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Abstract. Energy dissipation during wave propagation in
fragmented geomaterials can be caused by independent
movement of fragments leading to energy loss on their im-
pact. By considering a pair of impacting fragments at times
much greater than the period of their oscillations, we show
that at a large timescale, the dynamics of the pair can be de-
scribed by a linear viscous model with damping coefficients
expressed through the restitution coefficient representing en-
ergy loss on impact. Wave propagation in fragmented ge-
omaterials is also considered at the large timescale assum-
ing that the wavelengths are much larger than the fragment
sizes such that the attenuation associated with wave scatter-
ing on the fragment interfaces can be neglected. These as-
sumptions lead to the Kelvin–Voigt model of damping dur-
ing wave propagation, which allows the determination of a
dispersion relationship. As the attenuation and dispersion are
not related to the rate dependence of rock deformation, but
rather to the interaction of fragments, the increased energy
dispersion at low frequencies can be seen as an indication of
the fragmented nature of the geomaterial and the capacity of
the fragments for independent movement.

1 Introduction

Geomaterials are often fragmented, with the fragments cov-
ering different scales. This makes it important to understand
the properties of wave propagation in such geomaterials.
Fragmented materials are characterized by three major fea-
tures. First is the bilinear nature of contacts when stiffness
in compression is considerably higher than stiffness in ten-
sion. Bilinear oscillators feature multiple resonances, both

multi-harmonic and sub-harmonic (see Dyskin et al., 2007,
2010, 2012, and the literature cited therein). Furthermore,
chains of bilinear oscillators possess a rich structure of main
resonances also accompanied by multi-harmonic and sub-
harmonic ones (Shufrin et al., 2012; Dyskin et al., 2014).
This structure of resonances may give an explanation for
the observed spectral peaks in oscillations of blocky media
(Kurlenya et al., 1996a, b, c). The effect of bilinearity on
wave propagation was analysed by Kuznetsova et al. (2016).

Second is the possibility of block rotations. The bending
between fragments leads to elbowing of the neighbouring
fragments in the course of their mutual rotations (Pasternak
et al., 2006) as well as the dependence of bending stiffness
on the moments (Pasternak et al., 2012; Shufrin et al., 2014).
Furthermore, non-sphericity of fragments in the presence of
compression creates an effect of apparent negative stiffness
(Dyskin and Pasternak, 2011, 2012a, b). The resulting nega-
tive Cosserat shear modulus and its influence on wave propa-
gation were analysed by Pasternak et al. (2016). It was shown
that such a medium does not possess a critical frequency;
subsequently the twist wave and both shear rotational waves
of all frequencies can propagate.

Third is the energy dissipation associated with the impact
of blocks characterized by low restitution. The main feature
of this type of dissipation is that it acts only at the neutral po-
sition of the oscillators formed by pairs of adjacent blocks. In
this paper we consider only this special type of energy dis-
sipation and its influence on P and S wave propagation as-
suming that otherwise the fragmented medium is unimodular
(the same stiffness in compression and tension) and neglect-
ing the effect of rotations. We assume that the wave length is
considerably larger than the fragment sizes such that energy
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dissipation associated with scattering over interfaces can be
neglected.

2 A pair of fragments of impact damping

Mathematically, the basic dynamic element involved in the
process of wave propagation through fragmented geomateri-
als is a pair of neighbouring fragments, which can be mod-
elled as a free undamped oscillator consisting of a single
mass on an undamped spring complimented by a condition
that velocity decreases each time the system passes through
the neutral point and a second-order differential – Eq. (1) –
is analysed. Herein, the velocity reduction is governed by a
restitution coefficient α ∈ [0,1].{
ẍ+ω2

0 · x = 0, x(0)= x0, v(0)= ẋ(0)= v0,

v(ti + 0)= α · v(ti − 0) at x(ti)= 0.
(1)

Introducing dimensionless groups X = x
l
, τ = ω0t, X0 =

x0
l

, and V0 =
v0
lω0

, Eq. (1) can be rewritten as{
X′′+X = 0, X(0)=X0, V (0)=X′(0)= V0,

V (Ti + 0)= α ·V (Ti − 0) at X(Ti)= 0, (2)

where X′ = dX
dτ =

1
lω0
·

dx
dt =

1
lω0
· ẋ.

The solution of Eq. (2) prior to the first impact is a common-
place:

X(τ)=X0 · cos(τ )+V0 · sin(τ )= A · sin(τ +φ), (3)

where

A=

√
X2

0 +V
2
0 , φ = arctan

X0

V0
. (4)

Analysing the second form of the solution, it is easy to deter-
mine the time of the first impact:

T1 =


π − arctan

X0

V0
if
X0

V0
≥ 0,

−arctan
X0

V0
if
X0

V0
< 0.

(5)

After the first impact, the velocity of oscillations reduces by
the restitution coefficient α. Thus, a subsequent solution has
the following form:

X(τ)=

∫
αH(τ−T1) ·A · cos(τ +φ)dτ

= αH(τ−T1) ·A · sin(τ +φ), (6)

where H(t) is the Heaviside function.
In this system, each next impact starting from the second

occurs after time π from the previous impact decreasing step-
wise the amplitude by α; therefore, the general solution of the
system is

X(τ)= αH(τ−T1)+H(τ−(T1+π))+...+H(τ−(T1+nπ))

·A · sin(τ +φ)= α
∑
∞

m=0H(τ−(T1+mπ)) ·A · sin(τ +φ). (7)

It should be noted that the analysed problem is somewhat
similar to a problem of a bilinear oscillator with an infinite

Figure 1. Vibrations for fragmented media (red solid line) and im-
pact oscillator (blue dashed line) for absolute values of α = 0.9 and
initial conditions X0 = 0.5 and V0 = 1.0.

stiffness in one direction (Dyskin et al., 2012, 2013; Guzek
et al., 2016) or a ball bouncing off a solid wall (Luck and
Mehta, 1993; Anagnostopoulos, 2004; Jankowski, 2006),
with the same coefficient of restitution, in terms of the am-
plitude. The main difference is that, described by Eq. (1), the
range of α for the former type of a problem lies in a negative
region, between −1 and 0, which leads to function X being
only in a positive domain. As a result, for equal and physi-
cally admissible boundary conditions and absolute values α,
the odd half cycles of the solutions for those two types of
problems are identical and the even half cycles are symmet-
rical about the axis X = 0. Both of these types of problems
are demonstrated in Fig. 1.

3 Equivalent linear damping

Although the analysed model is relatively simple to describe,
its implementation for energy dissipation during wave prop-
agation is a challenging problem, the reason being that the
boundaries of the time intervals where the system behaves
linearly are not known a priori as they are influenced by in-
complete restitution and hence need to be determined step
by step. Therefore, an equivalent continuous damping model
with effective coefficients should be selected and the rela-
tionship between it and the original model should be estab-
lished.

Here, viscous damping governed by the Kelvin–Voigt
model is chosen due to its simplicity and popularity. This
model represents a free oscillation of a mass with damp-
ing that can be characterized in a dimensionless form by the
damping coefficient ζ > 0:

Y ′′+ 2 · ζ ·Y ′+Y = 0, Y (0)=X0, Y
′(0)= V0. (8)

Equation (8) has three different types of solutions, depending
on the value of ζ , which are overdamped (ζ > 1), critically
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damped (ζ = 1) or underdamped (0< ζ < 1):

Y (τ2)=



exp(−ζ τ2) ·A2 · sin(τ2
√

1− ζ 2+φ2) if
0< ζ < 1,
exp(−τ2) · (X0+ (X0+V0)τ2) if ζ = 1,
1
2

exp(−ζ τ2) ·

(
(X0+V1)exp(τ2

√
ζ 2− 1)

+(X0−V1)exp(−τ2
√
ζ 2− 1)

)
if ζ > 1,

(9)

where A2 =

√
X2

0+V
2
0 +2X0V0ζ

1−ζ 2 , φ2 = arctan X0
√

1−ζ 2

V0+X0ζ
, and

V1 =
V0+ζX0√
ζ 2−1

.

Among those three solution types, only the underdamped
solution is physically admissible for a comparison with the
proposed model because the other two types do not intersect
the axis X = 0. Consequently, the relationship between the
damping coefficient and restitution coefficient is carried out
using the underdamped solution.

Comparing the expressions inside the sin functions in
Eqs. (6) and (9), one can see that

τ2 =
τ√

1− ζ 2
. (10)

In the discrete model, the initial conditions consist of zero
displacement and a given initial velocity. So, hereafter, the
initial displacement X0 is set as 0, which leads to T1 = π .
Thus, using Eq. (10) for the Kelvin–Voigt model, it is possi-
ble to find a relation betweenX(τ) and Y (τ2). For the former
system, after a number of cycles N , with the passing time
2Nπ , the solution becomes

X(τ)= α2N
·V0 · sin(2Nπ). (11)

On the other hand, for the Kelvin–Voigt model, using
Eq. (10), one has

Y

(
τ√

1− ζ 2

)
= exp

(
−

2Nπ√
1− ζ 2

· ζ

)

·
V0√

1− ζ 2
· sin(2Nπ). (12)

As long as the third terms in Eqs. (11) and (12) are identi-
cal, the relationship between the damping parameters can be
determined by comparison of the amplitudes of the systems:

α = (1− ζ 2)−
1

4N · exp

(
−

πζ√
1− ζ 2

)
. (13)

The first term of the right side in Eq. (13) goes rapidly to
unity even for significant values of ζ . Thus, for the purpose
of homogenization of the proposed model, this term can be
substituted by unity (Fig. 2):

α = exp

(
−

πζ√
1− ζ 2

)
. (14)

Figure 2. Relationship Eq. (14) between α and ζ .

It is seen from Eq. (14) that as ζ = 0, α = 1 (the left
boundary), and when ζ → 1, α→ 0 (the right boundary).
The left boundary proves that the solutions for undamped
oscillations (Eq. 8, ζ = 0) and oscillations with full resti-
tution (Eq. 2, α = 1) are identical. The right boundary, i.e.
zero restitution, can be modelled as a system where the crit-
ical damping (ζ = 1) intersects X = 0 when time tends to
infinity. Also, Eq. (14) shows that the relationship between
the damping parameters does not depend on the initial ve-
locity of the systems or on the current time for all ζ within
the range of the underdamped oscillations. Hence, taking into
consideration the previous statements, Eq. (14) should be ap-
plied for 0≤ α ≤ 1. As a result, systems with both damping
and incomplete restitution can be analysed by using equiva-
lent viscous damping, reducing the complexity of the discrete
problem.

When both types of energy dissipation take place, the resti-
tution coefficient should be replaced by a damping coeffi-
cient; therefore, a reverse relationship is also important to
define. It can be found relatively easily from Eq. (14) by se-
lecting only positive roots.

ζ = ln
(

1
α

)
·

(
π2
+

(
ln
(

1
α

))2
)− 1

2

. (15)

In order to analyse the accuracy of Eq. (14), an example of
vibration amplitudes of an oscillator representing fragmented
media X(τ) with different α and vibrations of an equivalent

Kelvin–Voigt model Y
(

τ√
1−ζ 2

)
is presented in Fig. 3. The

initial conditions for both cases are X0 = 0 and V0 = 1.
It is seen that between the impacts, the functions can be

quite different even for high values of α. Indeed, the energy
dissipation in the original system occurs at discrete times.
Replacing the discrete system with a time-continuous system
is equivalent to using the timescale considerably larger than
the period. At this scale, the resulting damping is the same as
in the original discrete system.

The dissipated energy of vibrations with the same parame-
ters is given for both cases by the following equations, where
WX is the energy dissipation function for the discrete model
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Figure 3. Vibrations for fragmented media (solid lines) and the
equivalent Kelvin–Voigt model (dashed lines) for α = 0.9 (red),
α = 0.6 (blue), α = 0.3 (green) and initial conditions X0 = 0 and
V0 = 1.

and WY is the same function for the equivalent Kelvin–Voigt
model. These dependencies are shown in Fig. 4.

WX(τ )=
1−α2

2

(
N∑
m=0

α2m
·H(τ −mπ) ·V 2

0

)
, (16)

WY

(
τ√

1− ζ 2

)
=

1
2
·

(
V0√

1− ζ 2

)2

·

(
1− ζ 2

−exp

(
−

2τζ√
1− ζ 2

)
·

(
1− ζ 2 cos(2τ)

−ζ

√
1− ζ 2 sin(2τ)

))
. (17)

The dissipated energy WX(τ ) cannot be approximated by

WY

(
τ√

1−ζ 2

)
between impacts, especially for small resti-

tution coefficients, because here a continuous function is
approximated by a stepwise function. Nevertheless, they
approach the same values at impacts; therefore, the pro-
posed function and the equivalent continuous function (linear
damping) can be used as an approximation of the discrete one
for times considerably higher than the period of free vibra-
tions.

4 Wave propagation in isotropic medium with
equivalent damping

Now, after establishing the large timescale equivalence of the
discrete and continuous dynamics of a pair of fragments, the
energy loss during wave propagation in fragmented geoma-
terials can be modelled by replacing the fragmented geoma-
terial with a visco-elastic continuum described by a Kelvin–
Voigt model. The P wave velocity cp and coefficient of ab-
sorption ap are expressed by the following equations (White,

Figure 4. Dissipated energy of vibrations for fragmented media
(solid line) and the equivalent Kelvin–Voigt model (dashed line) for
α = 0.9 (red), α = 0.6 (blue), α = 0.3 (green) and initial conditions
X0 = 0 and V0 = 1.

Figure 5. Velocity characteristics of a P wave propagating in a
fragmented medium: phase velocity (solid line) and coefficient
of absorption (dashed line) for α = 0.9 (red), α = 0.6 (blue), and
α = 0.3 (green).

1983) and are shown in Fig. 5 for different α:

(cp

c

)2
=

2 ·

1+

(
2·ω1·ln

(
1
α

)
π2+

(
ln
(

1
α

))2

)2


1+

√√√√1+

(
2·ω1·ln

(
1
α

)
π2+

(
ln
(

1
α

))2

)2

, (18)

(
ap · c

)2
=

(
π2
+

(
ln
(

1
α

))2

2·ln
(

1
α

)
)2

·

(
2·ω1 ·ln

(
1
α

)
π2+

(
ln
(

1
α

))2

)4

2 ·

1+

(
2·ω1 ·ln

(
1
α

)
π2+

(
ln
(

1
α

))2

)2
 ·

1+

√√√√1+

(
2·ω1 ·ln

(
1
α

)
π2+

(
ln
(

1
α

))2

)2

, (19)

where c is the P wave velocity without damping and ω1 is
the wave frequency.

It is seen that both the wave velocity and coefficient of
absorption increase with frequency; however, the increase in
the wave velocity becomes weaker as the restitution coeffi-
cient increases. Subsequently, the dispersion vanishes as the
restitution coefficient tends to 1, i.e. the impacts are not ac-
companied by energy loss. It is also noteworthy that these
formulae can be implemented for the S wave as well.
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5 Conclusions

A possible mechanism of wave attenuation in fragmented ge-
omaterials with fragment sizes much smaller than the wave-
lengths is the energy loss on impact of the contacting frag-
ments with each other. The energy loss is characterized by the
restitution coefficient. It is shown that the energy loss during
wave propagation in such a discrete material can be mod-
elled by an equivalent visco-elastic continuum if the charac-
teristic times involved are considerably greater than the pe-
riods of oscillations of all neighbouring pairs of fragments.
The attenuation is modelled by the Kelvin–Voigt model, its
equivalent damping being expressed through the restitution
coefficient and the period of oscillations of contacting frag-
ments averaged over all pairs. For all restitution coefficients
smaller than 1, the wave velocity shows a dispersion rela-
tionship, which is stronger the smaller the restitution is. The
attenuation and dispersion are not related to rate-dependent
rock deformation, but rather to the interaction of fragments.
For that reason the effect is long-wave. Therefore, increasing
damping and dispersion at low frequencies can be seen as an
indication of the fragmented nature of the geomaterial and
the capacity of the fragments for independent movement.
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