
Nonlin. Processes Geophys., 24, 455–460, 2017
https://doi.org/10.5194/npg-24-455-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Analysis of wave propagation in a discrete chain
of bilinear oscillators
Maria S. Kuznetsova1, Elena Pasternak2, and Arcady V. Dyskin1

1School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth, 6009, Australia
2School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, 6009, Australia

Correspondence to: Maria S. Kuznetsova (maria.kuznetsova@research.uwa.edu.au)

Received: 13 December 2016 – Discussion started: 1 February 2017
Revised: 11 May 2017 – Accepted: 9 June 2017 – Published: 10 August 2017

Abstract. The process of wave propagation in the discrete
chain of bilinear oscillators subjected to several types of
external harmonic excitation has been analysed. The phe-
nomenon of sign inversion of the displacement is observed
for tension–compression excitation. The solution for wave
propagation in a continuous 1-D bimodular rod is developed
and the numerical results are compared.

1 Introduction

In this paper, we analyse the process of wave propagation
in a chain of bilinear oscillators – discrete masses connected
by springs having different stiffnesses in tension and com-
pression. Due to their simplicity, discrete chains of bilinear
oscillators have often been used in the problems related to
non-linear vibrations of mechanical systems, such as vibra-
tions in suspension bridges (De Freitas et al., 2004) and in the
systems with the so-called fatigue cracks (Rivola and White,
1998; Ohara et al., 2007; Peng et al., 2007). Bilinear oscil-
lators were also used in mathematical modelling of seismic
isolation systems (Skinner et al., 1993; Chang et al., 2002).
Layered rocks and rocks with a single set of open fractures
obviously exhibit bilinear properties whereby the modulus in
compression is higher than the modulus in tension due to the
closure of interlayer gaps and fractures in compression.

The behaviour of the bilinear oscillators has been recently
studied in Dyskin et al. (2012, 2014) and Guzek et al. (2016)
for a limiting case of an infinite stiffness in compression.
However, a general case of a discrete chain of bilinear oscil-
lators has never been studied with respect to the mechanical
wave propagation, which is why it has been decided to nu-

merically investigate the response of the bilinear system that
could represent a continuous bimodular medium. We focus
on a conservative system; for the effects of damping in bilin-
ear oscillators see Holmes (1983), Natsiavas (1990a, b), Liu
et al. (2015), Dyskin et al. (2012), Klepka et al. (2015), or
Guzek et al. (2016).

The purpose of the present work is to study the response of
a discrete system of bilinear oscillators loaded by an external
harmonic force, especially for the case of the large difference
between spring stiffnesses in tension and compression. In or-
der to compare the chain of bilinear oscillators with its ho-
mogenized counterpart, we also considered a continuous 1-D
bimodular rod and developed a solution for its wave equa-
tion. In doing so, we will not restrict ourselves to small dif-
ference in stiffnesses, thus providing a more general analysis
than the ones presented in Naugolnykh and Ostrovsky (1998)
and Gavrilov and Herman (2012).

2 Mathematical formulation

We consider an infinite chain of masses and bilinear springs,
where masses M are supposed to be identical, springs have
the length Ls and the stiffness described in the following for-
mula:

K(U)=

{
K0(1− a) for 1U ≥ 0,
K0(1+ a) for 1U < 0. (1)

Here, U(X,T ) is the displacement, K0 is the average stiff-
ness of the bilinear spring, a is the stiffness ratio, and 1U is
the difference of displacements of two adjacent masses, that
is the displacement of each spring. The mass–spring chain is
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Figure 1. Elastic mass–spring chain.

fixed at the right end and loaded by an external force F(T )
from the left end (Fig. 1).

By introducing the Lagrangian L= Ek−V , which is the
difference between the total kinetic and strain energy of the
system where

Ek =6
1
2
MU̇2

i and V =6
1
2
Ki(Ui+1−Ui)

2, i = 1..N,

(2)

we obtain the governing equation of the longitudinal motion
of ith mass:

MÜi + (Ki +Ki−1)Ui −Ki−1Ui−1−KiUi+1 = Fi, (3)

where i = 1 corresponds to the first mass from the left end.
Since loading is applied to the left end, it follows that

Fi =

{
F(T ) for i = 1,

0 otherwise. (4)

Here and in what follows, we consider harmonic external
loading of the type F(T )= F0 sin(�T ), where F0 denotes
any multiplier in front of the harmonic function and � de-
notes the external excitation frequency.

We rewrite the equation of motion Eq. (3) in terms of di-
mensionless displacement u and dimensionless time t :

u=
�0

c
U, t =�0T , (5)

where �0 is the basic frequency of the bilinear oscillator

�0 =

√
K0
M

, and c is the sound velocity in the discrete chain

c = Ls

√
K
M

. This yields

üi + (ki + ki−1)ui − ki−1ui−1− kiui+1 = fi . (6)

Here, fi and ki are the dimensionless forces and stiffnesses
of the springs, respectively:

fi =
F0

M�0c
sin(ωt) for i = 1, fi = 0 otherwise, ki =

Ki

M�2
0
,

ω is the dimensionless excitation frequency ω =
�

�0
. (7)

Without loss of generality, we adopt that the springs are
stiffer in compression and obtain higher dimensionless com-
pressive stiffness kc = 1+ a and lower tensile stiffness kt =

1− a for a > 0.
The system is initially assumed to be at rest, i.e. ui (0)=

u̇i (0)= 0.

3 Mechanical parameters of the discrete mass–spring
chain

All the numerical results presented in the paper are obtained
for the dimensionless parameters listed in Table 1.

4 Impulse harmonic excitation

In the analysis of wave propagation caused by initial excita-
tion, simple harmonic or sinusoidal waves are of substantial
interest. Due to its simplicity, let us analyse the case of a har-
monic impulse first. The external loading is subjected to the
left end of the chain and is described as follows:

f (t)=±f0H (t)H

(
2π
ω
− t

)
sin(ωt) , (8)

where H (t) is the Heaviside function. An explicit Runge–
Kutta method with the time step 1t = 10−3 is used for solv-
ing the system of N bilinear ordinary differential equations,
Eq. (6).

4.1 Compression–tension harmonic impulse

The analysis will start with the positive sign in Eq. (8) –
in other words when compression is followed by tension.
Knowing that in the bimodular chain the compressive wave
travels with a higher speed than the tensile one, one would
expect the distance between compressive and tensile zones
to increase with time. Figure 2 depicts the displacement field
along the bilinear chain against the mass number (integer
value of the coordinate) at different time moments. Since the
initial load is applied from the left end of the chain, posi-
tive displacement corresponds to compression and negative
displacement to tension. As expected, looking at the zones
with zero deformation, i.e. horizontal regions with nearly
constant positive displacement, makes it clear that the gap
between compressive and tensile fronts increases with time.
This phenomenon always takes place when the external exci-
tation corresponding to a faster wave is followed by a slower
one.

4.2 Tension–compression harmonic impulse

The second type of loading is described by Eq. (8) taken with
a negative sign. This case is of considerable interest due to
the fact that excitation corresponding to a slower wave speed
is followed by a faster one. In this case, the faster wave front
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Figure 2. Displacement u(x, t) at different time moments versus the horizontal coordinate x for the compression–tension harmonic impulse.

Figure 3. Displacement u(x, t) at different time moments versus the horizontal coordinate x for the tension–compression harmonic impulse.

catches up with a slower front, which leads to unusual be-
haviour of displacement observed in Fig. 3. Soon after the
collision t∗ between the compressive and tensile wave fronts,
the displacement gradually changes from negative to positive
implying that, although a tensile impulse is applied first, the
system undergoes compressive displacement after the colli-
sion. Hereafter this phenomenon is referred to as sign inver-
sion.

The collision is defined by the time when the fast-moving
wave front with negative gradient touches the wave front with
the slow-moving positive gradient and is determined by the
following equation:

ct

(
t∗−

π

ω

)
= cc

(
t∗−

2π
ω

)
, (9)

which gives t∗ ≈ 55 for this particular case.

4.3 Energy conservation

As an additional check on the accuracy of the numerical solu-
tion, the integral total energyE = Ek+V has been calculated
for the entire system of masses and bilinear springs. As seen
in Fig. 4, soon after the impulse loading is applied (that is
energy is added to the system), the total energy reaches its
maximum and remains constant throughout the entire solu-
tion.

5 Continuous harmonic excitation

The second type of excitation considered here is a continuous
external loading applied to the left end of the chain:

f (t)=±f0H (t)sin(ωt) . (10)

As in Sect. 4, two cases will be considered: compression–
tension and tension–compression sequences. Obviously, in
the case of continuous excitation, the difference between
these two cases is the difference in the initial phase.

5.1 Compression–tension harmonic excitation

Numerical solution for displacement u at different times ver-
sus horizontal coordinate x is presented in Fig. 5. It may be
observed that, due to the tensile stiffness being lower than
the compressive one, the displacements close to the left end
of the chain decrease with time, implying that the left part of
the chain undergoes increasing tensile displacements.

5.2 Tension–compression harmonic excitation

Figure 6 represents displacement u along the discrete chain
at different time moments. Comparison of Figs. 5 and 6 sug-
gests that the numerical solution exhibits little sensitivity to-
wards the excitation phase. This is easy to interpret given
that the compression–tension and tension–compression exci-
tations are just different phase shifts of the same continuous
harmonic excitation.
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Figure 4. Integral total energy in the discrete chain with respect to time: for compression–tension (the solid line) and tension–compression
(the dashed line) harmonic impulses.

Figure 5. Displacement u(x, t) at different time moments versus the horizontal coordinate x for the compression–tension harmonic impulse.

Table 1. Parameters of the discrete mass–spring chain.

Notation Value

Total number of masses N 100
Length of the spring Ls =

�0
c Ls 1

Stiffness ratio a 1
3

Amplitude of the applied force f0 =
F0

M�0c
10−4

Frequency of the applied force ω 0.25

6 Comparison with another numerical model and
analytical solution

In this section, we want to compare the numerical results for
the discrete chain of bilinear oscillators with its homogenized
counterpart, a continuous 1-D bimodular rod, subjected to
the same boundary conditions. In order to ensure whether the
discrete chain with the given parameters can be considered as
a continuum, let us estimate the dimensionless wave length
λ:

λ=
ctπ

ω
≈ 10.26.

The obtained wave length λ is much greater than the spring
length Ls, assumed to be equal to 1 (see Table 1), which is
why the continuum approximation becomes possible. This
will be done in order to check whether a numerical solution
of the corresponding continuous problem can be accurate.

The wave equation for a 1-D rod made of a bimodular ma-
terial reads(
E0− e sgn

(
∂U

∂X

))
∂2U

∂X2 = ρ
∂2U

∂T 2 , (11)

where U , X, and T are the displacement, coordinate along
the rod, and time respectively, ρ is the specific mass,E0 is the
“average” Young’s modulus, and e is the difference between
Young’s moduli in tension Et = E0− e and in compression
Ec = E0+ e.

In the dimensionless form, Eq. (11) reads(
1− a sgn

(
∂u

∂x

))
∂2u

∂x2 =
∂2u

∂t2
, (12)

where x = �
√
E/ρ

X, t =�T , a = e
E

, u= �
√
E/ρ

U , �= 2π
T0

,
and T0 is the duration of the applied external impulse.

The analytical solution for the compression–tension exci-
tation of the frequency ω = 1 described in Sect. 6.1 has been
derived in Gavrilov and Herman (2012) and was later ex-
tended for the arbitrary dimensionless excitation frequency
in Kuznetsova et al. (2016).

Numerical results are obtained by solving Eq. (12) using
the explicit central difference scheme. To match the results
obtained for the discrete chain of bilinear oscillators, spatial
and time discretization is chosen to be the same (1x = 1 and
1t = 10−3, as in Sect. 4) with all other parameters used be-
ing from Table 1.
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Figure 6. Displacement u(x, t) at different time moments versus the horizontal coordinate x for the tension–compression harmonic impulse.

Figure 7. Displacement u(x, t) at different time moments versus the horizontal coordinate x for the compression–tension harmonic impulse:
analytical solution (dashed line), numerical solutions for the discrete chain (solid line), and the bimodular rod (thin dash-dot line).

6.1 Compression–tension harmonic impulse

The displacements u(x, t) for various times are plotted in
Fig. 7, which includes the analytical solution (bold dashed
line) and numerical results for the discrete chain and the 1-D
bimodular rod (solid and dash-dot lines, respectively). One
can observe that the three approaches show good agreement
at the wave front and a slight discrepancy behind the wave
front, which is typical for the second-order finite difference
schemes (Kukudzhanov, 2013).

6.2 Tension–compression harmonic impulse

As the analytical solution does not exist for this case, only
numerical results are presented. Figure 8 shows the numeri-
cal results for the displacements u(x, t) for the discrete chain
(solid line) and the 1-D bimodular rod (dash-dot line). It is in-
teresting to note that with all parameters being equal, the dis-
crete chain generally exhibits lower displacements through-
out the entire solution. This discrepancy may be explained by
the insufficiently small spatial step for the rod since it is as-
sumed to be equal to the length of the springs in the discrete
chain which equals 1.

The direct comparison with the numerical solution (with
step over x equal to 1) of the partial differential equation cor-
responding to the continuous rod demonstrates that the solu-

tions of Eqs. (6) and (12) are close. This indicates the pos-
sibility to solve the corresponding partial differential equa-
tion numerically despite the presence of discontinuous coef-
ficients.

7 Conclusions

This paper analysed the response of the discrete chain of
bilinear oscillators and the bimodular rod subjected to sev-
eral types of external harmonic excitation. To the best of
our knowledge, wave propagation in bilinear oscillators with
large stiffness ratio has never been considered before. The
phenomenon of sign inversion of the displacement consist-
ing of the gradual change of displacement sign for extended
times is observed for both the discrete chain and the bimod-
ular rod under the tension–compression impulse. It suggests
that the collision between the two wave fronts corresponding
to compression and tension phases has a considerable effect
on the dynamic behaviour of the bilinear material.

It is anticipated that this observation may play an impor-
tant role in geophysical and exploration applications, mak-
ing it possible to detect bilinearity and thus obtain additional
information on the composition and structure of the Earth’s
crust.
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Figure 8. Displacement u(x, t) at different time moments versus the horizontal coordinate x for the tension–compression harmonic impulse:
numerical solutions for the discrete chain (solid line), and the bimodular rod (dash-dot line).
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