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Abstract. Disorder of size (polydispersity) and mass of dis-
crete elements or particles in randomly structured media
(e.g., granular matter such as soil) has numerous effects on
the materials’ sound propagation characteristics. The influ-
ence of disorder on energy and momentum transport, the
sound wave speed and its low-pass frequency-filtering char-
acteristics is the subject of this study. The goal is under-
standing the connection between the particle-microscale dis-
order and dynamics and the system-macroscale wave propa-
gation, which can be applied to nondestructive testing, seis-
mic exploration of buried objects (oil, mineral, etc.) or to
study the internal structure of the Earth. To isolate the lon-
gitudinal P-wave mode from shear and rotational modes, a
one-dimensional system of equally sized elements or parti-
cles is used to study the effect of mass disorder alone via
(direct and/or ensemble averaged) real time signals, signals
in Fourier space, energy and dispersion curves. Increase in
mass disorder (where disorder has been defined such that it
is independent of the shape of the probability distribution
of masses) decreases the sound wave speed along a granu-
lar chain. Energies associated with the eigenmodes can be
used to obtain better quality dispersion relations for disor-
dered chains; these dispersion relations confirm the decrease
in pass frequency and wave speed with increasing disorder
acting opposite to the wave acceleration close to the source.

1 Introduction

Sound wave propagation through matter has been an exten-
sive area of research (for a textbook example, see Aki and
Richards, 2002) being applied to study earthquakes or the in-
ternal structure of the Earth, as well as oil, gas or mineral ex-

ploration (seismology). Waves can be used for dissecting the
human body without using blades, revealing material prop-
erties through nondestructive testing (ultrasonics), studying
the structure of lattices or designing metamaterials. There
are numerous applications and uncountable problems which
still need to be solved, where the challenge has always been
resolving the finest structures of matter using wave propa-
gation. Hence, steps are being taken in the direction of mi-
cromechanics of seismic waves; see, e.g., O’Donovan et al.
(2016).

Disordered, heterogeneous and random media cause mul-
tiple scattering of seismic waves that are dispersed, at-
tenuated and localized in space (Sato, 2011; Scales and
Van Vleck, 1997). The phenomenon of multiple scattering
causes the formation of the so-called “coda”, which is the tail
of a propagating wave pulse. While coda was earlier treated
as noise (Weaver, 2005), now it has given way to coda wave
interferometry with multiple applications (Snieder et al.,
2002). The coda has been studied in detail in laboratory ex-
periments with uniaxial or triaxial devices, e.g., pulse propa-
gation across glass beads (Jia et al., 1999) and sintered glass
beads (Güven, 2016), indicating extreme sensitivity towards
system preparation and configuration and getting washed out
on ensemble averaging with only the coherent part of the
signal remaining. In Van Der Baan (2001), it was shown
that macroscopic or seismic waves governed by the classi-
cal wave equation did not exhibit localization at lower fre-
quencies, but this idea got repudiated by Larose et al. (2004),
where weak localization (a mesoscopic phenomenon, precur-
sor to wave localization; Sheng, 2006) was experimentally
observed at frequencies as low as 20 Hz, indicating the inad-
equacy of the classical wave equation.
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In recent years, wave propagation through granular ma-
terials has attracted a lot of attention. Granular material is
heterogeneous with many discretized units and can be used
for other modeling geometrically heterogeneous media (Mat-
suyama and Katsuragi, 2014). The studies done using or-
dered and disordered lattices for wave propagation (Gilles
and Coste, 2003; Coste and Gilles, 2008, etc.) have helped
the understanding of wave propagation in granular materials
through dispersion relations, frequency filtering, etc. Scaling
laws allow the relation of various physical parameters such
as density, pressure, coordination number, etc., with the mod-
uli, forming an effective medium theory (EMT) for granular
matter (Makse et al., 2004).

Nesterenko (1983) showed the existence of localized wave
packets propagating in a nonlinear granular chain (one-
dimensional granular material) under the condition of “sonic
vacuum” (in the limit of zero acoustic wave speed and van-
ishing confining pressure), thus forming supersonic solitary
waves; such concepts have been exploited immensely to de-
velop various kinds of metamaterials such as those used for
shock and energy trapping (Daraio et al., 2006), an acoustic
diode (Boechler et al., 2011) or for understanding and study-
ing jamming transitions in granular matter (van den Wilden-
berg et al., 2013; Upadhyaya et al., 2014). Some of the open
questions and developments related to wave propagation in
unconsolidated granular matter, such as higher harmonics
generation, nonlinear multiple scattering, soft modes, rota-
tional modes, etc., have been addressed by Tournat and Gu-
sev (2010). However, in the following, the focus of attention
will not be on solitons and unconsolidated granular matter;
hence, there will be no sonic vacuum during analyses (no
opening and closing of contacts of particles).

A striking characteristic of consolidated granular matter is
that grain–grain forces are arranged and correlated in a linear
manner known as force chains (Somfai et al., 2005). Sim-
ilar to the force chains, Pasternak et al. (2015) showed the
existence of moment chains in granular media, i.e., correla-
tions of grain–grain mutual rotations. These chains are meso-
scopic structures and are just one of the many microrotational
effects of granules. Cosserat continuum theory can be used
to model these micropolar and/or microrotational effects, as
discussed in detail by Pasternak and Mühlhaus (2005).

The force chains and granular chains which carry the
large forces of the system supposedly support faster sound
transmission across granular matter (Ostojic et al., 2006). In
Owens and Daniels (2011), it was seen from experiments
with two-dimensional photo-elastic disks that vibration prop-
agates along the granular chains, visualized by the brightness
due to compression between the particles; however, the exact
mechanisms of propagation of the vibrations are still a mat-
ter of ongoing research. Our system under investigation will
be a single one of such granular chains (Fig. 1); it will assist
in isolating the P wave or the longitudinal excitation from all
other kinds of excitations (S wave, rotational wave, etc). In
Merkel et al. (2010) it was seen that inclusion or removal of

Figure 1. A granular or force chain from a network (schematic).

rotation does not significantly affect the longitudinal mode in
an ordered granular crystal. However, the situation is differ-
ent when rotations become prominent and other wave modes
cannot be ignored (see Yang and Sutton, 2015; Merkel and
Luding, 2017, and the references therein).

Although it is very simplistic, a polydisperse granular
chain can have various kinds of disorder: size, mass or
stiffness disorder (Lawney and Luding, 2014). The size or
mass disorder has a much stronger contribution towards dis-
order than stiffness because mass ∝ radius3, whereas stiff-
ness∝ radius1/3 (Achilleos et al., 2016). Hence, only mass
disorder for the disordered granular chain has been chosen.
However, there are processes when stiffness disorder cannot
be ignored, for instance, the processes when the repulsive in-
teraction force between the fragments or elements of the ma-
terial being modeled has different stiffness during compres-
sion and tension (bilinear oscillator; Dyskin et al., 2014), in-
finite stiffness during compression (impact oscillator; Dyskin
et al., 2012 and Guzek et al., 2016) or negative stiffness
(Pasternak et al., 2014, and Esin et al., 2016).

In Sect. 2 an impulse propagating across a granular chain
is modeled. A similar model was used in Marketos and
O’Sullivan (2013), Lawney and Luding (2014) and Otsubo
et al. (2017). Section 2.8 concerns the dispersion relation for
wave propagation across a granular medium, Sect. 2.9 con-
cerns the group velocity and Sect. 2.10 concerns a novel way
of computing the dispersion relation in terms of moments
of eigenmodal energy. In Sect. 3, the quantities mentioned
in Sect. 2 are computed and the observations are discussed.
Section 4 summarizes and concludes the observations made
in Sect. 3 with Sect. 2 as the foundation and an outlook of
the ongoing as well as possible future research work on wave
propagation in granular matter is given.

2 Modeling a general one-dimensional chain

A one-dimensional chain of N + 2 particles is considered
(Fig. 2). Each particle i has mass m̃(i) and contact stiff-
ness κ̃(i,j) with respect to a neighboring particle j . The tilde
symbols are used for dimensional quantities. The interaction
force experienced by neighboring particles i and j is

F̃(i,j) = κ̃(i,j )̃δ
1+β
(i,j), δ̃(i,j) ≥ 0 and i 6= j, (1)
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At rest :

During wave propagation :

Figure 2. Prestressed chain of granular elements during dynamic
wave propagation.

with the contact stiffness κ̃(i,j) and the particle overlap δ̃(i,j)
= r̃(i)+r̃(j)−|̃x(j)−x̃(i)|, with the radius r̃ and coordinates x̃
of the centers of the particles. The Hertzian and linear mod-
els are given by β = 1/2 and β = 0, respectively (Lawney
and Luding, 2014). This force acting from j on i is directed
along n̂=− x̃(j)−x̃(i)

|̃x(j)−x̃(i)|
, corresponding in one dimension to

be positive and negative for j < i and j > i, respectively.
This force resembles the framework of the discrete element
method where the overlap of particles substitutes their de-
formations at the contacts, which would be much more dif-
ficult and time consuming to resolve with a finite element
model of deformable bodies. Assuming that the chain is pre-
compressed by an external applied force F̃o, the characteris-
tic overlap of the particles in static equilibrium (1̃o), when
all the contact stiffness (̃κ(i,j)) of particles are chosen as κ̃o
(mean characteristic contact stiffness), is thus defined as

1̃o =

(
F̃o

κ̃o

)1/(1+β)

, (2)

where the unit of κ̃ depends on β.

2.1 Nondimensionalization

A length scale ˜̀can be chosen such that the scaled particle
overlap δ(i,j) = δ̃(i,j)/˜̀yields

F̃(i,j) = κ̃(i,j)˜̀1+βδ
1+β
(i,j). (3)

There are several length scales ˜̀that can be chosen, e.g., the
particle size, the driving amplitude or the initial overlap

1(i,j) =

(
F̃o

κ̃(i,j)˜̀1+β

)1/(1+β)

(4)

of the particles in static equilibrium. The latter is chosen
for computations here so that 1(i,j) =1o ≡ 1 if all κ̃(i,j) =

κ̃o. Other dimensionless quantities are the mass b = m̃/M̃1,
where M̃1 is the first moment of the mass distribution of
the particles, as shown in Appendix C (the unscaled aver-
age mass of the particles); the dimensionless displacement
u= ũ/̃l; and the dimensionless spring constant κ = κ̃ /̃κo.
The characteristic timescale becomes

t̃c =

√
M̃1

κ̃o˜̀β , (5)

which gives us the dimensionless time t = t̃ /̃tc. The dis-
placement of particle i from its equilibrium position x̃(i)o is
ũ(i) = ˜̀u(i) = x̃(i)−x̃(i)o , so that the overlap becomes, δ(i,j) =
1(i,j)− (u

(j)
− u(i)). Finally, the interaction forces scale as

F(i,j) =
t̃2c

M̃1˜̀F̃(i,j). (6)

2.2 Equation of motion: nonlinear (Hertzian)

The equation of motion for any particle i (except the bound-
ary particles at either end of the chain) by using Eqs. (3), (4)
and nondimensionalization (Sect. 2.1) can be written as

b(i)
d2u(i)

dt2
= F(i−1,i)+F(i,i+1)

= κ(i−1,i)δ
1+β
(i−1,i)− κ(i,i+1)δ

1+β
(i,i+1), (7)

which can also be written as

b(i)
d2u(i)

dt2
= κ(i−1,i)

[
1(i−1,i)− (u

(i)
− u(i−1))

](1+β)
− κ(i+1,i)

[
1(i+1,i)− (u

(i+1)
− u(i))

](1+β)
. (8)

For particles interacting repulsively with Hertzian potential,
β = 1/2, Eqs. (7) or (8) can be solved numerically; see
Sect. 3.1.

2.3 Equation of motion: linear

The repulsive interaction force can be expressed as a power
series and can be expanded about the initial overlap 1(i,j)
due to precompression.

F(i,j) = κ(i,j)1
1+β
(i,j)+ κ(i,j)(1+β)1

β

(i,j)(δ(i,j)−1(i,j))

+
1
2
κ(i,j)β(1+β)1

β−1
(i,j)(δ(i,j)−1(i,j))

2
+ . . . (9)

For small displacements from the equilibrium condition (dur-
ing wave propagation), using the definition of δ(i,j) and after
ignoring higher-order nonlinear terms, we arrive at

F(i,j) = κ(i,j)1
1+β
(i,j)− κ(i,j)(1+β)1

β

(i,j)

(
u(j)− u(i)

)
. (10)
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Inserting the force relation (Eq. 10) in Eq. (7), we get the
general, linearized equation of motion:

b(i)
d2u(i)

dt2
= κ(i−1,i)1

β

(i−1,i)
[
1(i−1,i)− (1+β)

(
u(i)− u(i−1)

)]
−κ(i+1,i)1

β

(i,i+1)
[
1(i+1,i)− (1+β)

(
u(i+1)

− u(i)
)]
. (11)

For Hertzian nonlinear repulsive interaction force between
the particles, the scaled stiffness κ(i,j) and initial overlap
1(i,j) are given as follows (see Appendix B for details):

κ(i,j) =

√
2

b(i)1/3+ b(i)1/3
(b(i)b(j))1/6 (12)

and

1(i,j) = κ
(−2/3)
(i,j) . (13)

The Hertzian nonlinear repulsive interaction force is appro-
priate for spherical particles (Landau and Lifshitz, 1970).
Equation (11) can be written in a linearized form as

b(i)

(1+β)
d2u(i)

dt2
= κ

1/(1+β)
(i+1,i)

(
u(i+1)

− u(i)
)

− κ
1/(1+β)
(i−1,i)

(
u(i)− u(i−1)

)
. (14)

Since we are interested only in mass disorder, we can choose
all coupling stiffness (κ(i,j)) as 1. Then, Eq. (14) for individ-
ual particles can be written as

b(i)

(1+β)
d2u(i)

dt2
= u(i+1)

− 2u(i)+ u(i−1). (15)

The factor 1
1+β becomes 1 for the linear contact model

(β = 0) and it becomes 2/3 for the Hertzian contact model
(β = 1/2). It can be observed that the factor 1

1+β has only
multiplicative influence on the physical parameters. Since
in our system of equations (Eq. 15) only mass disorder is
present, the masses of the particles get multiplied by this fac-
tor ( 1

1+β ). For further analysis, β = 0 has been chosen so that

b(i)
d2u(i)

dt2
= u(i+1)

− 2u(i)+ u(i−1). (16)

This results in N equations which eventually can be ex-
pressed in matrix form:

M
d2u

dt2
=Ku+f , (17)

where M is a diagonal mass matrix with entries
b(1), b(2), b(3), . . ., b(N) and zero otherwise; K is a matrix
with diagonal entries −(κ(i+1,i)+κ(i−1,i))=−2, superdiag-
onal (κ(i+1,i)) and subdiagonal (κ(i−1,i)) entries +1 and zero
otherwise for κ = 1. The term f is the external force which
depends on the specified driving. Introducing A=−M−1K,
Eq. (17) can then be written as

−
d2u

dt2
= Au−M−1f . (18)

2.4 Analysis in real space or spatial Fourier space

Using an ansatz for real space and another ansatz for spatial
Fourier space in Eq. (18) (the calligraphic fonts from now on-
wards will depict the spatial Fourier transform counterparts
of the real space parameters),

u= u′eiωt or U = U ′ei(ωt−ku), (19)

one has

Au= ω2u or AU = ω2U , (20)

with wavenumber k and U =
∞∫
−∞

∞∫
−∞

ue−i(ωt−ku)dt du as

double Fourier transform (spatial as well as temporal) ansatz.
Equation (20) is a familiar eigenvalue problem. The eigenval-
ues ω2

j and eigenvectors s(j) of the matrix A give the eigen-
domain of the granular chain that are independent of the ex-
ternal driving. The square roots of the eigenvalues, ωj , are
the natural frequencies of the chain. The set of eigenvectors
can be orthonormalized to obey the orthonormality condi-
tion:

sT
(i)Ms(j) = δij , (21)

with δij being the Kronecker delta symbol. The S matrix
or the eigenbasis matrix can be constructed with s(j) as the
columns of the matrix, which can be used to transform back
and forth from the real domain to the eigendomain. The
columns (s(j)) of the matrix S are sorted such that the corre-
sponding eigenvalues ωj are in increasing order. The vector
of eigenmode amplitudes is

z= S−1u or Z = S−1U . (22)

A matrix G consisting of eigenvalues ωj along the diago-
nal (in increasing order) is formulated such that G= S−1AS
which allows the transformation of Eq. (17) into the eigen-
domain as

d2z

dt2
=−Gz+S−1M−1f =−Gz+h or

d2Z
dt2
=−GZ +S−1M−1F =−GZ +H, (23)

which defines h and H implicitly. The differential equations
(Eq. 23) are decoupled and can be solved to give

z(t)= C(1)a+C(2)b+ zP (t) or

Z(t)= C(1)A+C(2)B+ZP (t), (24)

where C(1) is a diagonal matrix with C(1)j,j = sin(ωj t), C(2)

is a diagonal matrix with C(2)j,j = cos(ωj t), and zP (t) or
ZP (t) are the particular solutions of the differential equa-
tions, which depend on h or H and, hence, depend on the
external driving force f or F . The vectors a orA and b or B
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are determined by the initial conditions from the initial dis-
placement (uo or Uo(k)) and velocities (vo or Vo(k)).

b = S−1uo− zP (0) or B = S−1uo− zP (0) (25)

and

a =G−1S−1vo−G−1 dzP (t)
dt

∣∣∣∣
t=0

or

A=G−1S−1Vo−G−1 dZP (t)
dt

∣∣∣∣
t=0

(26)

The terms a and b or A and B are column vectors with col-
umn elements aj and bj orAj and Bj , associated with a par-
ticular eigenfrequency (ωj ). The solution in real space can be
obtained by the transformation mentioned in Eq. (22), which
can be applied on Eq. (24) to give

u(t)= SC(1)a+SC(2)b+uP (t) or

U(t)= SC(1)A+SC(2)B+UP (t). (27)

2.5 Initial conditions: impulse driving

The initial conditions required to solve various special cases
are the initial displacements (uo) and initial velocities (vo) in
real space and Vo and Uo in spatial Fourier space. Besides the
sinus driving used in Lawney and Luding (2014), we apply
an impulse driving initial condition. For an impulse driving
mode, the boundary conditions are as follows:

u(i)(t = 0)= 0, v(i 6=1)(t = 0)= 0, v(1)(t = 0)= vo. (28)

An impulse driven chain has an impulse imparted to the first
particle, i = 1 with initial velocity vo. Since the focus of our
study is not on the occurrence of sonic vacuum (Nesterenko,
1983), the initial impulse (vo) should be chosen small enough
to avoid opening of contacts. Using Eqs. (25), (26) and (27)
the initial conditions for the impulse driven chain, i.e., f = 0
(no driving present), uo = 0 and vo = [vo 0. . .0]T, we get

a =G−1S−1vo, b = 0, (29)

and

u= SC(1)G−1S−1vo and v = SC(2)S−1vo, (30)

which implies that displacements and velocities of all parti-
cles p are given analytically by

u(p)(t)= vo

N∑
j=1

SpjS1j sin(ω(j)t)
ω(j)

and

v(p)(t)= vo

N∑
j=1

SpjS1j cos(ω(j)t). (31)

In wavenumber space (spatial Fourier transform), the ini-
tial condition is specified by Vo(k), which can be a sine or

cosine function in terms of wavenumber (k). Using Eq. (27)
and Vo(k), we get

A=G−1S−1Vo(k), B = 0, (32)

and thus

U = SC(1)A and V = SC(2)GA. (33)

2.6 Mass distribution, disorder parameter (ξ ),
ensemble averaging & binning

The mass distribution of the monodisperse chain has been
selected randomly from normal (f (n)(b)), uniform (f (u)(b))
and binary (f (bi)(b)) distributions whose standard deviations
give the measure of the disorder of mass in the chain (ξ ). For
instance, the normal distribution is given by

f (n)(b)=
1

ξ
√

2π
e
(b−1)2

2ξ2 . (34)

High disorder means that the difference between the light-
est particle and the heaviest particle is very large. It was
observed in Lawney and Luding (2013) that the three dis-
tributions showed quantitatively similar behavior if the first
two moments of the distributions were the same. Here, the
first two moments of the aforementioned three distributions
have been matched. The mathematical details of the distri-
butions are given in Appendix C. Ensembles of chains with
different realizations for a particular disorder and distribution
have been taken into consideration. Angular brackets will be
used to denote ensemble-averaged physical quantities such
as 〈u〉, 〈Etot〉, etc. The first five moments of the three dis-
tributions for different disorder (standard deviation) ξ = 0,
ξ = 0.1, ξ = 0.2, ξ = 0.35, ξ = 0.5 and ξ = 0.8 are given in
Table 1 (500 ensembles scaled), Table 2 (500 ensembles un-
scaled) and Table 3 (10 000 ensembles).

2.7 Participation ratio & localization length

The participation ratio (Pj ) (introduced in Bell and Dean,
1970, and used previously in Allen and Kelner, 1998, Zer-
avcic et al., 2009) is a crucial tool in determining the lo-
calization length (L̃j ) associated with a particular eigen-
mode. This localization length can be seen as the length be-
yond which elastic waves with a particular frequency be-
come evanescent, i.e., they decay exponentially in a disor-
dered system (Mouraille, 2009). It is instrumental in deter-
mining the length within which the elastic waves become
confined in space and is dependent on the frequency and thus
the eigenmode (Anderson, 1958). The participation ratio of
eigenmode j is defined as
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Table 1. Scaled moments of ensemble-averaged distributions (500 ensembles) used for the one-dimensional chain (256 elements long).

Distribution Disorder <M1 > <M2 > <M3 > <M4 > <M5 > 4 42

Normal distribution ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
ξ = 0.1 1.0000 1.0099 1.0298 1.0600 1.1010 0.1 0.0100
ξ = 0.2 1.0000 1.0398 1.1194 1.2436 1.4219 0.1999 0.0400
ξ = 0.35 1.0000 1.1190 1.3590 1.7630 2.4184 0.3462 0.1195
ξ = 0.5 1.0000 1.2053 1.6366 2.4335 3.8973 0.4661 0.2061
ξ = 0.8 1.0000 1.3055 2.0104 3.5037 6.7333 0.6415 0.3067

Binary distribution ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
ξ = 0.1 1.0000 1.0100 1.0299 1.0599 1.1001 0.1000 0.0100
ξ = 0.2 1.0000 1.0398 1.1196 1.2408 1.4068 0.2000 0.0400
ξ = 0.35 1.0000 1.1221 1.3666 1.7489 2.2998 0.3501 0.1226
ξ = 0.5 1.0000 1.2495 1.7497 2.5653 3.8255 0.5002 0.2505
ξ = 0.8 1.0000 1.6413 2.9323 5.3034 9.6263 0.8014 0.6438

Uniform distribution ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
ξ = 0.1 1.0000 1.0100 1.0300 1.0602 1.1009 0.1002 0.0100
ξ = 0.2 1.0000 1.0400 1.1201 1.2431 1.4148 0.2004 0.0402
ξ = 0.35 1.0000 1.1227 1.3682 1.7639 2.3646 0.3508 0.1232
ξ = 0.5 1.0000 1.2508 1.7529 2.6212 4.0859 0.5011 0.2517
ξ = 0.8 – – – – – – –

Table 2. Unscaled moments of ensemble-averaged distributions (500 ensembles) used for the one-dimensional chain (256 elements long).

Distribution Disorder < M̃1 > < M̃2 > < M̃3 > < M̃4 > < M̃5 > 4̃ 4̃2

Normal distribution ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
ξ = 0.1 1.0000 1.0100 1.0299 1.0601 1.1013 0.0999 0.0100
ξ = 0.2 1.0000 1.0399 1.1197 1.2443 1.4232 0.1999 0.0400
ξ = 0.35 1.0022 1.1242 1.3689 1.7807 2.4492 0.3462 0.1195
ξ = 0.5 1.0274 1.2728 1.7768 2.7163 4.4725 0.4661 0.2061
ξ = 0.8 1.1581 1.7540 3.1363 6.3458 14.1470 0.6415 0.3067

Binary distribution ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
ξ = 0.1 1.0001 1.0102 1.0303 1.0605 1.1010 0.1000 0.0100
ξ = 0.2 1.0002 1.0404 1.1206 1.2424 1.4091 0.2000 0.0400
ξ = 0.35 1.0003 1.1232 1.3686 1.7516 2.3022 0.3500 0.1225
ξ = 0.5 1.0005 1.2510 1.7516 2.5650 3.8162 0.5000 0.2500
ξ = 0.8 1.0008 1.6416 2.9229 5.2548 9.4573 0.8000 0.6400

Uniform distribution ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
ξ = 0.1 1.0001 1.0102 1.0304 1.0608 1.1017 0.1002 0.0100
ξ = 0.2 1.0001 1.0405 1.1210 1.2446 1.4170 0.2004 0.0400
ξ = 0.35 1.0003 1.1236 1.3699 1.7665 2.3674 0.3508 0.1232
ξ = 0.5 1.0004 1.2519 1.7545 2.6211 4.0781 0.5011 0.2517
ξ = 0.8 – – – – – – –

Pj =
1

N∑
i=1
(Sij )4

, (35)

with the normalization condition on the eigenmodes
N∑
i=1
(Sij )

2
= 1. For one dimension, the localization length is

defined as L̃= Pj d̃ , where d̃ is the particle center distance
in equilibrium, i.e., under precompression. The localization

length can now be nondimensionalized by the internal parti-
cle scale of separation ∼ d̃ to give Lj ∼= Pj . As discussed
and pointed out in Allen and Kelner (1998), the localiza-
tion length of the lowest eigenmode is often attributed to the
length of the chain (which would be regarded as a force chain
in our analysis), and hence it becomes important to find the
localization length of an ordered chain, ξ = 0 as reference.
For an ordered chain b(1), b(2), b(3), . . . , b(N) = 1 and κ = 1,
so that

Nonlin. Processes Geophys., 24, 435–454, 2017 www.nonlin-processes-geophys.net/24/435/2017/



R. K. Shrivastava and S. Luding: Effect of disorder on bulk sound wave speed 441

Table 3. Moments of ensemble-averaged distributions (10 000 ensembles) used for the one-dimensional chain (256 elements long).

Distribution Disorder <M1 > <M2 > <M3 > <M4 > <M5 > 4 42

Normal distribution ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
ξ = 0.1 1.0000 1.0100 1.0299 1.0601 1.1011 0.0999 0.0100
ξ = 0.2 1.0000 1.0399 1.1196 1.2439 1.4225 0.1998 0.04
ξ = 0.35 1.0000 1.1192 1.3598 1.7648 2.4222 0.3456 0.1197
ξ = 0.5 1.0000 1.2093 1.6491 2.4617 3.9545 0.4579 0.2101
ξ = 0.8 1.0000 1.3319 2.0893 3.6833 7.1170 0.5767 0.3332

Binary distribution ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
ξ = 0.1 1.0000 1.0100 1.0299 1.0599 1.1001 0.1000 0.0100
ξ = 0.2 1.0000 1.0399 1.1196 1.2409 1.4069 0.2000 0.0400
ξ = 0.35 1.0000 1.1222 1.3668 1.7494 2.3006 0.3501 0.1226
ξ = 0.5 1.0000 1.2496 1.7502 2.5665 3.8279 0.5004 0.2506
ξ = 0.8 1.0000 1.6417 2.9340 5.3080 9.6373 0.8017 0.6442

Uniform distribution ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
ξ = 0.1 1.0000 1.0100 1.0299 1.0600 1.1006 0.1000 0.0100
ξ = 0.2 1.0000 1.0399 1.1197 1.2422 1.4134 0.2000 0.0400
ξ = 0.35 1.0000 1.1223 1.3670 1.7616 2.3605 0.3501 0.1227
ξ = 0.5 1.0000 1.2499 1.7507 2.6167 4.0775 0.5005 0.2509
ξ = 0.8 – – – – – – –

A=



−2 1 0 0 · · · 0
1 −2 1 0 · · · 0

0 1
. . . 0 · · · 0

0 · · · 0
. . . 0 1

0 · · · 0 0 1 −2

 . (36)

The eigenvalues of this matrix are ω2
j =

4sin2( jπ
2N

)
and its eigenvectors are s(j) =

{sin
( jπ
N

)
, sin

( 2jπ
N

)
, sin

( 3jπ
N

)
. . .sin

( (N−1)jπ
N

)
}. After

respecting the normalization condition and the definition of
the participation factor, the localization length of the lowest
eigenmode (P1) can be analytically calculated from the
eigenvectors as

Pnorm =

N∑
i=1

sin
(
ijπ

N

)2

, and hence

Pj =
P 2

norm
N∑
i=1

(
sin
( ijπ
N

))4
(37)

for N = 256, P1 = 170.667≈ 171.

2.8 Dispersion

The analytical expression for the dispersion relation in an
ordered chain of particles or elements with linear contact
forces are given by (Brillouin, 1946; Tournat et al., 2004;
Lawney and Luding, 2014)

ω̃2
= 4

κ̃o

M̃1
sin2

( k̃d̃
2

)
, (38)

where the wavenumber can be nondimensionalized by the
microscopic particle scale of separation (d̃) and frequency
by
√

κ̃o
M̃1

giving the nondimensional dispersion relation

ω2
=�2

π sin2
(k

2

)
, (39)

with �π = 2 for ordered chains with ξ = 0. Equation (39)
holds for propagative as well as evanescent waves. The pos-
itive roots of this relation correspond to propagative waves
and the imaginary roots to evanescent waves (Tournat et al.,
2004). This expression also holds for longitudinal wave prop-
agation in three-dimensional granular packings (Mouraille
and Luding, 2008) and in one-dimensional chains (Lawney
and Luding, 2014). From the dispersion relation, it can
be noted that disorder creates a maximum permissible fre-
quency (�π ) for propagating waves, frequencies below �π
are propagative and the frequencies above �π are evanes-
cent. The dispersion relation (Eq. 39) for ordered chains
(ξ = 0) is

ω = 2sin
(
k

2

)
, (40)

which is the dispersion relation for propagative waves.
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2.9 Total energy dispersion

From Eq. (A5) it can be observed that the total energy of the
eigenmodes is constant with respect to time as given by

Etot(ωj ,k)=
1
2
Aj (k)2ω2

j . (41)

By taking the first moment of this eigenmodal total energy
representation about frequency, a dominant frequency related
to a particular wavenumber can be obtained. Moments of the
eigenmodal total energy representation are defined as

M(m)(k)=

∑
ωmj Etot(ωj ,k)

Etot(ωj ,k)
. (42)

The dominant frequency is given by the first moment,

�(k)=M(1)(k)=

1
2
∑
j

A2
jω

3
j

Etot
. (43)

The dominant frequency can be measured by averaging over
all eigenmodes for a single realization with Aj (k) as a mul-
tiplicative factor which depends on the Fourier initial condi-
tion Vo(k) (Eq. 32). The dispersion relation for the propagat-
ing waves can be obtained by taking ensemble averages of
this dominant frequency (〈�(k)〉), which will be plotted in
Fig. 10b below for different disorder strengths (500 ensem-
bles).

2.10 Group velocity

The group velocity is given by

vg =
∂ω

∂k
, (44)

for both propagative waves and evanescent waves. It can be
obtained by differentiating Eq. (40) that

vg(k)=

√
�2
π −ω

2

2
, (45)

where �π =�π (ξ) depends on disorder, as we will see be-
low.

3 Results and discussions

The analytical expressions derived in the previous sections
are computed for chains that are N = 256 particles long. The
impulse imparted to the first particle is vo = 0.05. The time
step utilized for the output is 1t = 0.0312 and the maxi-
mum time up to which the computations have been carried
out is tmax = 256 such that the pulse has just about reached
the 256th particle. As can be seen from Tables 1 and 3, the
scaled average mass of the particles has been kept M1 = 1
and ξ = 0.0,0.1,0.2,0.35,0.5 and 0.8 disorder parameters

Time
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Figure 3. The displacement as a function of time is shown for the
100th particle in a chain of particles with disorder parameter ξ =
0.1 in (a) and the 130th particle in a chain of particles with disorder
parameter ξ = 0.35 in (b) for impulse vo = 0.05.

(standard deviation; see Appendix C) have been used for
analysis. Using the analytical solution of the linearized sys-
tem (Eq. 31), ensembles of 500 and 10 000 chains along with
representative single realizations will be shown in this sec-
tion.

3.1 Nonlinear (Hertz) and linear space–time responses

Equation (8) with Eqs. (12) and (13) has been solved nu-
merically with Verlet integration to get space–time responses
of particles with nonlinear (Hertzian) repulsive interaction
forces. The time step used for the numerical integration is
1t = 0.00038147. Figure 3 shows the space–time responses
calculated numerically for the nonlinear equation of motion
(Eq. 8) and the space–time responses calculated for the lin-
earized equation of motion (Eq. 14) using a small initial ve-
locity vo = 0.05. The space–time responses are obtained for
a single realization of a granular chain without ensemble av-
eraging. The nonlinear space–time responses coincide with
the linear space–time responses for small enough vo, con-
firming that the solution given by Eq. (31) is also appropriate
for particles with nonlinear repulsive interaction forces for
small displacements.

In order to quantify the limitations of the linear space–
time responses obtained from Eq. (31), Fig. 4 is plotted. The
difference between the maximum value (upeak) of the space–
time responses for Hertzian and linear repulsive interaction
forces (u(p)diff = u

(p)

peak(hertz)−u
(p)

peak(linear)) is chosen as a param-
eter to judge the appropriateness of the linear space–time re-
sponse for the nonlinear equation of motion (Eq. 8). The dif-
ference increases nonlinearly irrespective of particle position
and disorder parameter of the granular chain, with very good
agreement for vo<= 0.05.

3.2 Displacement response of three mass distributions

Only the mass disorder of the particles in the chain with
length 256 is taken into consideration and κ is chosen as 1
(Sect. 2.3). Figure 5 shows the displacement as a function of
time of the 150th particle (Fig. 1a and c) and of the 220th
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Figure 4. The nonlinear increase in u(p)diff (a parameter which shows
dissimilarity between linear and nonlinear space–time responses)
with initial impulse velocity (vo). The value vo = 0.05 is in the zone
where linear and nonlinear space–time responses are almost identi-
cal.
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Figure 5. Ensemble-averaged displacements (500 times) of the
150th (a, c) and 220th (b, d) particle with respect to time. Panels (a,
b) have disorder parameter ξ = 0.1, (c, d) have disorder parameter
ξ = 0.5. The red line is the space–time response from a single re-
alization of a chain with normally distributed masses. For all single
realizations, normal distributions are used with M̃1 = 0.9971 and
M̃2 = 1.1274 for ξ = 0.1 and M̃1 = 0.9958 and M̃2 = 1.2636 for
ξ = 0.5.

particle (Fig. 1b and d), which are placed before and af-
ter the reference localization length (the maximum possible,
Lmax = 171, Sect. 3.7) for two disorder parameters ξ = 0.1
and ξ = 0.5 with three mass distributions (normal, uniform
and binary). For weak disorder (ξ = 0.1), it is observed that
the displacement wave packets are perfectly superposed, af-
firming the conclusion in Lawney and Luding (2013) and
Lawney and Luding (2014) that the shape of the distribution
has no effect on the propagating pulse if the first two mo-
ments of the distribution are the same (Table 1). For stronger
disorder (ξ = 0.5), the wave packets are not collapsing per-
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Coherent wave packet

Figure 6. Displacements of 150th (a, c) and 220th (b, d) particle
with respect to time for different ensembles (a, b) of disorder ξ =
0.5 and of multiple disorder parameters (c, d); for 500 ensembles.

fectly (Fig. 1c and d). As can be seen in Table 1, there is a
numerical mismatch between the unscaled moments of the
distributions, leading to a dissimilarity between the second
scaled moments (〈M2〉). This also causes the real standard
deviation (disorder; ξ ) which has been numerically calcu-
lated (4; Table 1) to deviate a little bit from its intended
value. It can also be observed from Fig. 5c and d that the
pulse shapes of binary distribution and uniform distribution
are closer to each other in comparison to normal and bi-
nary or normal and uniform, since the scaled second mo-
ments (〈M2〉) of binary and uniform distributions for ξ =
0.5 are closest to each other (Table 1). Similar conclusions
about similarity, dissimilarity and closeness can be drawn
about pulse shapes of different distributions for different dis-
order parameters (ξ (intended),4 (numerically obtained)) on
the basis of moments of the mass distribution. For larger ξ ,
higher moments (as listed in Tables 1, 2 and 3) have to be
considered (Ogarko and Luding, 2013), but discussing these
higher moments and their consequences go beyond the scope
of this study.

3.3 Displacement response for different disorder
parameters (ξ )

Mechanical waves propagating through disordered media or
granular media such as soil (on the receiver end) can be di-
vided into two parts, the coherent part and the incoherent part
(Jia et al., 1999; Jia, 2004). The coherent part is the leading
wave packet and is self-averaging in nature (it maintains its
shape after ensemble averaging) and it is used for determin-
ing the bulk sound wave velocity. In contrast, the incoher-
ent part is the scattering, non-self-averaging part, which is
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Figure 7. Coherent wave velocities determined through velocity picking. The peak of the coherent wave packet’s velocity (d) and the rising
part of the packet (a, b, c) as well as the falling part (e) are taken into consideration. Panel (f) displays the peak velocity for all the particles
in a granular chain with different ξ . Note that (a, b, e) have a different axis range as (c, d).

strongly system-configuration-dependent, also known as the
coda or tail of the mechanical wave. Figure 6 contains the dis-
placement of two particles (150th and 220th particles) used
in Sect. 3.2, for consistency. Here, attention has been given
to the effect of the mass distribution on the time of arrival or
flight, and hence the wave velocity of the initial wave packet.
Figure 6a and b contain the displacements of the 150th and
220th particle (before and after Lmax, Sect. 3.7) for single
realizations, 500 and 10 000 ensembles. The leading wave
packet is the same for 500 and 10 000 ensembles in both fig-
ures, i.e., the coherent part of the wave which maintains its
shape after averaging. The coda is more or less pronounced
at 150 or 220, respectively, and vanishes due to ensemble
averaging. Figure 6c and d show the displacement response
of the 150th and the 220th particle with respect to time for
chains with different mass disorder. The speed of the coher-
ent wave packet (from source to receiving particle, peak of
signal) is increasing with disorder. Higher disorder leads to
higher coherent wave (peak) speed, irrespective of the local-
ization length (Lmax). However, this increase in wave speed
can also be attributed to sound wave acceleration near the

source, as pointed out by Mouraille et al. (2006), and may
not be generalized as effect of mass disorder in the chain, as
investigated in the next section.

3.4 Coherent wave speed and disorder

Tables 4, 5 and Fig. 7 contain the velocity of the peak of the
coherent wave, the velocity of the rising part of the coher-
ent wave packet when the displacement of the particle has
attained 5, 10, 70 and 90 % of the peak value, and the first
time when the displacement of the particle becomes 0 after it
has attained the peak value of the coherent wave (zero cross-
ing), all constituting the coherent wave packet. The velocities
were determined through velocity picking (particle position
divided by the time of arrival). The particles used for com-
puting the velocities were 130, 150, 200 and 220 (Table 4;
2 before localization length and 2 after localization length,
Lmax = 171). It can be observed that irrespective of the ris-
ing part of the coherent wave packet and the peak (Fig. 7a,
b, c, d), the wave velocity increases with disorder. However,
for zero crossing (Fig. 7e), the velocity decreases with an
increase in disorder, and the same can be said for the part
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Table 4. Scaled coherent wave velocity picking for different particles before and after localization length for a disordered chain with normal
distribution (256 elements long, 500 ensembles).

Particle number Disorder Average mass 5 % peak 10 % peak 70 % peak 90 % peak Peak Zero crossing

130th particle ξ = 0.0 1.0000 1.0462 1.0365 1.0002 0.9911 0.9808 0.9560
ξ = 0.1 1.0000 1.0462 1.0365 1.0002 0.9911 0.9817 0.9560
ξ = 0.2 1.0000 1.0508 1.0409 1.0032 0.9938 0.9839 0.9560
ξ = 0.35 1.0000 1.0623 1.0515 1.0100 0.9994 0.9881 0.9525
ξ = 0.5 1.0000 1.0735 1.0616 1.0155 1.0035 0.9906 0.9449
ξ = 0.8 1.0000 1.0841 1.0713 1.0211 1.0079 0.9933 0.9328

150th particle ξ = 0.0 1.0000 1.0402 1.0317 0.9990 0.9910 0.9825 0.9597
ξ = 0.1 1.0000 1.0419 1.0332 1.0003 0.9920 0.9835 0.9599
ξ = 0.2 1.0000 1.0464 1.0373 1.0032 0.9946 0.9855 0.9597
ξ = 0.35 1.0000 1.0574 1.0475 1.0095 0.9998 0.9894 0.9566
ξ = 0.5 1.0000 1.0678 1.0569 1.0146 1.0036 0.9917 0.9500
ξ = 0.8 1.0000 1.0782 1.0664 1.0199 1.0076 0.9939 0.9387

200th particle ξ = 0.0 1.0000 1.0330 1.0258 0.9991 0.9924 0.9856 0.9665
ξ = 0.1 1.0000 1.0342 1.0271 1.0001 0.9933 0.9862 0.9666
ξ = 0.2 1.0000 1.0376 1.0303 1.0023 0.9954 0.9878 0.9665
ξ = 0.35 1.0000 1.0459 1.0380 1.0073 0.9995 0.9910 0.9642
ξ = 0.5 1.0000 1.0537 1.0450 1.0113 1.0025 0.9929 0.9587
ξ = 0.8 1.0000 1.0620 1.0526 1.0155 1.0056 0.9947 0.9494

220th particle ξ = 0.0 1.0000 1.0308 1.0242 0.9992 0.9930 0.9864 0.9685
ξ = 0.1 1.0000 1.0320 1.0253 1.0000 0.9937 0.9870 0.9686
ξ = 0.2 1.0000 1.0350 1.0282 1.0020 0.9954 0.9884 0.9685
ξ = 0.35 1.0000 1.0426 1.0352 1.0066 0.9993 0.9914 0.9665
ξ = 0.5 1.0000 1.0500 1.0419 1.0105 1.0022 0.9933 0.9619
ξ = 0.8 1.0000 1.0575 1.0487 1.0142 1.0050 0.9949 0.9542

of the coherent wave packet which lies after the peak value;
this can be attributed to the increased spreading of the wave
packet with an increase in disorder. Notably, the speed mea-
sured at particle 130 is larger (smaller) if the earlier (later)
parts of the signal are considered. Figure 7f shows the ve-
locity of the peak value of the coherent wave packet of all
the particles of the granular chain for different disorder pa-
rameters and it also exhibits a similar kind of acceleration of
signal or mechanical wave near the source to what was ob-
served in Mouraille et al. (2006). This acceleration is caused
by self-demodulation of the initial impulse imparted to the
granular chain and the noteworthy point is that the velocity
increases while the acceleration decreases with an increase
in disorder. Due to this observation we cannot generalize the
effect of disorder on wave speed. The sudden rise in velocity
of the peak value in Fig. 7f after the 250th particle is due to
the boundary effect as well as due to the presence of the co-
herent wave front of the traveling wave around that position
as the maximum time window used is tmax = 256. For practi-
cal purposes, we remark the wave speed measured varies by
a few percent up or down, dependent on which part of the
signal is used for measurement.

To understand the effect of disorder on wave speed without
taking into account this “source effect”, the velocity based

on the time taken by the pulse for propagating a common
distance of seven particles has been computed in Table 6
and the results have been plotted in Fig. 8. The reason for
selecting such a low common distance of separation was to
keep the effect of the source as minimal as possible; the sets
of points (130 to 137, 150 to 157, 220 to 227 and 240 to
247 particles) were used with different reference points of
the coherent wave front (5, 10, 70, 90 %, peak value and zero
crossing). From Fig. 8 and Table 6 it can be observed that
the same trend is followed, except the velocity computed us-
ing the zero crossing reference point, which is more or less
constant with little fluctuations (Table 6). Figure 8a shows
a consistent increase of velocity as it is the closest to the
source (dominated by the source effect); however, as the set
of particles is selected farther away from the source, the ve-
locity decreases slightly and then increases with increasing
ξ (Fig. 8b and c). Figure 8d exhibits a consistent decrease
of velocity with an increase in ξ because the set of particles
(247–240) are far from the source (source effect is weakest).
From Fig. 8d, it can be concluded that higher disorder results
in a decrease in wave velocity.
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Table 5. Unscaled coherent wave velocity picking (
√
M̃1) for different particles before and after localization length for a disordered chain

with normal distribution (256 elements long, 500 ensembles).

Particle number Disorder Average mass 5% peak 10% peak 70% peak 90% peak Peak Zero crossing

130th particle ξ = 0.1 1.0000 1.0462 1.0366 1.0002 0.9912 0.9818 0.9560
ξ = 0.2 1.0000 1.0509 1.0409 1.0033 0.9939 0.9840 0.9560
ξ = 0.35 1.0022 1.0614 1.0505 1.0091 0.9985 0.9872 0.9515
ξ = 0.5 1.0274 1.0595 1.0477 1.0022 0.9904 0.9776 0.9322
ξ = 0.8 1.1581 1.0081 0.9962 0.9496 0.9373 0.9237 0.8668

150th particle ξ = 0.1 1.0000 1.0420 1.0332 1.0003 0.9921 0.9835 0.9599
ξ = 0.2 1.0000 1.0465 1.0374 1.0032 0.9946 0.9856 0.9597
ξ = 0.35 1.0022 1.0564 1.0465 1.0086 0.9989 0.9885 0.9556
ξ = 0.5 1.0274 1.0539 1.0431 1.0013 0.9905 0.9787 0.9373
ξ = 0.8 1.1581 1.0026 0.9917 0.9485 0.9370 0.9243 0.8723

200th particle ξ = 0.1 1.0000 1.0343 1.0271 1.0001 0.9934 0.9862 0.9666
ξ = 0.2 1.0000 1.0377 1.0304 1.0024 0.9954 0.9879 0.9665
ξ = 0.35 1.0022 1.0449 1.0370 1.0064 0.9985 0.9901 0.9631
ξ = 0.5 1.0274 1.0399 1.0313 0.9981 0.9894 0.9799 0.9458
ξ = 0.8 1.1581 0.9876 0.9788 0.9443 0.9351 0.9250 0.8822

220th particle ξ = 0.1 1.0000 1.0320 1.0253 1.0000 0.9937 0.9870 0.9686
ξ = 0.2 1.0000 1.0320 1.0253 1.0000 0.9937 0.9870 0.9685
ξ = 0.35 1.0022 1.0417 1.0343 1.0057 0.9984 0.9905 0.9654
ξ = 0.5 1.0274 1.0362 1.0283 0.9972 0.9891 0.9803 0.9490
ξ = 0.8 1.1581 0.9834 0.9752 0.9431 0.9346 0.9252 0.8867

Table 6. Coherent wave velocity calculated from the time taken by the pulse to travel a common distance of separation (seven particles or
elements) with time calculated in reference to 5, 10, 70 and 90 % of the peak value and the peak value of the coherent wave packet.

Particle number Disorder 5 % peak 10 % peak 70 % peak 90 % peak Peak Zero crossing

27th particle–20th particle ξ = 0.0 1.0466 1.0321 0.9954 0.9867 0.9780 0.9571
ξ = 0.1 1.0466 1.0369 0.9999 0.9910 0.9823 0.9613
ξ = 0.2 1.0515 1.0417 0.9999 0.9910 0.9823 0.9613
ξ = 0.35 1.0665 1.0565 1.0089 0.9999 0.9910 0.9654
ξ = 0.5 1.0820 1.0665 1.0135 0.9999 0.9910 0.9696
ξ = 0.8 1.0925 1.0820 1.0227 1.0135 0.9999 0.9531

157th particle–150th particle ξ = 0.0 1.0135 1.0089 0.9999 0.9954 0.9954 0.9867
ξ = 0.1 1.0107 1.0082 0.9982 0.9960 0.9930 0.9867
ξ = 0.2 1.0105 1.0080 0.9974 0.9957 0.9928 0.9867
ξ = 0.35 1.0072 1.0054 0.9984 0.9965 0.9948 0.9910
ξ = 0.5 1.0056 1.0041 0.9983 0.9964 0.9940 0.9867
ξ = 0.8 1.0106 1.0072 0.9947 0.9917 0.9880 0.9780

227th particle–220th particle ξ = 0.0 1.0135 1.0089 0.9999 0.9954 0.9954 0.9910
ξ = 0.1 1.0090 1.0073 0.9969 0.9959 0.9948 0.9867
ξ = 0.2 1.0074 1.0056 0.9968 0.9951 0.9934 0.9867
ξ = 0.35 1.0056 1.0039 0.9957 0.9939 0.9917 0.9867
ξ = 0.5 1.0059 1.0039 0.9968 0.9950 0.9926 0.9867
ξ = 0.8 1.0122 1.0111 1.0062 1.0049 1.0031 0.9867

247th particle–240th particle ξ = 0.0 1.0089 1.0089 0.9999 0.9999 0.9954 0.9910
ξ = 0.1 1.0087 1.0060 0.9975 0.9966 0.9953 0.9910
ξ = 0.2 1.0073 1.0047 0.9964 0.9952 0.9925 0.9910
ξ = 0.35 1.0041 1.0019 0.9946 0.9928 0.9909 0.9954
ξ = 0.5 1.0017 1.0002 0.9928 0.9916 0.9903 –
ξ = 0.8 0.9937 0.9919 0.9860 0.9846 0.9847 –
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Figure 8. Wave speed for common distance of separation (seven
particles or elements) with different disorder ξ . Note that the ver-
tical range in (a, c) is different from (b, d). Red line is 70 % of
the peak value and blue line gives the velocities when the peak is
considered.

3.5 Frequency response and dispersion

In Fig. 9a and c a fast Fourier transform (FFT) with respect
to time is carried out on the displacement response of a 256-
element-long chain for disorder, with ξ = 0.01 and ξ = 0.35,
respectively (when an impulse of vo = 0.05 has been applied
to the first particle) to observe the frequency content with
distance, (the sampling frequency is ωsample =

2π
1t

) and re-
sponses up to half of the sampling frequency were taken into
account to avoid aliasing (Nyquist criterion; Shannon, 1949).
The first five particles have been excluded from the Fourier
transform to avoid an overwhelming driving signal effect.
Figure 9a exhibits the existence of a cut-off frequency (ω =
2) above which the waves become evanescent. The bending
of the intensity with distance (particle number), especially at
large distances, is attributed to dispersion and the finite time
window. Using the group velocity (p is the particle number)

vgtmax = p, (46)

for an ordered chain (ξ = 0), �π = 2 and using Eq. (45), the
frequency envelope is

ω(p)= 2

√
1−

p2

t2max
, (47)

which is the red curve plotted in Fig. 9a.
A spatial as well as temporal two-dimensional FFT is car-

ried out for a single realization of a 256-element-long chain
with disorder ξ = 0.01 and ξ = 0.35 to observe the disper-
sion relation (Fig. 9b and d; ω vs. k). Two-dimensional FFT

Figure 9. Panel (a) is the temporal Fourier transform of displace-
ment of particles for normal distribution and disorder parameter
ξ = 0.01 (single realization) with group velocity (vg) depicting the
propagation of the wave front, and (b) is the temporal as well as
spatial Fourier transform (two-dimensional FFT, single realization)
calculated for obtaining the dispersion relation of a chain, while
〈�(k)〉 gives the true ensemble-averaged (500) dispersion relation
from Eq. (43). Panels (c, d) are the higher-disorder ξ = 0.35 coun-
terparts of (a, b), respectively.

has been used previously for one-dimensional and three-
dimensional polydisperse granular packings for obtaining
dispersion relations (Luding and Mouraille, 2008; Lawney
and Luding, 2014; O’Donovan et al., 2015), but strong fre-
quency filtering due to the disordered system resulted in am-
biguous dispersion relations (flat bands and absence of cer-
tain frequencies below the cut-off frequency, which indi-
cates the nonpropagative bands due to the presence of de-
fect modes). This can also be observed from Fig. 9b and d.
Equation (40) (the dispersion relation for an ordered chain)
has been plotted in Fig. 9b, which gives a perfect fit for
the denser regime in the figure. However, for the disordered
chain, ξ = 0.35, as proposed earlier in Sect. 2.9, the dis-
persion relation is better given by 〈�(k)〉 by ensemble av-
eraging the dominant frequencies with respect to different
wavenumbers. The term 〈�(k)〉 for 500 ensembles with dis-
order ξ = 0.35 has been plotted in Fig. 9d (the green curve).
For low frequencies the green curve perfectly superposes
the dense regime in the displacement’s temporal and spatial
Fourier transform; for higher frequency (ω > 1.5) due to the
appearance of a flat band (defect mode) the intensity is not
visible near the green curve, which holds true for low and
intermediate frequencies and wavenumbers.
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Figure 11. Participation ratio or localization length with respect to
different frequencies for 500 ensembles with ξ = 0.1,0.2,0.35,0.5
and 0.8 and bin size= 0.0781.

3.6 Total energy dispersion in disordered chains

The 〈�(k)〉 from Eq. (43), which was plotted for ξ = 0.35
in Fig. 9b, is plotted for ξ = 0.1,0.2,0.35,0.5 and 0.8 in
Fig. 10a. It is observed that the maximum permissible fre-
quency (�π ) above which the waves become evanescent de-
creases with increasing disorder. The slope of ω vs. k curves
indicates the wave speed which clearly can be observed to
be decreasing with increasing disorder, confirming what was
observed in Sect. 3.4.

3.7 Participation ratio & localization length

Figure 11 shows the participation ratio (〈P 〉), i.e., the local-
ization length (〈L〉, from Sect. 2.7) for binned 500 ensemble-
averaged realizations of chains (with 0.0781 as frequency bin
size) and with different disorder parameters ξ . The lowest
frequencies have the same localization length Lmax = 171,
independent of the disorder of the chain; see Sect. 2.7. To-
wards higher frequency the localization length decays to
zero more rapidly with increasing disorder, characterized by
a particular frequency (crossover or pass frequency) where
p = Lmax/2. Unlike infinitely long chains, where L∝ ω−2

(as suggested in Azbel, 1983), the finite disordered chains
for higher frequencies have L∝ ω−q where q� 2, decreas-
ing with increasing disorder. For understanding the effect of
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Figure 12. (a) ωpass(1/2) and (b) localization length at ω = 1 scaled
with maximum localization length (Lmax) for different ξ .

different types of disorder on the pass frequencies (ωpass) as-
sociated with the localization length (L), ωpass(1/2) (the fre-
quency associated withLmax/2), has been plotted in Fig. 12a,
and L, associated with ω = 1 scaled with Lmax, has been
plotted in Fig. 12b, selected from the dashed-line crossings
in Fig. 11a. Both quantities exhibit a decreasing trend with
an increase in disorder, as characterized by the empirical fits:

ωpass(1/2) = ωo+ (2−ωo)exp−ξ/ξω , (48)

where ωo = 0.3502 and ξω = 0.2536, and

L(ξ,ω = 1)= Lo+ (Lmax−Lo)exp−ξ/ξL , (49)

whereLo = 2.7668 and ξL = 0.3165, with some errors of the
order of ±5 %. Both curves saturate for large ξ values. More
data and a closer analysis are necessary for improving this
analysis and putting a better theoretical basis to the fits.

3.8 Total energy of eigenmodes

The density of states or density of vibrational modes is an
important quantifying factor in studying the vibrational prop-
erties of materials such as jammed granular media (Schreck
et al., 2014), etc. However, it tells us only about the number
of vibrational modes but does not paint the complete picture
of spectral properties of momentum and energy transport.
Equation (A5) gives us the energies of individual eigenmodes
and shows that the energy is constant with respect to time.
Figure 13a plots the ensemble-averaged density of states for
500 mass-disordered granular chains with frequency bins of
size 0.0781. The peak of the density is decreasing with in-
creasing disorder and shifting to smaller ω. Figure 13b gives
the ensemble-averaged energy spectrum for the same fre-
quency bins used in Fig. 13a (500 realizations), giving an
energy distribution over frequency. The shape of the energy
distribution is wider for larger ξ ; the energy distribution be-
comes more sharp, shifting to smaller ω with increasing dis-
order. In both plots, Fig. 13a and b, the tails are broader for
larger ξ , where the shapes in panel (a) are independent of
driving, while the shapes in panel (b) depend on the initial
condition.
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Figure 13. (a) Density of states and (b) energies of the binned fre-
quencies for different disorder ξ for all bin sizes in ω.

4 Conclusions

An impulse driven wave propagating through a precom-
pressed mass-disordered granular chain has been studied.
Motivation comes from the existence of force chains which
form the backbone network for mechanical wave propagation
in granular materials such as soil. The scaled standard devi-
ation of the mass probability distribution of the elements or
particles of the granular chain has been identified as the rel-
evant disorder parameter (ξ ; see Sect. 2.6), as suggested al-
ready in Lawney and Luding (2014). Chains with normal, bi-
nary and uniform mass distributions have quantitatively iden-
tical signal transmission characteristics as long as the first
two moments of the mass distribution are the same and ξ is
not too large.

Interestingly, on first sight, the dependence of wave speed
on magnitude of disorder looks nonmonotonous. This sur-
prising increase of wave speed for weak disorder, and de-
crease for stronger disorder, is due to two different effects
overlapping: the increase of wave speed takes place close
to the source (see Fig. 7), i.e., our one-dimensional granu-
lar chain has the ability to model the physics of accelerating
waves, as observed in complex higher dimensional granular
structures (Mouraille et al., 2006). The competing mecha-
nism of decreasing wave speed with disorder is only clearly
observed when the velocities are measured via the travel
time while maintaining constant separation far away from
the source (Fig. 8 and Table 6). The group velocity given
by Eq. (45) also shows a decrease in wave speed with an in-
crease in disorder. When the travel time is measured from
the source, the two mechanisms overlap and interfere, caus-
ing the nonmonotonous behavior, but possibly allowing for
the tuning of particular propagation characteristics in short
chains.

As another main result, Eq. (43) gives an effective,
weighted dispersion relation as the normalized first moment
of eigenmodal (total) energies with frequency. This gives a
much better signal to noise ratio for ω vs. k in compari-
son to two-dimensional FFT of displacement or velocity sig-
nals, reported previously (Mouraille et al., 2006; O’Donovan
et al., 2015). The upper (maximum permissible) limit fre-
quency due to the discreteness of the system slightly de-
creases with increasing disorder, ξ , and waves consistently
propagate slightly slower with increasing disorder if scaled
by mean mass, i.e., an effect of ξ . From the energy content
one also observes (in disordered systems) that waves above a
low-frequency pass band (ωpass(1/2)) become evanescent af-
ter they have traversed a localization length, L= L(ξ,ω), as-
sociated with a particular pass frequency (ω = 1) for which
(yet) no analytical prediction is known to the authors (Otsubo
et al., 2017).

The energy analysis presented in this article can be used
for understanding pulse propagation in disordered, weakly or
strongly nonlinear granular chains and its attenuation, widen-
ing and acceleration (experimentally and numerically inves-
tigated in Langlois and Jia, 2015). It would also be interesting
to understand the effect of damping on the eigenmodes, ve-
locity of the propagating wave, changes in frequency filtering
and the energy of the eigenmodes. Also, a different kind of
averaging (micro–macro transition) should be developed us-
ing frequency bands to develop a master equation for propa-
gation (or localization) of total energy in terms of wavenum-
ber and frequency at different regimes of disorder, nonlinear-
ity and material properties. Such macromodels, taking into
account multiple scattering, dispersion, attenuation, etc., will
allow for modeling of realistic wave propagation in granular
materials such as soil on large scales.

Data availability. Data have been generated using the aforemen-
tioned theoretical model. The readers can reproduce it by using the
equations mentioned in their respective sections.
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Appendix A: Total energy harmonic evolution

The energy of the system (chain) can be calculated by vector
multiplications at a particular instance of time, the nonuni-
tary dimension of the vector gives the respective information
of the individual particles. The kinetic energy of the chain at
a particular instant of time is

Ekin(t)=
1
2
vTMv. (A1)

Starting from the impulse initial condition in Sect. 2.5, using
v = SC(2)Ga (Eqs. 29 and 30) and the orthonormality con-
dition STMS= I (Eq. 21), where I is the identity matrix, the
above equation becomes

Ekin(t)=
1
2
(SC(2)Ga)TM(SC(2)Ga)

=
1
2
aTGT(C(2))TSTMSC(2)Ga =

1
2
aTG{C(2)}2Ga

=
1
2

∑
j

a2
jω

2
j sin2(ωj t). (A2)

Since C(1), C(2) and G are diagonal matrices, their transpo-
sition are equal to their original matrices. Note that there is
no summation convention applied here. The potential energy
of the chain at a particular instant of time is

Epot(t)=−
1
2
uTKu. (A3)

Using u= SC(1)a, v = SC(2)Ga, Eq. (30), and orthonormal-
ity, the above equation can be written as

Epot(t)=−
1
2
uTKu

=−
1
2
uTM

d2u

dt2

=−
1
2
(SC(1)a)TM

dv
dt

=−
1
2
(SC(1)a)TM

dSC(2)Ga
dt

=
1
2
aTC(1)STMSC(1){G}2a

=
1
2
aTG{C(1)}2Ga =

1
2

∑
j

a2
jω

2
j cos2(ωj t). (A4)

Hence, the total energy becomes a sum over all eigenmode
energies:

Etot(t)=
1
2

∑
j

a2
jω

2
j , (A5)

which is independent of time (the energy of our chain is con-
served). This equation (Eq. A5) also gives us energy with
respect to different eigenmodes of the chain (if we drop the
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Figure A1. Multiplicative Factor aj for normal distribution ob-
tained after ensemble averaging (500).

summation). Hence, Etot(ωj )=
1
2a

2
jω

2
j . Now, by replacing

u, v, a with their spatial Fourier transform counter parts U ,V
and A (calligraphic) by using the ansatz in spatial Fourier
space as in Eq. (19) for Eq. (18), we obtain the harmonic
total energy (in terms of wavenumber):

Etot(ωj ,k)=
1
2
A2
j (k)ω

2
j . (A6)

Appendix B: Hertz contact model

If a Hertzian repulsive interaction force is taken into con-
sideration between particles (Landau and Lifshitz, 1970;
Lawney and Luding, 2014), then

κ̃(i,j) = Ỹ(i,j)

[ r̃i r̃j

r̃i + r̃j

]1/2
, (B1)

where

Ỹ−1
(i,j) =

3
4

(1− ν2
i

Ẽi
+

1− ν2
j

Ẽj

)
. (B2)

Ẽi and νi are the elastic modulus and Poisson’s ratio, respec-
tively, of particle i. If the particles are made up of the same
material, Ỹ(i,j) and ν become same for all the contacts,

Ỹ−1
=

3
2

(1− ν2

Ẽ

)
. (B3)

The characteristic stiffness of the contact is

κ̃o =
Ẽ

1− ν2

[ 2m̃o
243πρ̃

]1/6
. (B4)

The characteristic initial overlap becomes

1̃o =
( F̃o
κ̃o

)2/3
. (B5)

The characteristic time is
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t̃c =
1

1̃
1/4
o

√
1− ν2

Ẽ

[243πρ̃m̃5
o

2

]1/12
. (B6)

The scaled stiffness ratio is

κ(i,j) =
κ̃(i,j)

κ̃o
=

√
2

b(i)1/3+ b(j)1/3

(
b(i)b(j)

)1/6
. (B7)

The initial overlap during static equilibrium can be formu-
lated as

1(i,j) =
1̃(i,j)

1̃o
= κ
−2/3
(i,j) . (B8)

Appendix C: Matching the first two moments of
different distributions (normal, uniform and binary).

The raw nth moment of a probability distribution f (q)(m̃) is
defined as

M̃
(q)
n =

∞∫
−∞

m̃nf (q)(m̃)dm̃, (C1)

where f (q)(m̃) is the distribution, q is the type of distribu-
tion and m̃ is the variable for which the distribution has been
defined. The term q is n for normal distribution, u for uni-
form distribution and bi for binary distribution. The scaled
moment is defined as

M
(q)
n =

M̃
(q)
n

(M̃
(q)

1 )n

=

∫
∞

−∞
m̃nf (m̃)dm̃

(
∫
∞

−∞
m̃f (m̃)dm̃)n

=

∫
∞

−∞
m̃nf (m̃)dm̃

(M̃1)n

(where first raw moment is the average

of the distribution(M̃1))

=

∞∫
−∞

(
m̃

M̃1

)n
f (m̃)dm̃ =

∞∫
−∞

bn{M̃1f (m̃)}db

(where b = m̃/M̃1 is the scaled mass (Sect. 2.1))

=

∞∫
−∞

bnf (b)db

(with f (b) as the scaled mass distribution). (C2)

In the case of particle mass distributions, only positive values
can be considered, so that the lower limit is to be replaced by
zero, which has consequences for larger ξ .

C1 Normal distribution

The unscaled normal distribution is given as

f (n)(m̃)=
1

ξ̃ (n)
√

2π
e
−
(m̃−M̃1)

2

2(̃ξ (n))2 , (C3)

where ξ̃ (n) is the standard deviation and M̃1 is the average of
the distribution. The scaled normal distribution is given as

f (n)(b)= M̃1f
(n)(m̃)=

1

ξ (n)
√

2π
e
−

(b−1)2

2(ξ(n))2 , (C4)

where b = m̃/M̃1 is the scaled mass and ξ (n) = ξ̃ (n)/M̃1 is
the scaled standard deviation, which is the disorder parameter
for the one-dimensional chain.

C1.1 First moment

The first scaled moment of the normal distribution is

M
(n)
1 =

∞∫
−∞

b
1

ξ (n)
√

2π
e
−

(b−1)2

2(ξ(n))2 db,

=

∞∫
−∞

(b− 1)
1

ξ (n)
√

2π
e
−

(b−1)2

2(ξ(n))2 db

︸ ︷︷ ︸
non-even power of b

+

∞∫
−∞

1

ξ (n)
√

2π
e
−

(b−1)2

2(ξ(n))2 db

︸ ︷︷ ︸
even power of b

,

= 0+
1
√
π
×
√
π = 1. (C5)

C1.2 Second moment

The Gaussian integral (normalizing condition) can be used,
differentiated with respect to (ξ (n))2 to get

−
1

2(ξ (n))2
√

2π(ξ (n))2

∞∫
−∞

e
−

(b−1)2

2(ξ(n))2 db

+
1√

2π(ξ (n))2

∞∫
−∞

(b− 1)2

2(ξ (n))4
e
−

(b−1)2

2(ξ(n))2 db = 0;

multiplication by 2(ξ (n))4 yields

⇒
1√

(ξ (n))22π

∞∫
−∞

(b− 1)2e
−

(b−1)2

2(ξ(n))2 db
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=
(ξ (n))2√
2π(ξ (n))2

∞∫
−∞

e
−

(b−1)2

2(ξ(n))2 db

︸ ︷︷ ︸
Normalizing condition = 1

,

⇒M
(n)
2 = 1+ (ξ (n))2. (C6)

Taking ξ (n) = ξ , the second scaled moment of the normal
distribution is 1+ ξ2.

C2 Binary distribution

The unscaled binary distribution is given by

f (bi)(m̃)=
δ(m̃− (M̃1+ ξ̃

(bi)))

2

+
δ(m̃− (M̃1− ξ̃

(bi)))

2
, (C7)

with the Kronecker δ(0)= 1 and the scaled binary distribu-
tion is given as

f (bi)(b)= M̃1f
(bi)(m̃),

=
δ{b− (1− ξ (bi))}+ δ{b− (1+ ξ (bi))}

2
, (C8)

where b = m̃/M̃1 is the scaled mass and ξ (bi)
= ξ̃ (bi)/M̃1 is

the scaled standard deviation, which is the disorder parameter
for the one-dimensional chain.

C2.1 First moment

The first scaled moment of the distribution is given as

M
(bi)
1 =

∞∫
−∞

bf (bi)(b)db =
1− ξ (bi)

2
+

1+ ξ (bi)

2
= 1. (C9)

C2.2 Second moment

The second scaled moment of the binary distribution is given
as follows:

M
(bi)
2 =

∞∫
−∞

b2f (bi)(b)db =
(1− ξ (bi))2

2
+
(1+ ξ (bi))2

2

= 1+ (ξ (bi))2. (C10)

Taking ξ (n) = ξ (bi)
= ξ , the second scaled moment of the bi-

nary distribution is 1+ ξ2.

C3 Uniform distribution

The unscaled uniform distribution for the mass distribution
is given by

f (u)(m̃)=

{
1

2̃ξ (u)
for M̃1− ξ̃

(u)
≤ m̃≤ M̃1+ ξ̃

(u)

0 for m̃ < M̃1− ξ̃
(u) or m̃ > M̃1+ ξ̃

(u).
(C11)

The value of the mass is 1
2̃ξ (u)

in the interval[
M̃1− ξ̃

(u),M̃1+ ξ̃
(u)
]

and 0 elsewhere. The scaled
uniform distribution is given as

f (u)(b)= M̃1f
(u)(m̃)

=

{
1

2ξ (u) for 1− ξ (u) ≤ b ≤ 1+ ξ (u)

0 for b < 1− ξ (u) or b > 1+ ξ (u)
. (C12)

The scaled masses (b) are selected from the interval [1−
ξ,1+ ξ ] to approximately p-reserve symmetry about the
scaled mean.

C3.1 First moment

The first scaled moment of the distribution is

M
(u)
1 =

∞∫
−∞

bf (u)(b)db =

1+ξ (u)∫
1−ξ (u)

b

2ξ (u)
db = 1. (C13)

C3.2 Second moment

The second moment of the distribution is given as

M
(u)
2 =

∞∫
−∞

b2f (u)(b)db =

1+ξ (u)∫
1−ξ (u)

b2

2ξ
db =

b3

6ξ (u)

⌋1+ξ (u)

1−ξ (u)

= 1+
(ξ (u))2

3
. (C14)

Taking ξ (u) =
√

3ξ (n) =
√

3ξ (bi)
=
√

3ξ and using Eq. (C14)
yields

M
(u)
2 = 1+

(ξ (u))2

3
= 1+ ξ2, (C15)

thereby placing a limit on the uniform distribution ([1−√
3ξ,1+

√
3ξ ]) so that the first two moments of three dis-

tributions are identical except for large ξ .
From Eqs. (C4), (C9) and (C13), it can be said that the

first moment of the distributions have been matched. From
Eqs. (C6), (C10) and after placing a limit on the uniform dis-
tribution, Eq. (C15) shows that the second moments of the
distributions are matched. Equation (C15) shows that the sec-
ond moments of the distributions are matched. However, for
large disorder, there is a need for correction, as b > 0 cannot
be negative.
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