the fault plane. Scholz (1990)
suggested that the friction melts would present significant
viscous resistance to shear and thus inhibit continued slip.
However, Spray (1993, 1995, 2005) stressed that the fric-
tional melts possessing low viscosity could generate a suf-
ficient melt volume to reduce the effective normal stress and
thus act as fault lubricants during co-seismic slip. His results
show that viscosity remarkably decreases with increasing
temperature. For example, Wang (2011) assumed that quartz
plasticity could be formed in the fault zone when T>300 ◦C
after faulting and it would lubricate the fault plane at higher
T and yield viscous stresses to resist slip at lower T . From
numerical simulations, Wang (2007, 2016b, 2017) stressed
the viscous effect on faulting. Noted that several researchers
(Knopoff et al., 1973; Cohen, 1979; Xu and Knopoff, 1994;
Knopoff and Ni, 2001; Dragoni and Santini, 2015) took vis-
cosity as a factor in causing seismic radiation to reduce en-
ergy during faulting.

The viscosity coefficient, υ, of rocks is mainly controlled
by temperature, T . An increase in T will yield partial melt-
ing of rocks and thus the viscosity coefficient, υ, first is in-
creased, then reaches the largest value at a particular T , and
finally decreases with increasing T . The relation between υ
and T can be described by the following equation (e.g., Tur-
cotte and Schubert, 1982): υ = υoexp(Eo+pVa/RT ), where
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Figure 1. One-body spring-slider model. In the figure, u, K , η, FD,
N , and F denote, respectively, the displacement, the spring con-
stant, the viscosity coefficient, the driving force, the normal force,
and the frictional force.

υo is the largest viscosity at low ambient T of an area, Eo is
the activation energy per mole, p is the pressure, Va is the ac-
tivation volume per mole, and R is the universal gas constant
(Eo/R ≈ 3×104 K). Obviously, υ decreases with increasing
T . This is particularly remarkable in regions of high confin-
ing pressure. On the other hand, Diniega et al. (2013) assume
that υ exponentially depends on temperature: υ ∼ eβ(1−T

∗),
where β is a constant and T ∗ = (T − TC)/(TH− TC) is a di-
mensionless temperature within a temperature range of TC
to TH. The value of υ increases with T ∗ when T ∗<1 and
decreases with increasing T ∗ when T ∗>1. Wang (2011) in-
ferred that in the major slip zone < 0.01 m of the 1999 Ms7.6
Chi-Chi, Taiwan, earthquake, T (t) in the fault zone at a depth
of 1111 m increased from ambient temperature Ta ≈ 45 ◦C at
t = 0 s to peak temperature Tpeak = 1135.1 ◦C at t =∼ 2.5 s.
T (t) began to decrease after t = 2.5 s and dropped to 160 ◦C
at t = 195 s. This yields a change in viscosity in the fault
zone.

The description of the physical models of viscosity can
be found in several articles (Jaeger and Cook, 1977; Cohen,
1979; Hudson, 1980; Wang, 2016b). A brief description is
given below. For many deformed materials, there are elas-
tic and viscous components. The viscous component can be
modeled as a dashpot such that the stress–strain rate rela-
tionship is σ = υ(dε/dt) where σ and ε are the stress and
the strain, respectively. Two simple models (shown in Fig. 2)
commonly used to describe the viscous materials are the
Maxwell model and the Kelvin–Voigt model (or the Voigt
model). The first one can be represented by a purely viscous
damper (denoted by “D”) and a purely elastic spring (de-
noted by “S”) connected in series. Its constitution equation
is dε/dt = dεD/dt + dεS/dt = σ/υ +E−1dσ/dt where E is
the elastic modulus and σ = Eε. The constitutive relation of
the second model is σ(t)= Eε(t)+ υdε(t)/dt .

Under a constant tensile stress, the strain will increase,
without a upper limit, with time for the Maxwell model,
while the strain will increase, with an upper limit, with time

Figure 2. The two types of viscous materials: (a) for the Kelvin–
Voigt model and (b) for the Maxwell model. (κ = spring constant
and υ = coefficient of viscosity.)

for the Kelvin–Voigt model. Wang (2016b) assumed that the
latter is more appropriate than the former to be applied to
the seismological problems as suggested by Hudson (1980).
Hence, the Kelvin–Voigt model is taken in this study. To
simplify the problem, only a constant viscosity coefficient
is considered in a numerical simulation as given below. The
viscous stress at the slider is represented by υv.

However, it is not easy to directly implement viscosity in a
dynamical system as used in this study. Wang (2016b) repre-
sented the viscosity coefficient in an alternative way. Viscos-
ity leads to the damping of oscillations of a body in viscous
fluids. The damping coefficient, η, depends on the viscosity
coefficient, υ, and the linear dimension, R, of the body in
a viscous fluid. According to Stokes’ law, the η of a sphere
of radius R in a viscous fluid of υ is η = 6πRυ (cf. Kittel
et al., 1968). In order to simplify the problem, the damping
coefficient is taken in this study. Hence, the viscous force is
8= ηv. Noted that the unit of η is N(m/s)−1.

2.3 Friction caused by thermal pressurization

Numerous factors can affect friction (see Wang, 2009, 2016b,
and cited references herein). When fluids are present and
temperature changes in faults, thermal pressurization will
yield resistance on the fault plane and thus play a signifi-
cant role in earthquake rupture (Sibson, 1973; Lachenbruch,
1980; Chester and Higgs, 1992; Fialko, 2004; Fialko and
Khzan, 2005; Bizzari and Cocco, 2006a, b; Rice, 2006;
Wang, 2000, 2006, 2009, 2011, 2013, 2016b, 2017; Bizzarri,
2010, 2011a, b, c).

Rice (2006) proposed two end-member models for thermal
pressurization: the adiabatic-undrained-deformation (AUD)
model and the slip-on-a-plane (SOP) model. He also ob-
tained the shear stress–slip functions caused by the two mod-
els. The first model corresponds to a homogeneous simple
shear strain ε at a constant normal stress σn on a spatial scale
of the sheared layer that is broad enough to effectively pre-
clude heat or fluid transfer. The second model shows that all
sliding is on the plane with τ(0)= f (σn−po) where po is
the pore fluid pressure on the sliding plane (y = 0). For this
second model, heat is transferred outwards from the fault
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plane. Although the stress τsop(u) also shows slip weaken-
ing (Wang, 2009), the SOP model is not appropriate in this
study because of the request of a constant velocity for this
model.

The shear stress–slip function, τ(u), caused by the AUD
model is

τaud(u)= f (σn−po)exp(−u/uc). (2)

The parameters uc are the characteristic displacements asso-
ciated with the thickness and some physical properties of the
fault zone. The stress τaud(u) displays exponentially with u
and thus exhibits slip-weakening friction. Based on the AUD
model, Wang (2009) proposed a simplified slip-weakening
friction law (denoted by the TP law hereafter), F(u)=
Fo exp(−u/uc), where Fo is the static frictional force, to
study seismic efficiency. Wang (2016b, 2017) applied the law
to simulate slip of one-body and two-body spring-slider mod-
els. Figure 3 exhibits F(u) versus u for five values of uc,
i.e., 0.1, 0.3, 0.5, 0.7, and 0.9 m. The friction force decreases
with increasing u and it decreases faster for smaller uc than
for larger uc. Meanwhile, the force drop decreases with in-
creasing uc. For small u, exp(−u/uc) can be approximated
by 1− u/uc (Wang, 2016a, b, 2017). The parameter u−1

c is
almost the decreasing rate, γ , of friction force with slip at
small u. Small (large) uc is related to large (small) γ .

2.4 Predominant frequency and period of the system

To conduct marginal analyses of the slip of the one-body
model with friction, Wang (2016b) used the friction law:
F(u)= Fo−γ u. His results show that the natural periods are
To = 2π/(K/m)1/2 when friction and viscosity are excluded
and

Tn = To/[1− T 2
o (η

2
+ 4mγ )/(4πm)2]1/2 (3)

when friction and viscosity are included. Clearly, Tn is longer
than To. Equation (4) shows that Tn increases with η and γ ,
thus indicating that friction and viscosity both lengthen the
natural period of the system.

3 Normalization of equation of motion

Substituting the TP law and the linear viscous law into
Eq. (1) leads to

md2u/dt2 =−K(u− uo)−Fo exp(−u/uc)− ηv. (4)

To simplify numerical computations, Eq. (4) is normal-
ized based on the following normalization parameters:
Do = Fo/K , ωo = (K/m)

1/2, τ = ωot , U = u/Do, Uc =

uc/Do, and 0D = FD/K . This gives du/dt = [Fo/(mK)
1/2
]

dU/dτ , d2u/dt2 = (Fo/mK)d
2U/dτ 2. The driving veloc-

ity becomes Vp = vp/Doωo Hence, the normalized acceler-
ation and velocity are, respectively, A= d2U/dτ 2 and V =

C: 

0 
·-

+' 

0 
·-

LL 

1 
Friction law: F(u) = exp(-u/uc) 

Displacement 
2 

Figure 3. The variations in friction force with displacement for
F(u)= exp(−u/uc) when uc = 0.1, 0.3, 0.5, 0.7, and 0.9 m (fol-
lowing Wang, 2016b).

dU/dτ . The phase ωt is replaced by�τ , where�= ω/ωo is
the dimensionless angular frequency. Note that η/(mK)1/2

is simply denoted by η below. Clearly, all normalization pa-
rameters are dimensionless. Hence, Eq. (4) becomes

d2U/dτ 2
=−U − ηdU/dτ − exp(−U/Uc)+0D. (5)

When FD = vpt or 0D = Vpτ , Eq. (5) is transformed to a
set of three first-order differential equations by defining x =
U/Uc, y = V/Vp, and z=−U+Vpτ−ηVpyτ (yt = dy/dτ):

xτ = (Vp/Uc)y, (6a)

yτ = (z− e
−x)/Vp, (6b)

zτ = Vp(1− y− ηyτ ). (6c)

As x� 1, e−x ≈ 1− x and thus Eq. (6b) can be approxi-
mated by yτ ≈ (z−1+x)/Vp. The condition of x� 1 shows
U/Uc� 1. The differential of this equation leads to yττ ≈
(zτ + xτ )/Vp, where yττ = d2y/dτ 2. Substituting Eqs. (6a)
and (6c) into this equation gives

yττ + ηyτ + (1− 1/Uc)y = 1. (7)

The homogeneous equation of Eq. (7) is

yττ + ηyτ + (1− 1/Uc)y = 0. (8)

Let the general solution be y ∼ eλτ . This leads to [λ2
+ηλ+

(1− /Uc)]y = 0 or

λ2
+ ηλ+ (1− /Uc)= 0. (9)

The solutions of Eq. (9) are

λ± =−η/2± [η2
− 4(1− 1/Uc)]

1/2/2. (10)

The term −η/2 of Eq. (10) leads to e−λ/2 which yields at-
tenuation of y. Define D(η, 1/Uc) to be η2

− 4(1− 1/Uc).
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• a stable node with D > O 

2 

a stable inflected node with D = O 

o a stable spiral with D < O 

Figure 4. The plot of η versus 1/Uc exhibits the phase portrait and
root structure of the system. The solid line displays the function:
D(η,1/Uc)= η

2
− 4(1− 1/Uc)= 0. The solid circle, open circle,

and solid square represent, respectively, a stable inflected node with
D = 0, a stable spiral with D<0, and a stable node with D>0.

As mentioned above, U−1
c is the normalized decreasing rate

of friction, 0, at U = 0. Figure 4 shows the plot of η ver-
sus 1/Uc and thus exhibits the root structure of the system.
Because η>0 and Uc>0, only the plot in the first quadrant
is present in Fig. 4. The solid line displays the function:
D(η, 1/Uc)= η

2
−4(1−1/Uc)= 0. Along the line, we have

η2
= 4(1− 1/Uc), and thus λ± =−η/2. In other words, the

roots are equal and real, and thus the solution is a stable in-
flected node displayed by a solid circle in Fig. 4. As D(η,
1/Uc)>0 or η2>4(1−1/Uc), the roots are both real and neg-
ative. The solution shows no oscillation and thus is a stable
node shown by a solid square in Fig. 4. As D(η, 1/Uc)<0
or η2<4(1− 1/Uc), the roots are complex with a negative
real part. This results in oscillations of exponentially decay-
ing amplitude. The solution is a stable spiral or a stable focus
shown by an open circle in Fig. 4.

4 Numerical simulations

Let y1 = U and thus y2 = dU/dτ . Equation (5) can be re-
written as two first-order differential equations:

dy1/dτ = y2, (11a)
dy2/dτ =−y1− ηy2− exp(−y1/Uc)+0D. (11b)

Equation (11) will be numerically solved using the fourth-
order Runge–Kutta method (Press et al., 1986). To simplify
the following computations, the value of 0D is set to be a
small constant of 10−5, which can continuously force the
slider to move.

A phase portrait, denoted by y = f (x), is a plot of a phys-
ical quantity versus another of an object in a dynamical sys-
tem (Thompson and Stewart, 1986). The intersection point

of the bisection line, i.e., y = x, and f (x) is called the fixed
point, that is, f (x)= x. If the function f (x) is continuously
differentiable in an open domain near a fixed point xf and
|f ′(xf)|<1, attraction is generated. In other words, an attrac-
tive fixed point is a fixed point xf of a function f (x) such
that for any value of x in the domain that is close enough
to xf, the iterated function sequences, i.e., x, f (x), f 2(x),
f 3(x), . . . , converges to xf. An attractive fixed point is a
special case of a wider mathematical concept of attractors.
Chaos can be generated at some attractors. The details can be
seen in Thompson and Stewart (1986) or other nonlinear lit-
erature. In the following plots, the intersection points of the
bisection line (denoted by a thin solid line) with the phase
portrait of V/Vmax versus U/Umax are the fixed points. To
explore nonlinear behavior of a system, the Fourier spectrum
F [V (�k)], where �k = k/δτ is the dimensionless angular
frequency at k = 0, . . . ,N−1, is calculated for the simulation
velocity waveform through the fast Fourier transform (Press
et al., 1986). The bifurcation from a predominant period to
others will be seen in the Fourier spectra.

Numerical simulations for the time variation in V/Vmax,
the phase portrait of V/Vmax versus U/Umax, and the Fourier
spectrum based on different values of model parameters are
displayed in Figs. 5–12. In the figures, Vmax andUmax are, re-
spectively, the maximum velocity and displacement for case
(a) of each figure, because the maximum values of U and V
decrease from case (a) to case (d) in this study.

First, the cases excluding viscosity, i.e., η = 0, are ex-
plored. Figure 5 is numerically made for four values of Uc:
(a) for Uc = 0.1; (b) for Uc = 0.4; (c) for Uc = 0.7; and (d)
for Uc = 0.9 when η = 0. Figure 6 is numerically made for
four values of Uc: (a) for Uc = 1.00; (b) for Uc = 1.01; (c)
for Uc = 1.15; and (d) for Uc = 2.00 when η = 0. A compar-
ison between Figs. 5 and 6 suggests that Uc = 1 is a transi-
tion value of the friction law between two modes of slip as
displayed in Fig. 4. Only Uc<1 is considered below.

Secondly, the cases including both friction and viscosity
are studied. Figure 7 is numerically made for four values of
η: (a) for η = 0.20; (b) for η = 0.50; (c) for η = 0.87; and (d)
for η = 0.90 when Uc = 0.20. Obviously, the time variation
in V/Vmax exhibits cyclic oscillations with a particular period
when η<ηl = 0.86 and has intermittent slip with shorter pe-
riods when η>ηl. Such a phenomenon holds also for η<5.5.

Figure 8 is numerically made for four values of η: (a)
for η = 0.46; (b) for η = 0.47; (c) for η = 0.98; and (d) for
η = 0.99 when Uc = 0.55. The Fourier spectrum is not cal-
culated for case (d), because the velocity becomes an abnor-
mally large negative value at a certain time and the phase
portrait also displays unstable or chaotic slip at small V and
U . This exhibits unstable slip of the system. In other words,
the problem becomes ill-posed in this parameter regime. The
time variation in V/Vmax exhibits cyclic oscillations speci-
fied with three main frequencies when η<ηl = 0.47. There
is intermittency slip with shorter periods when ηl<η<ηu =
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(a)

(b)

(c)

(d)

Figure 5. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, and the power spectrum for four values of Uc: (a)
for Uc = 0.1; (b) for Uc = 0.4; (c) for Uc = 0.7; and (d) for Uc = 0.9 for the TP law of F(U)= exp(−U/Uc) when η = 0.

(a)

(b)

(c)

(d)

Figure 6. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, and the power spectrum for four values of Uc: (a)
for Uc = 1.00; (b) for Uc = 1.01; (c) for Uc = 1.15; and (d) for Uc = 2.00 for the TP law of F(U)= exp(−U/Uc) when η = 0.
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Figure 7. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, and the power spectrum for four values of η: (a) for
η = 0.20; (b) for η = 0.50; (c) for η = 0.87; and (d) for η = 0.90 when Uc = 0.20 for the TP law of F(U)= exp(−U/Uc).

(a)

(b)

(c)

(d)

Figure 8. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, and the power spectrum for four values of η: (a) for
η = 0.43; (b) for η = 0.47; (c) for η = 0.98; and (d) for η = 0.99 when Uc = 055 for the TP law of F(U)= exp(−U/Uc).
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(a)

(b)

(c)

(d)

Figure 9. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, and the power spectrum for four values of η: (a) for
η = 0.39; (b) for η = 0.83; (c) for η = 0.84; and (d) for η = 0.85 when Uc = 0.6 for the TP law of F(U)= exp(−U/Uc).

0.98. There are unstable slips when η>ηu. This phenomenon
holds also when 0.55<Uc<1.

Four examples for η varying from η <ηu to η >ηu for dif-
ferent values of Uc are displayed in Figs. 9–12. Figure 9 is
made for four values of η: (a) for η = 0.39; (b) for η = 0.83;
(c) for η = 0.84; and (d) for η = 0.85 when Uc = 0.6. Fig-
ure 10 is made for four values of η: (a) for η =0.34; (b)
for η = 0.71; (c) for η = 0.72; and (d) for η = 0.73 when
Uc = 0.7. Figure 11 is made for four values of η: (a) for
η = 0.25; (b) for η = 0.53; (c) for η = 0.54; and (d) for
η = 0.55 when Uc = 0.8. Figure 12 is made for four values
of η: (a) for η = 0.14; (b) for η = 0.35; (c) for η = 0.36; and
(d) for η = 0.37 when Uc = 0.9. The Fourier spectrum is not
calculated for case (d) in each example, because the velocity
becomes negative infinity at a certain time.

Figure 13 exhibits the data points of ηl (with a solid
square) and that of ηu (with a solid circle) for several values
Uc. The values of ηl and ηu for several values of Uc are given
in Table 1. The figure exhibits a stable regime when η ≤ ηl,
an intermittency or transition regime when ηl<η ≤ ηu, and
an unstable regime when η>ηu.

5 Discussion

As mentioned above, the natural period of the one-body
system at low displacements is To = 2π/ωo = 2π(m/K)1/2

in the absence of friction and viscosity and Tn = 2π/ωn =

To/[1−T 2
o (η

2
+4mγ )/(4πm)2]1/2 in the presence of friction

and viscosity. Due to γ = 1/uc at u= 0, Tn increases with
decreasing uc. Obviously, Tn is longer than To and increases
with η and γ , thus indicating that friction and viscosity both
lengthen the natural period of the system.

Based on the marginal analysis of the normalized equa-
tion of motion, i.e., Eq. (11), the plot of η versus 1/Uc is
displayed in Fig. 4 which exhibits the phase portrait and root
structure of the system. Since η andUc are both positive, only
the plot of η versus 1/Uc in the first quadrant is displayed.
In Fig. 4, the solid line displays the function: D(η,1/Uc)=

η2
−4(1−1/Uc)= 0. Along the line, the solution λ± =−η/2

and thus exp(λt)= exp(−η/2). In other words, the roots
are equal and real, and, thus, the phase portrait is a sta-
ble inflected node displayed by a solid circle in Fig. 4. Be-
cause of η ≥ 0, we have 1/Uc ≤ 1. As D(η,1/Uc)>0 or
η2>4(1−1/Uc), the roots are both real and negative. The so-
lution shows no oscillation and thus the phase portrait is a sta-
ble node shown by a solid square in Fig. 4. Because of η ≥0,
we have 1/Uc ≤ 1. AsD(η,1/Uc)<0 or η2<4(1−1/Uc), the
roots are complex with a negative real part. This results in os-
cillations with exponentially decaying amplitude. The phase
portrait is a stable spiral or a stable focus shown by an open
circle in Fig. 4.

Figure 5 exhibits the time variation in V/Vmax, the phase
portrait of V/Vmax versus U/Umax, and the Fourier spectrum
for four values of Uc: (a) for Uc = 0.1; (b) for Uc = 0.4; (c)
for Uc = 0.7; and (d) for Uc = 0.9 when η = 0. In the first
panels, the time variation in V/Vmax exhibits cyclic behav-
ior, the amplitude of V/Vmax decreases, and the predomi-
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(a)

(b)

(c)

(d)

Figure 10. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, and the power spectrum for four values of η: (a) for
η = 0.34; (b) for η = 0.71; (c) for η = 0.72; and (d) for η = 0.73 when Uc = 0.7 for the TP law of F(U)= exp(−U/Uc).

(a)

(b)

(c)

(d)

Figure 11. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, and the power spectrum for four values of η: (a) for
η = 0.25; (b) for η = 0.54; (c) for η = 0.55; and (d) for η = 0.56 when Uc = 0.8 for the TP law of F(U)= exp(−U/Uc).
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(a)

(b)

(c)

(d)

Figure 12. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, and the power spectrum for four values of η: (a) for
η = 0.14; (b) for η = 0.36; (c) for η = 0.37; and (d) for η = 0.38 when Uc = 0.9 for the TP law of F(U)= exp(−U/Uc).

• • •
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• Unstable regime
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• Intermittency • • 
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• • • 

• 
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Figure 13. The plot of ηl (with a solid square) and ηu (with a solid
circle) versus Uc.

nant period of signal increases with increasing Uc. This is
consistent with Eq. (3) in which Tn increases with Uc. Al-
though the four phase portraits are almost similar, their size
decreases with increasing Uc. The second panels exhibit two
fixed points: one at V = 0 and U = 0 and the second one
at larger V and larger U . The slope values at the first fixed
points decrease with increasing Uc, thus suggesting that the
fixed point is not an attractor for small Uc and can be an at-
tractor for larger Uc. The slope values at the fixed points for
smaller Uc are greater than 1, and thus they cannot be an

attractor. The third panel for each case displays the Fourier
spectrum. Fourier spectra show that, in addition to the peak
related to the predominant frequency, there are numerous
peaks associated with higher frequencies. This shows non-
linear behavior caused by nonlinear friction. The frequency
related to the first peak decreases with increasing Uc. The
amplitude of a peak decreases with increasing Uc. The am-
plitude of a peak decreases with increasing � for small Uc,
while it first increases up to the maximum and then decreases
with increasing � for large Uc. The amplitude of a peak be-
comes very small when �>0.25.

Figure 6 exhibits the time variation in V/Vmax, the phase
portrait of V/Vmax versus U/Umax, and the Fourier spectrum
for four values of Uc: (a) for Uc =1.00; (b) for Uc =1.01; (c)
for Uc = 1.15; and (d) for Uc = 2.0 when η = 0. In the first
panels, the time variation in V/Vmax exhibits cyclic behavior
and the amplitude of V/Vmax remarkably decreases with in-
creasing Uc when Uc>1. In the second panels, the size of the
phase portrait decreases with increasing Uc and there are two
fixed points: the first one at V = 0 and U = 0 and the second
one at larger V and larger V . With comparison to the phase
portrait of Uc = 1.0, the phase portrait becomes very small
when Uc ≥ 1.15. In contrast to Fig. 5, the absolute values of
slope at the fixed points in Fig. 6 increase with Uc. Hence,
the fixed points cannot be an attractor for Uc ≥ 1. In the third
panels, Fourier spectra exhibit that except for Uc = 1, there
is only one peak and the predominant frequency increases or
the predominant period decreases with increasing Uc. This is
consistent with Eq. (3). Results show that nonlinear behavior
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disappears when Uc>1. In addition, the amplitude of a peak
decreases with increasingUc whenUc>1. Obviously,Uc = 1
is the critical value of the friction law as displayed in Fig. 4.

Figure 7 exhibits the time variation in V/Vmax, the phase
portrait of V/Vmax versus U/Umax, and the Fourier spectrum
for four values of η: (a) for η = 0.20; (b) for η = 0.50; (c) for
η = 0.87; and (d) for η = 0.90 when Uc = 0.20. In the first
panels, the time variation in V/Vmax exhibits cyclic behavior
and the amplitude of V/Vmax decreases with increasing η.
The predominant period of the signal only slightly increases
with increasing η, because η changes in a small range. In
the second panels, the size of the phase portrait decreases
with increasing Uc and there are two fixed points: the first
one at V = 0 and U = 0 and the second one at larger V and
larger U . Since the slope values of fixed points are clearly all
higher than 1, they are not an attractor. In the third panels, the
Fourier spectra exhibit that in addition to the peak related to
the predominant frequency, there are numerous peaks asso-
ciated with higher �. This shows nonlinear behavior, mainly
caused by nonlinear friction, of the model. The highest peak
for case (a) appears at the second frequency. When η<0.9,
the amplitude of a peak decreases with increasing η. The fre-
quencies related to the peaks do not change remarkably, be-
cause η varies in a small range. Except for case (a), the am-
plitude of a peak decreases with increasing�. The third peak
amplitude disappears when η>0.5. The amplitude of a peak
becomes very small when �>0.25. Except for Uc = 0.1, the
frequencies related to the peaks in Fig. 7 are different from
and slightly smaller than those in Fig. 5. Note that when
Uc<0.55 the simulation results in Fig. 5 are similar to those
in Fig. 6.

Figure 8 shows the time variation in V/Vmax, the phase
portrait of V/Vmax versus U/Umax, and the Fourier spectrum
for four values of η: (a) for η = 0.46; (b) for η = 0.47; (c)
for η = 0.98; and (d) for η = 0.99 when Uc = 0.55. When
η ≤ 0.47, the time variation in V/Vmax exhibits cyclic os-
cillations specified with different main angular frequencies.
When η>0.47 (for example, η = 0.98 in the figure), in ad-
dition to cyclic behavior there is a small intermittent slip
with shorter periods. This phenomenon also exists when
ηl<η<ηu = 0.98. There are unstable (or chaotic) slips when
η>ηu. Hence, the phase portraits in the second panels dis-
play unstable slip at small V and U when ηl<η ≤ ηu = 0.98.
When η = 0.99, the velocity becomes an abnormally large
negative value at a certain time and the phase portrait also
displays unstable or chaotic slip at small V and U . This ex-
hibits unstable slip of the system. In other words, the problem
becomes ill-posed in this parameter regime. Since the slope
values of fixed points at large V andU are clearly higher than
1, they are not an attractor. Due to the appearance of infin-
ity velocity when η = 0.99, the Fourier spectrum is not cal-
culated for η = 0.99. The Fourier spectra exhibit that when
η<0.47, in addition to the peak related to the predominant
frequency, there are numerous peaks associated with higher
�. This shows nonlinear behavior of the model caused by

nonlinear friction. The amplitude of a peak decreases with
increasingUc and the peak amplitude decreases with increas-
ing �. When η = 0.98, the amplitude of the highest peak is
much larger than others. For the first three cases, the ampli-
tude of a peak becomes very small when �>0.25. The fre-
quencies related to the peaks in Fig. 8 are different from and
slightly smaller than those in Fig. 7.

Figures 9–12 show a variation from stable slip to intermit-
tent slip and then to unstable or chaotic slip when η increases
from a smaller value to a larger one for Uc = 0.6, 0.7, 0.8,
and 0.9. The values of ηu for Uc = 0.20–0.95 with a unit dif-
ference of 0.05 are given in Table 1. Like Fig. 8, when η ≤ ηl,
the time variation in V/Vmax exhibits only cyclic oscillations
specified with different frequencies. When ηl<η ≤ ηu, small
intermittent displacements appear in the cyclic oscillations.
Hence, the phase portraits display that unstable slip at small
V and U when ηl<η ≤ ηu. When η>ηu, the velocity be-
comes an abnormally large negative value at a certain time
and the phase portrait also displays an unstable or chaotic slip
at small V and U . This exhibits unstable slip of the system.
In other words, the problem becomes ill-posed in this param-
eter regime. Due to the appearance of abnormally large nega-
tive velocity, the Fourier spectrum is not calculated for η>ηu.
When η<ηl, in addition to the peak related to the predomi-
nant frequency, there are numerous peaks related to higher
�. This shows nonlinear behavior, mainly caused by nonlin-
ear friction, of the model. The amplitude of a peak decreases
with increasing Uc and the amplitude of a peak decreases
with increasing �. For the first three cases, the amplitude
of a peak becomes very small when �>0.25. Figures 7–12
show that the frequencies related to the peaks slightly de-
crease with increasing Uc and the decreasing rate decreases
with increasing Uc. In other words, the frequencies related
to the peaks for large Uc are almost similar. The number
of higher peaks and the amplitudes of peaks at higher �
both decrease with increasing η. This indicates that viscos-
ity makes a stronger effect on higher-frequency waves than
on lower ones, and the effect increases with η.

Figure 13 exhibits the data points of ηl (with a solid
square) and that of ηu (with a solid circle) for several values
Uc. The values of ηl and ηu for several values of Uc are given
in Table 1. The figure exhibits a stable regime when η ≤ ηl,
an intermittency (or transition) regime when ηl<η ≤ ηu, and
an unstable (or chaotic) regime when η>ηu. When Uc<0.55,
there is no ηl; in other words, unstable slip does not exist.
Clearly, ηl, ηu, and their difference ηu− ηl all decrease with
increasing Uc. This means that it is easier to yield unstable
slip for larger Uc than for smaller Uc. Since smaller Uc is as-
sociated with a larger γ of decreasing rate of friction force
with slip, it is easier to yield unstable slip from smaller γ
than from larger γ .

Huang and Turcotte (1990, 1992) observed intermittent
phases in the displacements based on a two-body model.
In other words, some major events are preceded by numer-
ous small events. Those small events could be foreshocks.
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Table 1. Values of ηl, ηu, and Vmax for various Uc.

Uc ηl ηu Vmax

0.20 0.87 1.00 0.4068
0.25 0.86 1.00 0.3611
0.30 0.86 1.00 0.3149
0.35 0.77 1.00 0.2905
0.40 0.69 1.00 0.2649
0.45 0.57 1.00 0.2497
0.50 0.51 1.00 0.2216
0.55 0.43 0.98 0.1989
0.60 0.39 0.84 0.1684
0.65 0.38 0.78 0.1338
0.70 0.34 0.72 0.1071
0.75 0.26 0.69 0.0879
0.80 0.25 0.55 0.0604
0.85 0.18 0.48 0.0423
0.90 0.14 0.37 0.0234
0.95 0.12 0.25 0.0076

They also claimed that earthquakes are an example of deter-
ministic chaos. Ryabov and Ito (2001) also found intermit-
tent phase transitions in a two-dimensional one-body model
with velocity-weakening friction. Their simulations exhibit
that intermittent phases appear before large ruptures. From
numerical simulations of earthquake ruptures using a one-
body model with a rate- and state-friction law, Erickson et
al. (2008) found that the system undergoes a Hopf bifur-
cation to a periodic orbit. This periodic orbit then under-
goes a period doubling cascade into a strange attractor, rec-
ognized as broadband noise in the power spectrum. From
numerical simulations of earthquake ruptures using a two-
body model with a rate- and state-friction law, Abe and Kato
(2013) observed various slip patterns, including the periodic
recurrence of seismic and aseismic slip events, and several
types of chaotic behavior. The system exhibits typical period-
doubling sequences for some parameter ranges, and attains
chaotic motion. Their results also suggest that the simulated
slip behavior is deterministic chaos and time variations of
cumulative slip in chaotic slip patterns can be well approxi-
mated by a time-predictable model. In some cases, both seis-
mic and aseismic slip events occur at a slider, and aseismic
slip events complicate the earthquake recurrence patterns.
The present results seem to be comparable with those made
by the previous authors, even though viscosity was not in-
cluded in their studies. This suggests that nonlinear friction
and viscosity play the first and second roles, respectively, in
the intermittent phases. The intermittent phases could be con-
sidered foreshocks of the mainshock which is associated with
the main rupture. Simulation results exhibit that foreshocks
happen for some mainshocks and not for others.

6 Conclusions

In this work, the multistable slip of earthquakes caused by
slip-weakening friction and viscosity has been studied based
on the normalized equation of motion of a one-degree-of-
freedom spring-slider model in the presence of the two fac-
tors. The friction is caused by thermal pressurization and de-
cays exponentially with displacement. The major model pa-
rameters are the normalized characteristic distance, Uc, for
friction and the normalized viscosity coefficient, η, between
the slider and the background moving plate, which exerts a
driving force on the former. Analytic results at small U sug-
gest that there is a solution regime for η and γ (= 1/Uc) to
make the slider slip steadily. Numerical simulations lead to
the time variation in V/Vmax, the phase portrait of V/Vmax
versus U/Umax, and the Fourier spectrum. Results show that
the time variation in V/Vmax obviously depends on Uc and η.
The effect on the amplitude is stronger from η than from Uc.
WhenUc>1, the time variation of V/Vmax exhibits cyclic os-
cillations with a single period and the amplitude of V/Vmax
remarkably decreases with increasing Uc. When Uc<1, the
slip changes from stable motion to intermittency and then to
unstable motion when η increases. For a certain Uc, the three
regimes are controlled by a lower bound, ηl, and an upper
bound, ηu, of η. When Uc<0.55, ηu is absent and thus unsta-
ble or chaotic slip does not exist. When Uc ≥ 0.55, the plots
of ηl and ηu versus Uc exhibit a stable regime when η ≤ ηl,
an intermittency (or transition) regime when ηl<η ≤ ηu, and
an unstable (or chaotic) regime when η>ηu. The values of ηl,
ηu, and ηu−ηl all decrease with increasing Uc, thus suggest-
ing that it is easier to yield unstable slip for larger Uc than for
smaller Uc or larger η than for smaller η. The phase portraits
of V/Vmax versus U/Umax exhibit that there are two fixed
points: the first one at large V/Vmax and large U/Umax is not
an attractor for all cases under study, while the second one
at small V/Vmax and small U/Umax can be an attractor for
some values of Uc and η. When Uc<1, the Fourier spectra
calculated from simulation velocity waveforms exhibit sev-
eral peaks rather than one, thus suggesting the existence of
nonlinear behavior of the system. When Uc>1, the related
Fourier spectra show only one peak, thus suggesting linear
behavior of the system.
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merical simulations have been made.
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