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Abstract. Stick-slip sliding is observed at various scales in
fault sliding and the accompanied seismic events. It is con-
ventionally assumed that the mechanism of stick-slip over
geo-materials lies in the rate dependence of friction. How-
ever, the movement resembling the stick-slip could be asso-
ciated with elastic oscillations of the rock around the fault,
which occurs irrespective of the rate properties of the fric-
tion. In order to investigate this mechanism, two simple mod-
els are considered in this paper: a mass-spring model of self-
maintaining oscillations and a one-dimensional (1-D) model
of wave propagation through an infinite elastic rod. The rod
slides with friction over a stiff base. The sliding is resisted
by elastic shear springs. The results show that the frictional
sliding in the mass-spring model generates oscillations that
resemble the stick-slip motion. Furthermore, it was observed
that the stick-slip-like motion occurs even when the frictional
coefficient is constant. The 1-D wave propagation model pre-
dicts that despite the presence of shear springs the frictional
sliding waves move with the P wave velocity, denoting the
wave as intersonic. It was also observed that the amplitude
of sliding is decreased with time. This effect might provide
an explanation to the observed intersonic rupture propagation
over faults.

1 Introduction

Earthquakes can lead to catastrophic structural failures and
may trigger tsunamis, landslides, and volcanic activities
(Ghobarah et al., 2006; Bird and Bommer, 2004). The earth-
quakes are generated at faults, and are either produced
by rapid (sometimes “supersonic”) propagation of shear

cracks/ruptures along the faults, or originated in the stick-
slip sliding over the fault. The velocity of rupture propaga-
tion is crucial for estimating the earthquake damage. The rup-
ture velocities can be classified by comparing its speed with
the speeds of stress waves in the rupturing solid (Rosakis,
2002). There are several types of rupture propagation: super-
sonic (V > VP), intersonic (VS < V < VP), subsonic (V <
VS), supershear (V > VS), sub-shear (VR < V < VS), and
sub-Rayleigh (V < VR). According to the data obtained from
the seismic observation of crustal earthquakes, most ruptures
propagate with an average velocity that is about 80 % of the
shear wave velocity (Heaton, 1990). However, in some cases,
supershear propagation of earthquake-generating shear rup-
tures or sliding is observed (Archuleta, 1984; Bouchon et
al., 2000, 2001, 2010; Dunham and Archuleta, 2004; Aa-
gaard and Heaton, 2004). The above observations introduced
the concept of supershear crack propagation (e.g. Bizzarri
and Spudich, 2008; Lu at al., 2009; Bhat et al., 2007; Dun-
ham, 2007; Vallee et al., 2008). However, due to the lack
of strong motion recording, there are still some debates re-
garding the data interpretation (Delouis et al., 2002; Bhat
et al., 2007). For instance, it was suggested that the 2002
Denali earthquake was propagated at a supershear speed of
about 40 km (Dunham and Archuleta, 2004). However, the
data were based on a single ground motion record. The joint
inversion of the combined data set provides a more robust de-
scription of the rupture. The recent studies, which are aimed
at deriving the kinematic models for large earthquakes, have
shown the importance of the type of data used. It has been
shown that slip maps for a given earthquake may vary sig-
nificantly (Cotton and Campillo, 1995; Cohee and Beroza,
1994).
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The analytical (e.g. Burridge, 1973) and numerical (e.g.
Das and Aki, 1977) research in fracture dynamics indicate
that only the Mode II rupture (shear-induced slip occurring
in the direction perpendicular to the crack front) can propa-
gate with intersonic velocity (VS < V < VP) for short dura-
tions, as long as the prestress of the fault is high compared to
both failure and residual stresses (Dunham, 2007). Intersonic
Mode II crack propagation was first confirmed in laboratory
by Rosakis et al. (1999).

Sliding over pre-existing fractures and interfaces is one of
the forms of instability in geo-materials. It is often accom-
panied by stick-slip – a spontaneous jerking motion between
two contacting bodies sliding over each over. It is assumed
that the mechanism of stick-slip lies in intermittent change
between static and kinetic friction and the rate dependence
of the frictional coefficient (Popp and Rudolph, 2004).

The investigation of the friction law on geological faults is
the key element in the modelling of earthquakes. Rate- and
state-dependent friction laws proposed by Dieterich, Ruina,
and Rice (Dieterich, 1978; Ruina, 1983; Rice, 1983) have
successfully modelled frictional sliding and earthquake phe-
nomena. There are two types of frictional sliding between
surfaces that include the tectonic plates. The first type occurs
when two surfaces slip steadily (V = V0 condition, where V
is relative velocity and V0 is the load point velocity) and is
analogous to the fault creep (Byerlee and Summers, 1975).
In the stable state, the sliding over discontinuities (faults and
fractures) is prevented by friction. Modelling of the frictional
sliding is an important tool for understanding the initiation
and the development of rupture, and also, the healing of
the faults. Many models and numerical methods are devel-
oped to describe seismic activities and the supershear frac-
ture/rupture propagation (Noda and Lapusta, 2013; Lapusta
and Rice, 2003; Lu at al., 2009; Lapusta et al., 2000; Sobolev,
2011; Bak and Tang, 1989; Harris and Day, 1993).

The faults are continuously subjected to variations in both
shear and normal stresses, and can produce sliding over ini-
tially stable fractures or interfaces (Boettcher and Marone,
2004). In the Earth’s crust, the increase in shear stress is an
obvious consequence of tectonic movement, while oscilla-
tions in the normal stress can be associated with the tidal
stresses or seismic waves generated by other seismic events.
These can generate the second dynamic state when the slid-
ing occurs jerkily (slip, stick, and then slip again). This type
of sliding is called “stick-slip” sliding, which exhibit cyclic
behaviour. Brace and Byerlee (1966) supposed that the stick-
slip instabilities in the tectonic plates are associated with the
appearance of earthquakes. Both types of sliding are usually
investigated using a spring-block model introduced by Bur-
ridge and Knopoff (BK) in 1967 (Turcotte, 1992). The BK
model consists of an assembly of blocks, where each block
is connected via the elastic springs to the next block and to
the moving plate.

In the present paper, we first simulate a single element
block model, which is one block undergoing frictional slid-

Figure 1. The single block model.

ing on a stiff base. The movement is caused by a spring at-
tached to the block. The other end of the spring moves with
a constant velocity. The paper begins with considering stick-
slip-like movement occurring under rate-independent friction
due to the eigenoscillations of the fault faces and the as-
sociated wave propagation. This demonstrates that the rate
dependence of friction is not necessarily a controlling phe-
nomenon. We also analyse a simple mechanism of unusually
high shear fracture or sliding zone propagation, also referred
as the P sonic propagation of sliding area over a frictional
fault. The analysis is based on the fact that accumulation
of elastic energy in the sliding plates on both sides of the
fault can produce oscillations in the velocity of sliding even
if the frictional coefficient is constant. We note that Walker
and Shearer (2009) found evidence of the intersonic rup-
ture speeds close to the local P wave velocity by analysing
the Kokoxili and Denali earthquakes seismic data. This pa-
per considers a highly simplified one-dimensional (1-D) rod
model where many properties of a real fault system have been
neglected. (Considerable fault geometry simplification is in
use in analysing intersonic ruptures; see, e.g., Bouchon et al.,
2010.)

2 Single degree of freedom frictional oscillator

We start with the self-excited oscillations, which resembles
the stick-slip-like motion, but occur under constant friction.
A single degree-of-freedom block-spring model is used for
this purpose. A block sliding on a rigid horizontal surface is
driven by a spring, whose other end is attached to a driver
moving with a constant velocity (Fig. 1). All variables and
constants used in the equations are listed in Table 1.

Friction is assumed to be cohesionless: Tcr = µN , where
Tcr is the force at which sliding starts.

The system of equations representing the motion of the
block reads{
mV̇ = f (T ,µN)

Ṫ = k1(V0−V )
. (1)

The appearance of the f (T ,µN) function in the system of
equations represents the fact that V ≥ 0.
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Table 1. The list of variables and constants.

Symbol Meaning Symbol Meaning

V0 load point velocity τ shear stress
V relative velocity of block τf friction stress
k1 single spring stiffness E Young’s modulus
m block mass c velocity of longitudinal wave (p =wave)
N gravity force ω eigenfrequency
T shear force k2 the spring stiffness relating stress and displacement discontinuity (the

difference between the rod displacement and the zero displacement of
the base)

µ friction coefficient J0 Bessel function of the order of 0
ω0 eigenfrequency J ′0 derivative of Bessel function
t time i imaginary unit
h thickness of an infinite rod ξ independent variable
ρ volumetric rod density z integration variable
σN uniform compressive load f,g arbitrary functions
σ longitudinal stress

The function f (T ,µN) is defined as

f (T ,µN)=

{
T −µN, T > µN and V > 0
0, T < µN or V < 0 (2)

In order to represent the system of Eq. (1) in dimensionless
form, it is convenient to introduce a dimensionless time t∗:

t∗ = tω0, ω
2
0 =

k1

m
, (3)

where ω0 is the eigenfrequency of the block-spring system,
m is the block mass and k1 is the spring stiffness.

The governing system of equations in dimensionless form
is defined as{
V̇ = f (T ∗,µN∗)

Ṫ = 1−V ∗
, (4)

where the dot represents the derivative with respect to dimen-
sionless time t∗, and V ∗,T ∗, and N∗ are the dimensionless
velocity, shear force, and gravity force respectively.

V ∗ =
V

V0
, T ∗ =

T

mV0ω0
, N∗ =

N

mV0ω0
(5)

Behaviour of the system

In order to demonstrate the behaviour of the system at stick-
slip-type regime, we consider the block sliding under the fol-
lowing set of initial conditions:

V (0)= 0, Ṫ (0)= 0. (6)

Figure 2 represents the corresponding behaviour of the sys-
tem (dimensionless velocity vs. dimensionless time).

It is observed that the system exhibits self-excited oscilla-
tions even with constant friction coefficient, which somewhat
resemble the stick-slip-type sliding. Furthermore, the energy

Figure 2. Block sliding with constant friction coefficient.

in the system does not change with time, obviously due to
the constant energy influx by velocity V0, where the excess
of the V0 is dissipated by friction.

A detailed investigation of the behaviour of a system de-
scribed in a Sect. 2 was undertaken in our previous work
(Karachevtseva et al., 2014, 2015). It should also be noted
that similar oscillation-type movements were observed in
laboratory experiments with the sliding of two granite blocks
under biaxial compression (Sobolev et al., 2016).

3 Stress wave propagation in frictional sliding
(generalization 1-D solid)

In the previous section, we showed the stick-slip-like motion
occurring even when the friction coefficient is constant. In
this section we will expand our understanding to incorporate
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Figure 3. The model of infinitive elastic rod driven by elastic shear
spring.

the slide over a fault where a stick-slip phenomenon is tra-
ditionally flagged as a mechanism of earthquakes. We shall
keep assuming the constant friction law, which will permit us
to obtain an analytical solution. For this purpose, following
Nikitin (1998), we consider the simplest possible 1-D model
of fault sliding, which takes into account the rock elastic re-
sponse and the associated dynamic behaviour. The model is
shown in Fig. 3. It consists of an infinite elastic rod of height
(thickness) h, and of unit length in the direction normal to
the plane of drawing in Fig. 3. The linear density is ρ and the
rod is assumed to be able slide over a stiff surface. The slid-
ing is resisted by friction. The stiff surface can be described
as a symmetry line such that instead of the (horizontal) fault,
only the upper half of the line is considered. The rod is con-
nected to a stiff layer moving with a constant velocity V0.
The connection is achieved through a series of elastic shear
springs. Both the elastic rod and the elastic springs describe
the model of the elasticity of the rock around the fault, as
shown in Fig. 3. We assume that the system is subjected to a
uniform compressive load σN such that the friction stress is
kept constant, which is assumed equal to τf = µσN = const.

Equation of movement of the rod reads

∂σ

∂x
+

1
h
(τ − τf)= ρ

∂V

∂t
, (7)

where σ is the longitudinal (normal) stress in the rod, τ is the
contact shear stress, τf is the frictional stress, V0 is the load
point velocity, and V (x, t) is the velocity of point x of the
rod at time t , as shown in Fig. 3.

According to the Hooke’s law:

σ = E
∂u

∂x
, (8)

where u(x, t) is the displacement and E is the Young’s mod-
ulus of the rod. After differentiating, we have

∂σ

∂t
= E

∂V

∂x
. (9)

The elastic reaction of the shear springs is expressed as

∂τ

∂t
= k2(V −V0), (10)

Figure 4. Propagation of initial sliding in the form of a triangular
function f (z) of zero area.

where k2 is the spring stiffness relating stress and displace-
ment discontinuity (the difference between the rod displace-
ment and the zero displacement of the base).

Defining1V = V−V0 and solving the system of Eqs. (7)–
(10), we get the following wave equation:

∂21V

∂t2
= c2 ∂

21V

∂x2 −ω
21V , (11)

where c =
√
Eh

/
ρ is the velocity of the longitudinal wave

(P wave) and ω =
√
k2
/
(hρ) is regarded as eigenfrequency

of the system consisting as a unit length of the rod considered
as a lamp mass on the shear springs.

It is observed that despite the presence of shear springs and
friction between the rod and the stiff surface, the waves prop-
agate with the P wave velocity determined by the Young’s
modulus and density of the rod. Therefore, according to the
terminology described in the Introduction, the wave should
be named p-sonic wave. It should be highlighted that while
such waves look like the shear waves, they are in fact com-
pressive waves propagation along the rod, hence denoted as
the P wave velocity.

In order to analyse the way the pulse propagates, Eq. (11)
is complemented by the initial conditions as

1V (x, t)= f0(x);
d1V

dt
= F0(x). (12)

The solution of the wave in Eq. (11) can be found by using
the Riemann method (e.g. Koshlyakov, 1964).

1V (x, t)=
1
2
[f (x− ct)+ g(x+ ct)]

+
1
2

x+ct∫
x−ct

8(x, t,z)dz, (13)
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Figure 5. Propagation of initial sliding with different initial conditions.

where

8(x, t,z)=
1√

c2t2− (z− x)2
ϕ(x, t,z). (14)

The integral from Eq. (13) can be found by using the
Chebyshev–Gauss method

I (x, t)=

x+ct∫
x−ct

8(x, t,z)dz≈
π

n

n∑
j=1

ϕ(x, t, x+ ζjat),

ξj = cos
(

2j − 1
2n

π

)
, (15)

where

ϕ(x, t,z)=
1
c
F (z)J0

(ω
c
i
√
c2t2− (z− x)2

)
√
c2t2− (z− x)2+ωtf (z)

(
1
i

)
J ′0

(
i
ω

c

√
c2t2− (z− x)2

)
. (16)

Propagation of an initial sliding

Figures 4–5 represent the propagation of initial sliding under
the different initial conditions. Particularly, a triangular ve-
locity impulse, Eq. (17) and zero acceleration were used as
initial conditions for Fig. 4. As shown in Fig. 5, linear and
harmonic functions are used for velocity and acceleration as
initial conditions.

f (x;a,b,c)=max
(

min
(

x− a

b− a
,
c− x

c− b

)
,0
)
, (17)

where x is the vector, a, b, and c are scalar parameters.
It is seen that the initial sliding (impulse) propagating with

P wave velocity keeps its width but the amplitude reduces
with time. It is also observed that as the impulse propa-
gates, it loses energy that goes to increase the energy of shear
springs.

4 Discussion

This paper introduced the notion that the frictional movement
resembling the stick-slip sliding, which are often observed

and usually attributed to the rate dependence of friction, can
be obtained with constant friction by taking into account the
elasticity of the surrounding and its self-oscillations. This un-
derstanding is applied to propagation of slip over infinitely
long fault leads to a simple model that predicts that the slip
will propagate with P wave velocity. This conclusion is made
under the assumption of constant (rate-independent) friction.
Relaxing this assumption, which is taking into account that
τf = τf(

∂1V
∂t
), leads to the following equation replacing

Eq. (11):(
1+

1
ρh

dτf

d1V ′t

)
∂21V

∂t2
= c2 ∂

21V

∂x2 −ω
21V,

1V ′ =
∂1V

∂t
. (18)

It is seen that when the sliding rate changes slowly, the prop-
agation speed of rupture c1 can be approximated as

c2
1 ≈ c

2
(

1+
1
ρh

dτf

d1V ′t

)−1

. (19)

Furthermore, it is observed that when the friction increases
with the sliding rate, c1 becomes smaller than P wave veloc-
ity. If the rate dependence of friction is lowered further, the
slip propagation can become intersonic.

5 Conclusions

In this paper, it is shown that the accumulation of elastic
energy in the sliding plates on both sides of the fault can
produce oscillations in the velocity of sliding even when
the friction is constant. These oscillations resemble stick-slip
movements, but they manifest themselves in terms of slid-
ing velocity rather than displacement. The sliding exhibits
wave-like propagation over long faults. Furthermore, the 1-
D model shows that the zones of sliding propagate along the
fault with the velocity of P wave (the propagation speed can
however be lower if the rate dependence of friction is taken
into account). The mechanism of such fast wave propaga-
tion is the normal (tensile/compressive) stresses in the neigh-
bouring elements (normal stresses on the planes normal to
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the fault surface) causing a P wave to propagate along the
fault rather than the shear stress controlling the sliding. This
manifests itself as a P sonic propagation of an apparent shear
rupture.
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