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Abstract. The climate system can been described by a dy-
namical system and its associated attractor. The dynamics of
this attractor depends on the external forcings that influence
the climate. Such forcings can affect the mean values or vari-
ances, but regions of the attractor that are seldom visited can
also be affected. It is an important challenge to measure how
the climate attractor responds to different forcings. Currently,
the Euclidean distance or similar measures like the Maha-
lanobis distance have been favored to measure discrepancies
between two climatic situations. Those distances do not have
a natural building mechanism to take into account the attrac-
tor dynamics. In this paper, we argue that a Wasserstein dis-
tance, stemming from optimal transport theory, offers an ef-
ficient and practical way to discriminate between dynamical
systems. After treating a toy example, we explore how the
Wasserstein distance can be applied and interpreted to detect
non-autonomous dynamics from a Lorenz system driven by
seasonal cycles and a warming trend.

1 Introduction

If the climate system is viewed as a complex dynamical sys-
tem yielding a strange attractor, i.e., a highly complicated
object around which all trajectories wind up (Lorenz, 1963),
then, climate variability is linked to the statistical properties
of such an attractor (Ghil and Childress, 1987). Those statis-
tical properties refer to the probability that trajectories visit
each region of phase space (Mané, 2012; Eckmann and Ru-
elle, 1985). Mathematical concepts to describe those proper-
ties on rather simple dynamical systems have been investi-
gated by Chekroun et al. (2011).

In addition to climate internal variability, external forcings
(either natural or anthropogenic) perturb the climate system
dynamics by introducing a time dependence of the attractor.
This is the cause of non-stationary behavior of the climate
system. At first order, this can translate into a general shift
of the underlying attractor (Corti et al., 1999). At second or-
der, interactions between a seasonal cycle and a slow forcing
can even lead to trends in subtle quantities (e.g., Cassou and
Cattiaux, 2016; Vrac et al., 2014). A few properties of the
climate attractor due to external forcings (anthropogenic or
not) have been treated by Pierini et al. (2016) and Drótos
et al. (2015), who focused on low-dimensional strange at-
tractors and investigated qualitative changes of the attractors,
although all those studies are quantitative in many aspects.
Lucarini et al. (2017) have recently used response theory
(Ruelle, 2009) to quantify the modification of the dynamics
submitted to a forcing.

Classical distances, like the Euclidean distance are often
used to measure attractor differences. The goal of our pa-
per is to present a framework, embedded in optimal trans-
port theory (e.g., Villani, 2003), to measure the distance be-
tween strange attractors, and make a statistical inference of
this tool on well-documented dynamical systems. To do this
we exploit the fact that the attractor of the system defines
an invariant measure, which is the multivariate probability
distribution of all trajectories of the system. The distance be-
tween attractors is then computed through the cost to trans-
form one invariant measure into another. A similar idea was
already proposed in Ghil (2015) to characterize the climate
variability. In particular, we assess that it is possible to dis-
criminate between attractors, given a relatively low number
of sampling points, in order to ensure the applicability of this
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methodology. We test this method on a time-varying dynami-
cal system in order to illustrate how the dynamics of a system
can be affected by a constant forcing interacting with season-
ality.

The paper is organized as follows. In Sect. 2, we recall
some basic concepts used in optimal transport theory and
recall the definition of the Wasserstein distance. In Sect. 3,
we investigate the performance of the Wasserstein distance
to discriminate between two “simple” autonomous systems
(winter against summer of Lorenz, 1984 model). Section 4
explores how forcing can impact the Wasserstein distance
capability at detecting changes in a non-stationarity context.
Section 5 concludes and proposes some future research di-
rections.

2 Distance between measures

To characterize changes in the properties of the attractor of a
dynamical system, the first step of our methodology is to de-
termine how two measures (or distributions of mass) differ.
The idea is to derive a cost function for transporting one mass
distribution onto the other. As a simple example, we consider
the three mass distributions shown in Fig. 1, noted µ, ν and
ξ . The distributions are on a grid of size 10×10= 100, with
mass positions located on pixels xi , i = 1, . . .,100. ν is con-
structed to be a one pixel left shift of µ. The distribution ξ
is a 90◦ rotation and a mirror image of µ, and we move one
square to have a common point with µ. The distribution µ
(resp., ν and ξ ) can be written as

µ=
100∑
i=1

µiδxi ,

where δx is the Dirac mass at pixel xi , and µi = 1 on the
black boxes in Fig. 1 and µi = 0 on the grey boxes. The Eu-
clidean distance d between µ and ν is defined by

d(µ,ν)2 =
100∑
i=1
|µi − νi |2.

Panels a and b in Fig. 1 are visually very similar, whereas
panel c cannot be deduced from a trivial transformation of
the first panels. Therefore, it is expected that µ is “closer” to
ν than ξ . We find that the Euclidean distance from µ to ν is
3.74, and the distance from µ to ξ is 3.46 (the example was
constructed to show this). Thus, the Euclidean distance does
not capture the structural proximity between µ and ν. The
explanation is the following: among the squares that have no
common mass, the value of the Euclidean distance is inde-
pendent of the position of squares. This highlights the need
of a distance that can take into account how masses should be
moved, say, from the left panel to the middle panel of Fig. 1.

This mathematical problem traces back to Monge (1781)
and is the basis of optimal transport theory (see, e.g., Vil-
lani, 2003). To transport the mass distribution µ contained
in the boxes at xi to the distribution ν in the boxes at xj , a
total cost of the transport has to be defined. We note γij > 0
the fraction of the mass transported from the boxes xi to xj .
The cost of the transport is defined by γijd(xi,xj )2. Conse-
quently, the total transport cost from µ to ν is

∑
ij

γijd(xi,xj )
2,

where d is the usual Euclidean distance between the location
xi and xj . The set of γij coefficients is called the transport
plan. It is a measure on product space of measures admitting
µ and ν as margins. The optimal transport cost is obtained
by minimizing this sum over all possible transport plans, i.e.,
all possible γij > 0. This produces the Wasserstein distance

W(µ,ν)=
(

inf
γij

∑
ij

γijd(xi,xj )
2

)1/2

. (1)

Computing the right-hand side of Eq. (1) is a problem of
minimization under constraints on the γij coefficients, which
have to be positive, and whose marginal sums equal µi and
νj . This distance can be numerically computed by network
simplex algorithms, coming from linear programming theory
(see, e.g., Bazaraa et al., 2009). We refer to Appendix A for
a general idea of the algorithm. Equation (1) is the discrete
version of a more general formulation of the Wasserstein dis-
tance, whose properties are detailed by Villani (2003).

In our example (Fig. 1), we have W(µ,ν)= 1� 3.27=
W(µ,ξ). Therefore, we can quantify with the Wasserstein
distance that the cost of transforming µ into ν is lower than
transforming µ into ξ . This result is closer to the physical in-
tuition that a small shift is less costly than a mirror image and
a rotation. Our next step is to apply the Wasserstein distance
to differentiate between dynamical systems.

3 Inference on simple dynamical systems

3.1 Attractors and measure of a dynamical system

A dynamical system can be defined by the action of an ordi-
nary differential equation

dx

dt
= v(x),

on a set of initial conditions (see, e.g., Guckenheimer and
Holmes, 1983; Katok and Hasselblatt, 1997). Here x is a
multivariate vector in the phase space and v(x) is a vector
field that acts on x. The properties of the ensemble of trajec-
tories from all initial conditions define the dynamics of the
system. They are entirely determined by v.
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(a) µ (b) ν (c) ξ

Figure 1. µ, ν and ξ are three examples of density of attractors. The black boxes have a measure of 1 and the grey a measure of 0. ν is a shift
of µ, but ξ is very different to µ and ν. Finally, ν has no common point with µ, whereas ξ has one common point with µ. Finally, ν (resp., ξ )
have no common (resp., one common) point with µ. The Euclidean distance between µ and ν (resp., ξ ) is equal 3.74 (resp., 3.46), whereas
the Wasserstein distance is equal to 1 between µ and ν, and 3.27 between µ and ξ .

For chaotic dynamical systems, trajectories x(t) emerging
from almost all initial conditions converge to a unique object
called an attractor, embedded in the phase space. Attractors
define an invariant measure in phase space, which quantifies
the weight of all trajectories of the dynamical system in sub-
regions of the phase space. The measure of a sub-region of
phase space is the probability of a trajectory of the system to
go through the region. The invariance is characterized by the
conservation of the volume by the dynamics of the system
(Ruelle, 1989). The goal of this section is to estimate the dis-
tance between the empirical invariant measure of attractors.

We now focus on the Lorenz (1984) model, which is an
idealized model of the Hadley circulation and its seasonality.
The dynamics of this system is noted v(x), and, for a vector
x = (x1,x2,x3) given by

v(x)=
−x2

2 − x2
3 − (x1−F)/4

x1x2− 4x1x3− x2+ 1
x1x3+ 4x1x2− x3

 . (2)

We propose to discriminate two attractors based on Eq. (2).
A first attractor is generated with F ≡ 11.5 (noted Wi, for
winter). A second attractor is generated with F ≡ 7.5 (noted
Su, for summer). We choose those values and this terminol-
ogy because F is interpreted as a seasonal cycle in Sect. 4,
of length τ = 73 units. Both systems have three variables (so
the phase space is R3), are chaotic and yield a strange attrac-
tor. They are illustrated by two long trajectories in Fig. 2. To
quantify the difference between the two attractors, it is first
necessary to estimate the invariant measure of both attractors.
We use the method of snapshot attractors (e.g., Romeiras
et al., 1990; Chekroun et al., 2011) rather than considering
one single long trajectory that could bias the sampling of
some regions of the attractors, and requires the system to be
ergodic. In the snapshot attractors, we draw N random ini-
tial conditions following a uniform distribution. All margins
are independent. This approximates a Lebesgue measure in
a cube that includes the attractors. We iterate the dynamics
of the systems between t0 = 0 and a long time multiple of τ .

Consistently with Drótos et al. (2015), we take 5τ = 5 × 73
(i.e., 5 cycles, but we have checked than τ is enough). Both
systems are dissipative outside of the attractors neighbor-
hood, therefore all N trajectories collapse to the attractors
after time 5τ and provide an efficient sampling of the invari-
ant measure (Romeiras et al., 1990). After time 5τ , the set
of N final points emerging of N initial conditions is called a
snapshot attractor (see Algorithm 2). Snapshot attractors are
special cases of pullback attractors (Chekroun et al., 2011).
The latter class requires an integration between −∞ and a
desired final time. Equation (2) does not depend on time;
therefore, the integration into Sect. 3.1 can be performed on
any length intervals.
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Figure 1. µ, ν and ξ are three examples of density of attractors. The black boxes have a measure of 1 and the grey a measure of 0. ν is a
shift of µ, but ξ is very different of µ and ν. Finally, ν (resp. ξ ) have no common (resp. one common) point with µ. The Euclidean distance
between µ and ν (resp. ξ ) is equal at 3.74 (resp. 3.46), whereas the Wasserstein distance is equal to 1 between µ and ν, and 3.27 between µ

and ξ .

For chaotic dynamical systems, trajectories x(t) emerging
from almost all initial conditions converge to a unique object
called an attractor, embedded in the phase space. Attractors
define an invariant measure in phase space, which quantify
the weight of all trajectories of the dynamical system in sub-5

regions of the phase space. The measure of a sub region of
phase space is the probability of a trajectory of the system to
go through the region. The invariance is characterized by the
conservation of the volume by the dynamics of the system
(Ruelle, 1989). The goal of this section is to estimate the dis-10

tance between the empirical invariant measure of attractors
in particular setup.

We now focus on the Lorenz (1984) model, which is an
idealized model of the Hadley circulation and its seasonality.
The dynamics of this system is noted v(x), and, for a vector15

x = (x1,x2,x3) given by

v(x)=
−x2

2 − x2
3 − (x1−F)/4

x1x2− 4x1x3− x2+ 1
x1x3+ 4x1x2− x3

 . (2)

We propose to discriminate two attractors based on Eq. (2).
A first attractor is generated with F ≡ 11.5 (noted Wi, for
winter). A second attractor is generated with F ≡ 7.5 (noted20

Su, for summer). We choose those values and this terminol-
ogy because F is interpreted as a seasonal cycle in Sect. 4,
of length τ = 73 units. Both systems have three variables (so
the phase space is R3), are chaotic and yield a strange attrac-
tor. They are illustrated by two long trajectories in Fig. 2. To25

quantify the difference between the two attractors, it is first
necessary to estimate the invariant measure of both attrac-
tors. We use the method of snapshot attractors (e.g. Romeiras
et al., 1990; Chekroun et al., 2011) rather than considering
one single long trajectory that could bias the sampling of30

some regions of the attractors, and requires the system to be
ergodic. In the snapshot attractors, we draw N random ini-
tial conditions following a uniform distribution. All margins

are independent. This approximates a Lebesgue measure in
a cube that includes the attractors. We iterate the dynamics 35

of the systems between t0 = 0 and a long time multiple of τ .
Consistently with Drótos et al. (2015), we take 5τ = 5 × 73
(i.e. 5 cycles, but we have checked than τ is enough). Both
systems are dissipative outside of the attractors neighbor-
hood, therefore all N trajectories collapse to the attractors 40

after time 5τ and provide an efficient sampling of the invari-
ant measure (Romeiras et al., 1990). After time 5τ , the set
of N final points emerging of N initial conditions is called a
snapshot attractor (see Algorithm 1). Snapshot attractors are
special cases of pullback attractors (Chekroun et al., 2011). 45

The latter class requires an integration between −∞ and a
desired final time. Eq. (2) does not depend of time, so the
integration into Sect. 3.1 can be performed on any length in-
tervals.

Algorithm 1 Simulation of a snapshot attractor with N initial
conditions from the Lorenz 84 system.

Require: 5τ (= 5×73) iteration time for convergence towards the
attractor,
N (= 50,100,1000) the number of points in the snapshot,
C (= [−1,3]×[−3,3]×[−3,3]) a box that contains the attrac-
tor

Ensure: One snapshot with N points denoted {yi} ∈ R3 with i =
1, . . . ,N

1: Draw uniformly N points x1, . . . ,xN in C

2: for i = 1, . . . ,N do
3: Integrate Eq. (2) between 0 and 5τ starting to xi . The ending

point is yi . Integration is performed using the RK4 scheme
with a time step of 0.005.

4: end for

Then we compute the empirical measures associated with 50

the snapshot attractors by discretizing the phase space (ap-
proximated by the box [−1,3]×[−3,3]×[−3,3]) into cells

www.nonlin-processes-geophys.net/24/1/2017/ Nonlin. Processes Geophys., 24, 1–13, 2017

Then we compute the empirical measures associated with
the snapshot attractors by discretizing the phase space (ap-
proximated by the box [−1,3]×[−3,3]×[−3,3]) into cells
of size 0.1 × 0.1 × 0.1 (so 40× 60× 60= A cells), and by
counting the number of points of a snapshot attractor in each
cell (see Algorithm 2). The empirical measure of the win-
ter attractor (resp., summer) is noted µWi (resp., µSu). They
are sums of Dirac measures at each discrete cell. It is the
equivalent of a multi-dimensional histogram of the attrac-
tor. We chose a bin length of 0.1 for the Lorenz attractor,
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Figure 2. (a) Winter snapshot attractor of the Lorenz84 model. (b) Summer snapshot attractor of the Lorenz 84 model. Each of 10 000 points
is the solution at time 5τ = 5 × 73 of the Lorenz 84 equation (see Eq. 2), and constructed with a time step of integration of 0.005 using RK4
scheme.

which remains in a [−1;3]× [−3;3]× [−3;3] box. There-
fore, 40 × 60 × 60 bins cover the attractor. This number of
bins is comparable to the number of grid cells that cover
the North Atlantic region in the NCEP reanalysis (or most
CMIP5 model simulations). This example refers to a few
papers dealing with climate attractor properties (e.g., Corti
et al., 1999; Faranda et al., 2017).
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Figure 2. (a) winter snapshot attractor of the Lorenz84 model. (b) summer snapshot attractor of the Lorenz 84 model. Each of 10 000 points
is the solution at time 5τ = 5 × 73 of the Lorenz 84 equation (see Eq. 2), and constructed with a time step of integration of 0.005 using RK4
scheme.

of size 0.1 × 0.1 × 0.1 (so 40× 60× 60= A cells), and by
counting the number of points of a snapshot attractor in each
cell (see Algorithm 2). The empirical measure of the win-
ter attractor (resp. summer) is noted µWi (resp. µSu). They
are sums of Dirac measures at each discrete cell. It is the
equivalent of a multi-dimensional histogram of the attrac-
tor. We chose a bin length of 0.1 for the Lorenz attractor,5

which remains in a [−1;3]× [−3;3]× [−3;3] box. There-
fore 40 × 60 × 60 bins cover the attractor. This number of
bins is comparable to the number of gridcells that cover
the North Atlantic region in the NCEP reanalysis (or most
CMIP5 model simulations). This example refers to a few pa-10

pers dealing with climate attractor properties (e.g. Corti S.
et al., 1999; Faranda D. et al., 2017).

3.2 Protocol

The difference between the summer and winter attractors is
evaluated byWµWi,µSu) for different sample sample of size 15

N . The probability distribution of Wasserstein distances is
not known a priori for random measures. We first estimate
the typical value of Wasserstein distances between identical
attractors in order to build a null hypothesis to be rejected if
the distance is larger to some threshold. Therefore, we con- 20

struct fifty winter (resp. summer) Lorenz 84 snapshot attrac-
tors, with empirical measure µWi

k , k = 1, . . . ,50 (resp. µSu
k ),

by drawing fifty sets of N random initial conditions, and ap-
plying Algorithms 1 and 2 between 0 and 5τ . By construc-
tion,W(µWi

k ,µWi
k̃

) should tend to 0 when N increase. 25

We detect a difference between the winter and summer of
Lorenz 84 systems if

W(µWi
k ,µWi

k̃
)�W(µWi

k ,µSu
k̃

) andW(µSu
k ,µSu

k̃
)

�W(µWi
k ,µSu

k̃
).

Algorithm 2 Determining the empirical invariant measure
from simulated snapshot attractors.

Require: One snapshot attractor, {yi}i=1,...,N , obtained from Al-
gorithm 1, [−1,3]× [−3,3]× [−3,3], a large box containing
the attractor, 0.1, the length of the edge of each cells to com-
pute the histogram (so 40× 60× 60= A cells)

Ensure: An approximated density measure, i.e. a sum of Dirac
masses estimated from the number of points in each cell Ba

with a = 1, . . . ,A

µ= 1
N

A∑
a=1

µaδBa

where δBa
is the Dirac measure around the cell Ba (equal to one

if x ∈ Ba and zero otherwise) and µa ≥ 0 is the inferred mass.
µa is not equal to 0 for a small numbers of boxes.

1: Divide the space into small gridded cell Ba of size 0.1× 0.1×
0.1.

2: for all cells Ba do
3: µa ← (number of yi in Ba)/N
4: end for

This is quantified by a Kolmogorov-Smirnov (K.S.) test 30

(Durbin, 1973; von Storch and Zwiers, 2001) between
the distributions of W(µWi

k ,µWi
k̃

) (resp. W(µSu
k ,µSu

k̃
)) and

W(µWi
k ,µSu

k̃
), in order to reject the null hypothesis that the

probability distributions are equal. The K.S. test gives two
values, the maximal difference between the cumulative dis- 35

tribution function of measures, and the “p value”, which
quantifies the probability to accept the null hypothesis. It is
estimated by the Kolmogorov distribution (see (Marsaglia G.
et al., 2003)). We choose to simulate 50 attractors of winter
and 50 attractors of summer. We have 50× 50= 2500 dif- 40
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3.2 Protocol

The difference between the summer and winter attractors is
evaluated by W(µWi,µSu) for different sample of size N .
The probability distribution of Wasserstein distances is not
known a priori for random measures. We first estimate the
typical value of Wasserstein distances between identical at-

tractors in order to build a null hypothesis to be rejected if
the distance is larger to some threshold. Therefore, we con-
struct 50 winter (resp., summer) Lorenz 84 snapshot attrac-
tors, with empirical measure µWi

k , k = 1, . . .,50 (resp., µSu
k ),

by drawing 50 sets ofN random initial conditions, and apply-
ing Algorithms 2 and 2 between 0 and 5τ . By construction,
W(µWi

k ,µ
Wi
k̃
) should tend to 0 when N increase.

We detect a difference between the winter and summer of
Lorenz 84 systems if

W(µWi
k ,µ

Wi
k̃
)�W(µWi

k ,µ
Su
k̃
) and W(µSu

k ,µ
Su
k̃
)

�W(µWi
k ,µ

Su
k̃
).

This is quantified by a Kolmogorov–Smirnov (KS) test
(Durbin, 1973; von Storch and Zwiers, 2001) between
the distributions of W(µWi

k ,µ
Wi
k̃
) (resp., W(µSu

k ,µ
Su
k̃
)) and

W(µWi
k ,µ

Su
k̃
), in order to reject the null hypothesis that the

probability distributions are equal. The KS test gives two val-
ues, the maximal difference between the cumulative distribu-
tion function of measures, and the “p value”, which quanti-
fies the probability to accept the null hypothesis. It is esti-
mated by the Kolmogorov distribution (see Marsaglia et al.,
2003). We choose to simulate 50 attractors of winter and 50
attractors of summer. We have 50×50= 2500 different pairs
between summer and winter. For the distances between the
50 attractors of the same season (summers or winters), we
only consider 1≤ (k,k′)≤ 50 pairs with k < k′. This means
that we have 1225 distances for the winter or the summer.
So we have at least 1000 distances per distribution. This is
a reasonable sample size for a representative Kolmogorov–
Smirnov test.

The estimation of the Wasserstein distance between attrac-
tors obviously depends on the number of available samples
N of the dynamical systems on which the empirical mea-
sures are constructed. To explore the variability in the es-
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timation of Wasserstein distances from finite observational
sets, we sample its distances for three different values of N :
N = 50, 100 and 1000. We compute also one of each distance
for N = 106. This later case represents a quasi-perfect esti-
mation of the distance and we consider it as our benchmark
for comparison.

The complete procedure to obtain an empirical probability
distribution of Wasserstein distances, depending on the sam-
ple size N , is summarized in Algorithm 3.2.
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ferent pairs between summer and winter. For the distances
between the 50 attractors of the same season (summers or
winters), we only consider 1≤ (k,k′)≤ 50 pairs with k < k′.
This means that we have 1225 distances for the winter or
the summer. So we have at least 1000 distances per distri-
bution. This is a reasonable sample size for a representative
Kolmogorov-Smirnov test.

The estimation of the Wasserstein distance between attrac-5

tors obviously depends on the number of available samples
N of the dynamical systems on which the empirical mea-
sures are constructed. To explore the variability in the es-
timation of Wasserstein distances from finite observational
sets, we sample its distances for three different values of N :10

N = 50, 100 and 1000. We compute also one of each distance
for N = 106. This later case represents a quasi-perfect esti-
mation of the distance and we consider it as our benchmark
for comparison.

The complete procedure to obtain an empirical probability15

distribution of Wasserstein distances, depending on the sam-
ple size N , is summarized in Algorithm 3.

Algorithm 3 Estimation ofW(µWi
k ,µWi

k̃
),W(µWi

k ,µSu
k̃

) and

W(µWi
k ,µSu

k̃
).

Require: N (= 50,100,1000) the number of points in snapshots

Ensure: 1225 independent estimates of the two Wasserstein dis-
tances W(µWi,µWi) and W(µSu,µSu) where the first differ-
entiates two winter and the second two summer of Lorenz 84
snapshot attractors.
2500 independent estimates of the Wasserstein distances
W(µWi,µSu) which compares winter and summer of Lorenz84
snapshot attractors.

1: Use Algorithm 1 to simulate fifty winter and fifty summer
Lorenz 84 snapshot attractors, denoted Wik and Suk . Each
snapshot attractor has N points.

2: Use Algorithm 2 to transform each Wik (resp. Suk) into mea-
sures, noted µWi

k
(resp. µSu

k
).

3: Compute the Wasserstein distances W(µWi
k

,µWi
k̃

) (resp.

W(µSu
k

,µSu
k̃

)) for k 6= k̃ (see Appendix A). Thus, 50×(50+1)
2 −

50= 1225 distances are stored.
4: Compute the Wasserstein distances W(µWi

k
,µSu

k̃
) for all k, k̃.

Thus, 502 = 2500 distances are stored.

3.3 Estimation

The probability distributions of the Wasserstein distance for
W(µWi,µWi) (resp. Su) and W(µWi,µSu) are summarized20

in Fig. 3a by box-and-whisker plots (boxplots: Chambers
et al., 1983)

The distribution of the distances between winter (resp.
summer) snapshot attractors decreases to 0 (the expected
asymptotic value) when N increases (white and grey box-25

Table 1. Kolmogorov-Smirnov test applied between distribution
W(µWi,µWi) (resp.W(µSu,µSu)) andW(µWi,µSu) in left (resp.
right) box on snapshots of size N .

N 50 100 1000

Wasserstein KS-test 0.98 0.99 1 1 1 1
distance p-value 0 0 0 0 0 0

Euclidean KS-test 0.71 0.97 0.77 1 0.47 1
distance p-value 0 0 0 0 0 0

plots). We explain the relatively high values of the distance
when N = 50 by the fact that few cells of the discrete mea-
sure are filled when N is low, so that the transport plan is not
zero. By increasing N , all cells tend to be sampled, so that
the transport plans are less affected by sampling issues, and 30

the cost of the transport decreases on average.
The distance between winter and summer attractors (black

boxplots) decrease with N and converge to the “true” value
that is estimated with N = 106. The explanation is sim-
ilar: if the measures of the snapshot attractors are esti- 35

mated with low N , the “circles” composing the attractors
are akin. Increasing the number of initial conditions N es-
sentially allows to differentiate the dynamics of the two
attractors. We note that the distribution of distances for
N = 1000 is very close to the one with 106. This high- 40

lights a rather quick convergence of the Wasserstein dis-
tance W . Figure 3a shows a good discrimination between
null hypothesis distances W(µWi,µWi) and the distances
W(µWi,µSu), even for N = 50. This discrimination is con-
firmed by Kolmogorov-Smirnov tests reported in Table 1. 45

The null hypothesis of identical attractors is rejected with
probability one, even for N = 50. Finally, the variance of dis-
tance decrease with N . Indeed, attractors are independant of
the initial condition, thus the variability is due to a low N .
This propertie is shown by the Wasserstein distance. 50

This protocol was also applied for bin sizes of 0.05, 0.2
and 1.0. For 0.05 and 0.2, the maximal variation of median
(resp. standard deviation) of Wasserstein distances is 0.03
(resp. 0.01), so we have the distributions are indistinguish-
able in practice. For a bin size of 1.0, the maximal increase 55

of the median is 0.22, but the difference with the median of
winter against summer is at least equal to 0.3.

For illustration purposes, we compute Euclidean distances
between the same snapshot attractors (Fig. 3b). The distances
are normalized by

√
2, the maximum value being reached 60

for two measures without common points. The distances be-
tween winter (resp. summer) snapshot attractors decrease
as N increase (white and grey boxplots). The distances be-
tween winter and summer snapshot attractors also decrease
to the “perfect” estimate with N = 106 (black boxplots), but 65

the convergence to the limit is far from being reached with
N = 1000. The difference between winter and summer can-
not be detected for all N . For N = 50 and 100, the distances
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3.3 Estimation

The probability distributions of the Wasserstein distance for
W(µWi,µWi) (resp., Su) and W(µWi,µSu) are summarized
in Fig. 3a by box-and-whisker plots (boxplots: Chambers
et al., 1983)

The distribution of the distances between winter (resp.,
summer) snapshot attractors decreases to 0 (the expected
asymptotic value) when N increases (white and grey box
plots). We explain the relatively high values of the distance
when N = 50 by the fact that few cells of the discrete mea-
sure are filled when N is low so that the transport plan is not
zero. By increasingN , all cells tend to be sampled so that the
transport plans are less affected by sampling issues, and the
cost of the transport decreases on average.

The distance between winter and summer attractors (black
box plots) decrease with N and converge to the “true”
value that is estimated with N = 106. The explanation is
similar: if the measures of the snapshot attractors are es-
timated with low N , the “circles” composing the attrac-
tors are akin. Increasing the number of initial conditions
N essentially allows one to differentiate the dynamics of
the two attractors. We note that the distribution of distances

Table 1. Kolmogorov–Smirnov test applied between distribution
W(µWi,µWi) (resp., W(µSu,µSu)) and W(µWi,µSu) in left
(resp., right) box on snapshots of size N .

N 50 100 1000

Wasserstein KS test 0.98 0.99 1 1 1 1
distance p value 0 0 0 0 0 0

Euclidean KS test 0.71 0.97 0.77 1 0.47 1
distance p value 0 0 0 0 0 0

for N = 1000 is very close to the one with 106. This high-
lights a rather quick convergence of the Wasserstein dis-
tance W . Figure 3a shows a good discrimination between
null hypothesis distances W(µWi,µWi) and the distances
W(µWi,µSu), even for N = 50. This discrimination is con-
firmed by Kolmogorov–Smirnov tests reported in Table 1.
The null hypothesis of identical attractors is rejected with
probability one, even forN = 50. Finally, the variance of dis-
tance decrease with N . Indeed, attractors are independent of
the initial condition; thus, the variability is due to a low N .
This property is shown by the Wasserstein distance.

This protocol was also applied for bin sizes of 0.05, 0.2
and 1.0. For 0.05 and 0.2, the maximal variation of median
(resp., standard deviation) of Wasserstein distances is 0.03
(resp., 0.01); therefore, we have the distributions are indis-
tinguishable in practice. For a bin size of 1.0, the maximal
increase of the median is 0.22, but the difference with the
median of winter against summer is at least equal to 0.3.

For illustration purposes, we compute Euclidean distances
between the same snapshot attractors (Fig. 3b). The distances
are normalized by

√
2, the maximum value being reached

for two measures without common points. The distances be-
tween winter (resp., summer) snapshot attractors decrease as
N increase (white and grey box plots). The distances be-
tween winter and summer snapshot attractors also decrease
to the “perfect” estimate with N = 106 (black box plots), but
the convergence to the limit is far from being reached with
N = 1000. The difference between winter and summer can-
not be detected for all N . For N = 50 and 100, the distances
between winter are greater than distances between winter
and summer. For N = 1000, the Kolmogorov–Smirnov test
(Table 1) shows the impossibility to reject the null hypothe-
sis without ambiguity. Moreover, the variability is small and
constant with N , which is incompatible with the high vari-
ability due to a low N . Therefore, the Euclidean distance
might not be very useful to distinguish the dynamics in real
world systems with few observations.

3.4 Inference with reduced information

In this section, we test whether it is possible to differenti-
ate between attractors if only partial information is available.
This can happen if one or more variables of the system are
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Figure 3. box plots of distances computed using the Wasserstein distance (a) and the Euclidean one (b). White box plots differentiate between
two winter snapshots. Grey box plots differentiates two summer snapshots. Black box plots compare winter and summer snapshots. Dotted
lines represent the distance between winter and summer attractors with N = 106 points.

omitted (projection onto the remaining variables) or if vari-
ables are censored (truncation of the values of a variable), or
a combination of both. The motivation in atmospheric sci-
ences is that the underlying dynamical system is defined in
three spatial dimensions (on the sphere), and that observables
of the attractor of this system are generally obtained over a
limited area (censoring of the rest of the globe) and a fixed
pressure level (projection).

It has been proven that a sequence of observables of a dy-
namical system convey the same dynamics as the whole sys-
tem (Packard et al., 1980; Takens, 1981; Mañé, 1981). There-
fore, it is meaningful to compare the distances between pro-
jected or truncated attractors.

For the Lorenz 84 attractors, a first reduction of infor-
mation is performed by projecting the systems onto their
(x1,x2) variables (design P ). We hence compute the dis-
tances (Wasserstein and Euclidean) between attractors from
the variables (x1,x2) and discard the information on x3. The
second reduction consists in truncating negative values of the
variable x1 (design T ). Thus, we only consider the values of
(x1,x2,x3) when x1 ≥ 1. The third reduction of information
is a combination of projection onto the (x1,x2) variables and
truncating negative values of x1 (design T +P ). These trans-
formation are illustrated in Fig. 4a–c. Those three transfor-
mations create observables of the underlying attractors. We
shall call them “observed attractors”, with designs P (pro-
jection), T (truncation) and P +T (both). The distribution of
the distance between observed attractors is shown in Fig. 4d–
i, for the two distances and each of the information reduction
design (P , T and P + T ).

The Wasserstein distance distribution (Fig. 4a–c) shows a
clear discrimination between winter and summer observed
attractors, for all values of N . This is reflected in the
Kolmogorov–Smirnov test: all test values are greater than

0.97, except for winter with N = 50, this is 0.84. All p value
are equal to 0. The estimated distances between winter and
summer observed attractors is always smaller than the ide-
alized one (obtained on the full attractors) and shows little
dependence on the number of points N . This is explained
by the fact that the projection on a subspace of dimension
2 implies a reduction of transportation cost. Moreover, some
points that are very far in the winter attractor become close to
each other in the projection P . Overall, the reduction of in-
formation decreases the discriminating power of the Wasser-
stein distance, but the results are still significant for number
of points N as small as 50.

The same experiment is conducted with the Euclidean dis-
tance (Fig. 4g–i). Contradicting the intuition, it clearly dis-
criminate between winter and summer for all designs P , T
and P+T . Comparing the full attractors (Fig. 2) and Fig. 4a–
c, we see that some points very far, become close in the
same boxes of the estimated measure. This is reflected by
a gain of variance, which decreases with N . Finally, we need
N = 1000 to have the distribution between winters (resp.,
summers) lower than the idealized distance.

We conclude that the Wasserstein distance has a high ca-
pacity of discriminating different attractors coming from this
dynamical system, even with a partial information. It is par-
ticularly promising in atmospheric sciences, where analyses
are performed on truncated variables (e.g., a surface field on
a limited area: transformation T ) and/or on only one atmo-
spheric field (e.g., geopotential height, omitting other vari-
ables: transformation P ).
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Figure 4. (a) Projection on axes (x,y) of the winter snapshot (red) and summer snapshot (blue). (b) Truncature at x1 ≥ 1 of the winter and
summer. (c) Combination of (a) and (b) (see designs (T ), (P ) and (T +P ) in Sect. 3.4). (d–f) box plots of distances between design T , P and
T +P computed with the Wasserstein distance. (g–i) box plots of distances between design T , P and T +P computed with the Euclidean
distance. (d–i) White box plots differentiate between two winter snapshots. Grey box plots differentiates two summer snapshots. Black box
plots compare winter and summer snapshots. Dotted lines represent the distance between winter and summer attractors (without designs)
with N = 106 points.

4 Time-varying dynamical system

We now focus on a time-varying dynamical system that mim-
ics variability around a seasonal cycle, and a monotonic forc-
ing that plays after a triggering time T . Such a system defines
a snapshot attractor at all times t . We want to measure how
snapshot attractors evolve after time T , when the forcing in-
creases (we mean the forcing modifies more and more the
attractors). The constant F in the system (2) is now a func-
tion of time, and include a seasonal cycle and a forcing.

F(t)= 9.5+ 2sin
(

2πt
73

)
︸ ︷︷ ︸

seasonality

− 2
t − T
T

1{t>T }︸ ︷︷ ︸
monotonicforcing

,

T = 100× 73. (3)

The snapshot attractors of this system were investigated by
Drótos et al. (2015), who performed an analysis of the mean
and variance of each coordinate to detect the forcing F after
time t > T .
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Figure 5. Snapshots of 10 000 points from the Lorenz 84 defined by Eq. (2). (a–d) The four seasons at time t = 0 years, t = 0.25 years,
t = 0.5 years and t = 0.75 years. (e–h) The same seasons, but after the triggering of the linear forcing, during year 180.

Such a coupled behavior is present in most regional tem-
perature time series at the decadal or centennial scales. The
periodic part of the forcing F in Eq. (3) allows one to di-
vide the year into seasons of the system (Lorenz, 1984; Dró-
tos et al., 2015). To be consistent with Lorenz (1984) and
Drótos et al. (2015), we consider that there are 73= τ time
units in 1 year. We emphasize that a time unit is not anal-
ogous to a “day”, but corresponds to a typical variability
timescale in the non-forced chaotic system in Eq. (2). We
follow Drótos et al. (2015) and define the fall equinox at
t = 0 year or t mod 73= 0 year. Then, winter solstices corre-
spond to t mod 73= 0.25 year, spring equinoxes correspond
to t mod 73= 0.5 year and summer solstices correspond to
t mod 73= 0.75 year. This time-dependent system produces
a different snapshot attractor at each time step. We focus on
the snapshot attractors that occur at each equinox/solstice.
These parameters are coherent with winter and summer de-
fined in Sect. 3.

In this section, we want to quantify the change of the
whole dynamics of the ensemble of snapshot attractors with
the Wasserstein distance, and assess the detectability of
changes from small numbers of observations.

4.1 Protocol

We compute snapshot attractors for each time step, for t be-
tween 0 to 200 years. To have the convergence of trajectories
on attractor, we draw N initial conditions in a cube (see Al-
gorithm 2) and perform a first integration during 5τ = 5×73
time unit (i.e., 5 years). The attractor obtained is considered

at t = 0. As previous Section, N = 50, 100, 1000. We gen-
erate also a sequence with N = 10000 as benchmark. The
N trajectories of the system in Eq. (2) are computed with a
Runge–Kutta scheme of order 4 (RK4).

The empirical measure of the snapshot attractors is esti-
mated at each time step t with the Algorithm 2. We then com-
pute the Wasserstein distance between those time-varying
snapshot attractors, and four reference seasonal snapshot at-
tractors obtained for t = 0, 18.25, 36.5 and 54.75, during the
first year. The four reference seasonal snapshot attractors are
shown in Fig. 5a–d, with N = 10 000 points. For illustration
purposes, the snapshot attractors corresponding to the same
seasons, but at year 180, after the monotonous forcing is trig-
gered. It is obvious from Fig. 5e–f that the forcing affects
each of the seasonal attractors.

The yearly averages of the distances to the four reference
attractors are shown in Fig. 6. We detect the change point,
with a trend, after t = 100 years. Therefore, the detection of
the forcing effect on the dynamics of the Lorenz84 system is
rather immediate, with a lag < 10 years.

We find that the variability of the distance variations de-
crease with the number N of points to estimate the snapshot
attractors, although it does not seem to affect the detection of
the change point. Relatively low values of N show a bias of
the distance, which is even higher for lower values of N . The
mean values of the attractor distance distributions is similar
if N ≥ 100. This sets a lower bound for the number of points
to estimate the measure of snapshot attractors.
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Figure 6. Yearly averages Wasserstein distance between the reference attractor before forcing, and all other attractors. The x axis is the time,
the y axis the estimated Wasserstein distance. The blue (resp., red, green and purple) is the numbers of initial conditions (I.C.) for N = 50
(resp., 100, 1000 and 10 000). The vertical black line represents the instant when the linear trend is triggered in the forcing F(t).

In this example, the distances of the snapshot attractors to
winter and spring reference attractors increase with time after
t = 100 years. Conversely, the distance to fall and summer
reference attractors decrease with time. We interpret this as a
shift of all snapshot attractors toward “hot” conditions.

Those results are consistent with those of Drótos et al.
(2015). The main practical value of our approach is that the
number of points that is needed to sample snapshot attrac-
tors can be as low as N = 100, rather than N = 106, which
is generally not available.

The same experiment is conducted with the Euclidean dis-
tance. For N = 50 and 100, the maximal difference of the
mean (resp., standard deviation) between the period before
and after the forcing is 0.002 (resp., 0.002), whereas the
mean is 0.2 (resp., 0.002). The distance distribution is ap-
proximately Gaussian, which implies that ≈70% of values
are within one standard deviation around the mean. There-
fore, with the values we obtain, we cannot detect the forcing.
For N = 1000 and 10000 the mean is 0.08, and its the max-
imal modification is 0.004. The standard deviation is mul-

tiplied by a factor 20 (0.0002 becomes 0.005). Even if the
forcing is detected, the trajectories of distances are not rep-
resentative of a linear increasing forcing.

5 Conclusions

The Wasserstein distance appears to be efficient to measure
changes in the dynamics in time evolving systems even with
a relatively low number of points (e.g., N = 100). This dis-
crimination is still powerful when only partial information on
the attractor is available (truncation and/or projection). We
made the assumption that the system we investigate yields an
attractor, and the Wasserstein distance determines changes in
the invariant measure of the attractors. This builds an inter-
esting bridge between dynamical systems and optimal trans-
port. A theoretical justification for this bridge is recalled in
Appendix B. A caveat of the approach we present here is that
we do not give an interpretation of the Wasserstein distance
in terms of qualitative dynamical changes (e.g., changes in
local dimensions Faranda et al., 2017). Villani (2003, Chap-
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ter 9) provides links between the Wasserstein distance and
entropy, but they are hard to interpret and infer for the prob-
lem we tried to tackle (measure a change in a strange attrac-
tor).

The other caveat of this approach is its computational cost.
The minimization of the cost function, constrained by the es-
timated measures, has to be implemented by network sim-
plex algorithms (Bazaraa et al., 2009; Boyd and Vanden-
berghe, 2004; Dantzig et al., 1955; Gottschlich and Dominic,
2014). Those algorithms are computationally expensive, but
applicable, as shown with the Lorenz 84 model (200 000 dis-
tances computed in 60 h on a 12 core computer server).

The next research challenge is to adapt this method to cli-
mate model simulations (e.g. from the Coupled Model In-
tercomparison Project (Taylor et al., 2012)). The Wasser-
stein distance could be computed to discriminate between the
atmospheric attractors from control, historical and scenario
runs.

Data availability. The Lorenz model simulations data files can be
obtained upon request to the first author.
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Appendix A: Computation of the Wasserstein distance

We just give here the general idea to compute Wasserstein
distance with the network simplex algorithm. We want to
transport the measure µ to ν, can be written

µ=
n∑
i=1

µiδxi , ν =
p∑
j=1

νj δyj .

The Wasserstein distance is given by minimizing over γij
(the mass transported from xi to yj ) the cost function∑
ij

γijd(xi,yj )2.

Consequently, we have the following linear constraints:

µi =
p∑
j=1

γij , νj =
n∑
i=1

γij , γij ≥ 0

These constraints define a polyhedral convex set in the
space of γij . The solutions of all constraints are the extremal
point of the polyhedra, and theW distance is one of its min-
ima. The network simplex algorithm runs in two part:

1. Finding a first extremal point.

2. Iterate over the face of polyhedra (the simplex) until the
minimal solution is reached.

Because the number of extremal points increases exponen-
tially with the size of data, this algorithm has an exponential
complexity. But, in practice the iterations over simplex are
made in the direction of an optimal solution. Thus, it has been
found that the complexity of the algorithm is polynomial in
practice. Currently, we use a C++ implementation of the R-
package transport (Baehre et al., 2016), using the methodol-
ogy described in Gottschlich and Dominic (2014). We have
also tested entropy regularization (Cuturi, 2013). This algo-
rithm crosses the polyhedra until the optimal solution, but
it requires a parameter changing for each distance. We pre-
ferred to use the network simplex method, which works all
the time.

Appendix B: Theoretical justification

Besides the simulations studied in the previous sections, it is
possible to theoretically justify the use of the Wasserstein dis-
tance for non-autonomous dynamical systems. Any dynami-
cal system defined from an ordinary differential equation, say
dx
dt = v(x, t), is formally equivalent (e.g., see Villani, 2003;
Evans, 2010) to the partial differential equation of a transport
of the density of trajectories of the associated dynamical sys-
tem, say ∂ρt

∂t
+〈∇,ρtv〉 = 0. In other words, the variations be-

tween t0 and t1 of the time-varying attractor in dx
dt = v(x, t)

can be determined by the transport of the measure of the at-
tractors by the dynamics v. If µt denotes the density distri-
bution of ρt (i.e., µt (A)=

∫
A
ρt (x).dx), then the Wasserstein

distance between µt0 and µt1 for attractors in dimension d is
given by the Benamou–Brenier theorem (Benamou and Bre-
nier, 1998)

W(µt0 ,µt1)2 =
1

t1− t0 inf
(ρ̃t ,̃v)

∫
Rd

t1∫
t0

ρ̃t (x)|̃v(x, t)|2 dt dx.

The minimization is done over all vector fields ṽ and all
sequences of density ρ̃t following ṽ such that ρ̃t0 = ρt0 and
ρ̃t1 = ρt1 . This theorem connects the dynamical systems the-
ory with the optimal transport theory. Therefore, the Wasser-
stein distance between two snapshot attractors of a time-
varying dynamical system is linked to the energy (v is ho-
mogeneous to a velocity) of the system that transforms one
attractor into the other. If the dynamics v is unknown and
only simulations are available, this theorem allows (in prin-
ciple) to infer v from the simulations because the optimum
path going from the snapshot attractor at t0 to t1 is achieved
by the actual dynamics v.
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