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Abstract. Ice clouds, so-called cirrus clouds, occur very fre-
quently in the tropopause region. A special class are sub-
visible cirrus clouds with an optical depth lower than 0.03,
associated with very low ice crystal number concentrations.
The dominant pathway for the formation of these clouds is
not known well. It is often assumed that heterogeneous nu-
cleation on solid aerosol particles is the preferred mecha-
nism although homogeneous freezing of aqueous solution
droplets might be possible, since these clouds occur in the
low-temperature regime T < 235 K. For investigating sub-
visible cirrus clouds as formed by homogeneous freezing
we develop a reduced cloud model from first principles,
which is close enough to complex models but is also sim-
ple enough for mathematical analysis. The model consists
of a three-dimensional set of ordinary differential equations,
and includes the relevant processes as ice nucleation, dif-
fusional growth and sedimentation. We study the forma-
tion and evolution of subvisible cirrus clouds in the low-
temperature regime as driven by slow vertical updraughts
(0<w ≤ 0.05 ms−1). The model is integrated numerically
and also investigated by means of theory of dynamical sys-
tems. We found two qualitatively different states for the long-
term behaviour of subvisible cirrus clouds. The first state is
a stable focus; i.e. the solution of the differential equations
performs damped oscillations and asymptotically reaches a
constant value as an equilibrium state. The second state is
a limit cycle in phase space; i.e. the solution asymptotically
approaches a one-dimensional attractor with purely oscilla-
tory behaviour. The transition between the states is charac-
terised by a Hopf bifurcation and is determined by two pa-
rameters – vertical updraught velocity and temperature. In
both cases, the properties of the simulated clouds agree rea-
sonably well with simulations from a more detailed model,

with former analytical studies, and with observations of sub-
visible cirrus, respectively. The reduced model can also pro-
vide qualitative interpretations of simulations with a complex
and more detailed model at states close to bifurcation qualita-
tively. The results indicate that homogeneous nucleation is a
possible formation pathway for subvisible cirrus clouds. The
results motivate a minimal model for subvisible cirrus clouds
(SVCs), which might be used in future work for the devel-
opment of parameterisations for coarse large-scale models,
representing structures of clouds.

1 Introduction

Clouds consisting exclusively of ice crystals, so-called cir-
rus clouds, are frequently found in the tropopause region at
low temperatures (T < 235 K). Satellite observations show
frequencies of occurrence up to 40 % in extra-tropical storm
tracks and up to 60 % in regions of tropical convection
(Stubenrauch et al., 2010). Cirrus clouds influence the energy
budget of the Earth–atmosphere system like other clouds
by reflecting and scattering incoming solar radiation (albedo
effect) and by absorbing and re-emitting thermal radiation
(greenhouse effect). For liquid clouds, the albedo effect usu-
ally dominates (Stocker et al., 2013, chap. 7) but for pure
ice clouds both effects (albedo vs. greenhouse effect) are of
comparable absolute size. Therefore, microphysical proper-
ties (e.g. ice crystal size or shape; see Zhang et al., 1999)
or macrophysical properties (e.g. optical depth or spatial in-
homogeneity) can influence the balance between both radia-
tive effects, leading to a net warming or cooling. Neverthe-
less, for cirrus clouds a net warming of the Earth–atmosphere
system is often assumed (Chen et al., 2000). Since the for-
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mation of ice crystals requires high supersaturation (see e.g.
Koop et al., 2000; Hoose and Möhler, 2012) and diffusional
growth of ice crystals is quite slow in the low-temperature
regime (T < 235 K), cirrus clouds mostly exist in a thermo-
dynamic state far away from equilibrium. Thus, in contrast
to liquid clouds, which approximately coincide with their
(super-)saturated environment, for ice clouds there can be a
continuous transition from clear air over very low ice crystal
number concentrations to thick cirrus clouds with high mass
and number concentrations. Cirrus clouds with optical thick-
ness τ < 0.03 constitute a special class, so-called subvisible
cirrus clouds (SVCs; Sassen and Dodd, 1989). These clouds
are difficult to measure; remote-sensing techniques such as
lidar (e.g. Immler et al., 2008b) or occultation observations
(e.g. Wang et al., 1996) are used to detect these very thin
cirrus clouds. Only few in situ measurements of subvisible
cirrus clouds are available, suggesting very low values in ice
crystal number concentrations (Froyd et al., 2010; Kübbeler
et al., 2011). Global observations from satellites (Wang et al.,
1996; Stubenrauch et al., 2010; Hoareau et al., 2013) as
well as observations with stationary lidar systems (Sassen
and Campbell, 2001; Hoareau et al., 2013) show frequen-
cies of occurrence of about 10–20 % in the extra-tropics; in
the tropics the frequency of occurrence is much higher (up to
50 %; see e.g. Wang et al., 1996). For subvisible clouds, a net
warming of the Earth–atmosphere system is almost certain,
since the albedo effect is almost negligible. Our knowledge
of subvisible cirrus clouds is quite limited. Since the ice crys-
tal number concentration in SVCs is very low, the question
about the dominant formation mechanism is still pending. At
cold temperatures (T < 235 K), where pure ice clouds oc-
cur, two different formation mechanisms are generally possi-
ble, namely heterogeneous nucleation at solid aerosol parti-
cles (e.g. Dufour, 1861; aufm Kampe and Weickmann, 1951;
Hosler, 1951) and homogeneous freezing of aqueous solu-
tion droplets (Sassen and Dodd, 1989; Koop et al., 2000). For
subvisible cirrus, Kärcher and Solomon (1999) stated that
both nucleation mechanisms might be possible; in contrast,
Jensen et al. (2001) and Froyd et al. (2010) clearly suggested
that the dominant mechanism must be heterogeneous nucle-
ation. However, analytical investigations by Kärcher (2002)
indicated that also pure homogeneous nucleation might be
possible.

In the present study we focus on the formation of SVCs
by homogeneous freezing of aqueous solution droplets (here-
after: homogeneous nucleation). We study the formation and
evolution of SVCs in an air parcel that is lifted in slow
vertical upward motions (0<w ≤ 0.05 ms−1), as typical
for synoptic-scale motions in the extra-tropics (e.g. along
warm fronts; see Kemppi and Sinclair, 2011) or in slow as-
cent regions in the tropics, for example driven by Kelvin
waves (Immler et al., 2008a). We concentrate on the cold-
temperature regime (T < 235 K); thus, we exclude the possi-
bility of liquid origin ice clouds (Krämer et al., 2016; Wernli
et al., 2016), i.e. freezing of pre-existing cloud droplets at

states close to water saturation. This is not a strong limita-
tion since the microphysical properties of ice clouds stem-
ming from mixed-phase clouds are quite different, with high
ice crystal number and mass concentrations and higher opti-
cal depths (Luebke et al., 2016).

For the investigation of subvisible cirrus clouds we de-
velop a parcel model to which we apply numerical and an-
alytical tools. The model is developed on the basis of an evo-
lution equation for mass distributions of ice crystals, includ-
ing a description of microphysical processes based on former
work (Spichtinger and Gierens, 2009). We take into account
the relevant processes for ice microphysics, i.e. ice nucle-
ation, ice crystal growth due to diffusion of water vapour,
and sedimentation of ice crystals. We make use of some ap-
propriate simplifications in order to obtain a reduced model
consisting of an autonomous system of ordinary differential
equations (ODEs), suitable for the application of analytical
tools. The variables of the system are ice crystal mass and
number concentration, respectively, as well as relative hu-
midity with respect to ice. Thus, we have to investigate a
three-dimensional autonomous system of ODEs.

To study the qualitative behaviour of the model we use
concepts from theory of dynamical systems (see e.g. Ver-
hulst, 1996; Argyris et al., 2010; Hirsch et al., 2013). The
qualitative properties of the system near equilibrium states
are relevant for the overall behaviour of the system. The
stability of these equilibrium states can be investigated by
applying perturbations after linearisation and is determined
by the eigenvalues of the linearised system. Some theorems
are available in order to transfer the qualitative behaviour of
the linearised systems to the full nonlinear system. For the
characterisation of more complex attractors, e.g. limit cy-
cles, more sophisticated approaches must be used. For in-
stance, limit cycles can be determined using Poincaré sec-
tions (Argyris et al., 2010). Investigations of cloud models
as dynamical systems were carried out for liquid and mixed-
phase clouds (Hauf, 1993; Wacker, 1992, 1995, 2006) as well
as for cloud–aerosol–precipitation systems (Koren and Fein-
gold, 2011; Feingold and Koren, 2013). For pure ice clouds
such investigations have not been carried out yet. In contrast
to clouds involving liquid phase, which are close to thermo-
dynamic equilibrium (i.e. RH∼ 100 %), we have to consider
relative humidity as a system variable, which adds another
equation to the system and makes the analysis more challeng-
ing. The mathematical characterisation of the reduced model
allows for a better understanding of the interaction of differ-
ent nonlinear processes and the impact of external forcings
such as vertical updraughts. Finally, the qualitative analysis
could be used in future work as starting point for developing
cloud parameterisations that represent the qualitative struc-
ture of subvisible cirrus clouds.

In Sect. 2 we describe the development of the model. The
results of the numerical integration and the mathematical
analysis are presented in Sect. 3, as well as comparisons with
observations and more detailed models. In the final section,
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we summarise the results, draw some conclusions and give
an outlook on future work.

2 Model

In this section we describe the development of a reduced ice
cloud model, which is later used for analytical and numeri-
cal investigations. We include the relevant processes for for-
mation and evolution of ice clouds into the model but we
try to avoid too much complexity, which makes analysis too
complicated (i.e. reducing the complexity paradox; see e.g.
Oreskes et al., 1994; Oreskes, 2003). Since we investigate
subvisible cirrus clouds in the temperature regime T < 235 K
and at low vertical updraughts 0<w ≤ 0.05 ms−1, the rele-
vant processes are ice nucleation, diffusional growth and sed-
imentation, respectively.

2.1 Basic equations

An ice cloud is represented by an ensemble of ice particles,
which can be described by a mass distribution f (m,x, t)
with mass of particles m as internal coordinate and space, x,
and time, t , as external coordinates. Notation follows the con-
vention in population dynamics (see e.g. Ramkrishna, 2000).
We investigate a test volume with a certain fixed mass of dry
air; f is normalised by the total number concentration per
unit mass of dry air, Nc, with units [Nc] = kg−1; thus, f has
units [f ] = kg−2. The evolution of this mass distribution in
time and space is determined by a partial differential equa-
tion (see e.g. Hulburt and Katz, 1964; Seifert and Beheng,
2006; Beheng, 2010):

∂(ρf )

∂t
+∇x · (ρuf )+

∂(ρgf )

∂m
= ρh. (1)

Here, ρ denotes density of air, u and g are the advection
velocities in physical space and phase space of the inter-
nal coordinate, and h represents sources and sinks for par-
ticles. The divergence in physical space is denoted by ∇x =
(∂/∂x,∂/∂y,∂/∂z)T . Note that all functions (u, g, h) gener-
ally depend on the full set of variables (m,x, t). The fluid ve-
locity v = v(x, t) describes the motion of the air; cloud parti-
cles may experience a velocity v′ = v′(m,x, t) relative to v;
thus, the total u is given by u(m,x, t)= v(x, t)+v′(m,x, t).
In our study, the only relevant relative velocity of cloud parti-
cles is gravitational settling (hereafter: sedimentation), given
by a terminal velocity due to balance between gravitational
force and drag. The terminal velocity depends on ice crystal
mass, i.e. v′ = (0,0,−vt (m)). Note the direction towards the
Earth’s surface, indicated by the minus sign.

Instead of solving Eq. (1) for the entire mass distribution,
we derive equations for the general moments of f (m,x, t),
defined as

µk[m](x, t) :=

∞∫
0

f (m,x, t)mk dm, k ∈ R. (2)

A bounded mass distribution is uniquely determined by all
its integer moments (see e.g. Feller, 1971). The evolution
equations for the general moments are derived by multi-
plication of Eq. (1) by mk and integration by parts, using
f (0,x, t)= 0 and lim

m→∞
f (m,x, t)= 0 as physically mean-

ingful assumptions. Using v′ = (0,0,−vt (m)), and the mass
continuity equation ∂ρ

∂t
+∇x · (ρv)= 0, yields

∂µk

∂t
+ v · ∇xµk︸ ︷︷ ︸

time evolution + advection

=
1
ρ

∂

∂z

 ∞∫
0

mkρvtf dm


︸ ︷︷ ︸

sedimentation

+k

∞∫
0

mk−1gf dm

︸ ︷︷ ︸
growth/evaporation

+

∞∫
0

mkhdm.

︸ ︷︷ ︸
particle formation/elimination

(3)

Since we cannot (and do not want to) treat an infinite num-
ber of moment equations, we make the usual ansatz (see
e.g. Seifert and Beheng, 2006) for a double-moment scheme
(k = 0,1); i.e. we derive two equations for number concen-
tration (Nc = µ0) and mass concentration (qc = µ1) of ice
crystals from Eq. (1). Note that the units ofNc and qc relative
to the mass of dry air are [Nc] = kg−1 and [qc] = kgkg−1,
respectively. For closing the system of equations mathemati-
cally, we prescribe a fixed type of mass distribution for the ice
crystals. As in the study by Spichtinger and Gierens (2009),
we use a log-normal distribution of the following form:

f (m,t)=
Nc(t)

√
2π logσm

exp

−1
2

(
log( m

mm
)

logσm

)2
 1
m
, (4)

with geometric mean mass mm and non-dimensional geo-
metric standard deviation σm, determining the width of the
distribution; log denotes the natural logarithm. The general
moments can be described by

µk[m] =Ncm
k
m exp

(
1
2
(k logσm)

2
)
=Ncm

kr
k(k−1)

2
0 , (5)

using the mean mass m= qc/Nc = µ1/µ0. Here, we intro-
duced the dimensionless parameter

r0 =
µ2µ0

µ2
1
= exp

(
(log(σm))

2
)
. (6)

r0 is set to a constant; thus, the geometric standard devia-
tion representing the distribution’s width is assumed to be
constant. Spichtinger and Gierens (2009) suggest a value
of r0 = 3, corresponding to a geometric standard deviation
σm ≈ 2.85.

2.2 Parameterisation of relevant processes

In the following the representation of relevant processes is
described briefly. For more details we refer the reader to
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Appendix A. Furthermore, we describe additional assump-
tions for simplification and present the final equations of the
model.

2.2.1 Nucleation

Particle formation in terms of ice nucleation is described
by the last term on the right-hand side of Eq. (3). For the
formation of ice crystals we exclusively consider homoge-
neous freezing of aqueous solution droplets (short: homoge-
neous nucleation; Koop, 2004). We describe the ensemble
of solution droplets by a size distribution fa = fa(r), where
r denotes the radius. fa is normalised by the total number
concentration of solution droplets per unit mass of dry air,
Na = µ0[r], with units [Na] = kg−1 and [fa] = kg−1m−1.

We describe homogeneous nucleation as a stochastic pro-
cess with a nucleation rate J (for details see Appendix A).
For the change in the size distribution fa(r) we can formu-
late the following equation (according to Seifert and Beheng,
2006) assuming J as a volume rate (i.e. [J ] =m−3s−1):

∂fa(r)

∂t

∣∣∣∣
nucleation

=−
4
3
πr3Jfa(r). (7)

Integration of the equation over all radii r leads to an equa-
tion for the total loss of solution droplets

∂Na

∂t

∣∣∣∣
nucleation

=−
4
3
π

∞∫
0

r3Jfa(r)dr. (8)

Assuming a bijective relation between ice crystals and solu-
tion droplets, we combine the total gain of ice particles as

∂Nc

∂t

∣∣∣∣
nucleation

=−
∂Na

∂t

∣∣∣∣
nucleation

=
4
3
π

∞∫
0

r3Jfa(r)dr

=
4
3
πJµ3,a[r], (9)

where µ3,a[r] denotes the third moment of the size distribu-
tion of solution droplets. Here, we assume that ∂J/∂r = 0.
Since the ice crystal number concentration in SVCs is very
low, we assume that only a minor fraction of solution droplets
is converted to ice and the size distribution remains con-
stant in time. Thus, the third moment can be calculated
once and is then used as a constant in the resulting equa-
tions. We assume fa(r) as a log-normal distribution with
a modal radius of rm = 100 nm, a dimensionless geometric
standard deviation σr = 1.5 and a total number concentration
ρNa = 3× 108 m−3, similar to the settings by Spichtinger
and Gierens (2009), which are motivated by observations
(Minikin et al., 2003). This leads to a formulation of

∂Nc

∂t

∣∣∣∣
nucleation

=
4
3
πNar

3
m exp

(
1
2
(3logσr )2

)
J (RHi,T ) (10a)

and

∂qc

∂t

∣∣∣∣
nucleation

=m0 ·
∂Nc

∂t

∣∣∣∣
nucleation

, (10b)

using a typical droplet mean mass m0 = 10−15 kg (size ∼
1 µm) in the spirit of the mean value theorem. The nucle-
ation rate J is parameterised according to Koop et al. (2000)
and can be expressed as a function of relative humidity with
respect to ice and temperature. For further details see Ap-
pendix A.

2.2.2 Diffusional growth

The growth and evaporation of ice crystals is dominated by
diffusion of water vapour. With several simplifications of the
growth equation (for details see Appendix A) we obtain the
following equation for diffusional growth of a single crystal:

g(m)≈
4
3
πCiDvm

αiρqv,si

(
RHi

100%
− 1

)
(11)

with constantsCi = 1.02 mkg−αi , αi = 0.4 and using relative
humidity over ice

RHi = 100%
pqv

εpsi(T )
= 100%

qv

qv,si

with saturation mixing ratio

qv,si(T ,p)=
εpsi(T )

p
. (12)

Here, psi(T ) denotes saturation vapour pressure over ice and
ε ≈ 0.622 is the ratio of molecular masses of water vapour
and air. We can express the term for diffusional growth in the
moment Eq. (3) by integration, i.e.

∂qc

∂t

∣∣∣∣
growth

=

∞∫
0

g(m)f (m)dm

=
4
3
πCiDvρqv,si

(
RHi

100%
− 1

)
µαi [m]

=
4
3
πCiDvρqv,si

(
RHi

100%
− 1

)
N1−αi

c qαi
c r

αi(αi−1)
2

0 . (13)

2.2.3 Sedimentation

Following Spichtinger and Gierens (2009), we describe the
weighted terminal velocity v̄k for the flux of the kth moment
as

v̄k =
1
µk

∞∫
0

vt (m)m
kf (m)dm (14)

(for details see Appendix A). Here, we use a simple power
law for the representation of the terminal velocity

vt (m)= γm
δcorr(T ,p) (15)
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with γ = 63 292.36 ms−1 kg−δ , δ = 0.57 and a density cor-
rection term corr(T ,p) (see Appendix A).

We can compose the general terms for sedimentation in
the moment Eq. (3):

∂

∂z
(ρv̄nNc)=

∂

∂z
(ργ ·µδ[m] · corr(T ,p)) , (16a)

∂

∂z

(
ρv̄qqc

)
=
∂

∂z
(ργ ·µδ+1[m] · corr(T ,p)) . (16b)

2.2.4 Simplifications

In order to obtain a consistent but simplified system of ODEs
we make the following three assumptions:

1. Change to Lagrangian point of view and purely vertical
motion:
The Eulerian time evolution and advection of a quantity
φ in the fluid motion can be seen as total time derivative

dφ
dt
=
∂φ

∂t
+ v · ∇xφ, (17)

representing the Lagrangian description. We will ex-
clusively consider vertical motions of the air parcel as
driven by a vertical velocity component w, i.e. v =

(0,0,w(t)), and for simplicity, we assume the mass dis-
tribution to be horizontally homogeneous. In order to
close the system, we additionally derive equations for
temperature and pressure rates

dT
dt
=

dT
dz

dz
dt
=−

g ·Mair

cp
w,

dp
dt
=

dp
dz

dz
dt
=−gρw, (18)

assuming hydrostatic balance and adiabatic changes.
Here, g denotes acceleration of gravity, Mair is the mo-
lar mass of dry air and cp is the molar isobaric heat ca-
pacity. We would expect additional temperature changes
due to phase changes (latent heat release), when ice
crystals grow or evaporate by water vapour diffusion.
Since we investigate ice clouds in the low-temperature
regime, temperature changes due to latent heat release
can be neglected in good approximation. For low tem-
peratures (T < 235 K) the deviation from the dry adia-
batic lapse rate is less than 5 % and is decreasing with
decreasing temperature. Therefore, we omit tempera-
ture change due to latent heat release, which would ap-
pear as an additional nonlinear term in the system of
equations.

2. Closure using an equation for relative humidity with re-
spect to ice:
In our study, we will exclusively consider very low ver-
tical velocities (0<w ≤ 0.05 ms−1), which are typi-
cal for formation of SVCs in large-scale upward mo-
tions. We are interested in long-time behaviour of the

model. A persistence of such weak updraughts for a
long time (e.g. 12 h or even longer, resulting in temper-
ature changes smaller than 10K) is realistic for warm
fronts at mid-latitudes (Kemppi and Sinclair, 2011) or
Kelvin waves in the tropics (Immler et al., 2008a). In
a simple but quite realistic approximation we assume
constant vertical velocity.

As temperature decrease at slow upward motions is only
very small, in a zeroth-order approximation we assume
constant temperature and pressure. In consequence, the
parcel’s volume remains constant, too. The resulting er-
ror for neglecting density changes is usually of order
∼ 10 % (see e.g. Weigel et al., 2016). Since we are
primarily interested in a simple conceptual model of
reduced complexity, describing the main properties of
SVCs, these assumptions are justified. Thus, in our re-
duced modelw,p and T are assumed to be constant and
are treated as control parameters.

To close the systems of differential equations we intro-
duce an evolution equation for relative humidity, start-
ing with the total derivative of RHi:

dRHi

dt
=
∂RHi

∂T

dT
dt
+
∂RHi

∂p

dp
dt
+
∂RHi

∂qv

dqv

dt
. (19)

While temperature and pressure remain approximately
constant during parcel ascent, the relative humidity
should nevertheless be affected by terms involving
dT/dt and dp/dt , respectively. Neglecting latent heat
release as stated above, the first two terms in Eq. (19)
read as

∂RHi

∂T

dT
dt
= RHi

Mair

RT 2Lice ·
g

cp
w, (20a)

∂RHi

∂p

dp
dt
=−

RHi

p
· ρgw =−RHi

Mair

RT
gw, (20b)

Lice is the molar heat of sublimation; we use the pa-
rameterisation for Lice by Murphy and Koop (2005).
As usual, g denotes gravitational acceleration. Note that
we only consider temperature and pressure changes in
Eq. (19), but leave temperature and pressure constant
otherwise and thus obtain a reduced model with only
three variables: Nc,qc,RHi. This approach will be use-
ful for analytical investigations of the long-term be-
haviour of the system.

The last term in Eq. (19) represents the sink due to dif-
fusional growth of ice particles and can be written as

∂RHi

∂qv

dqv

dt
=−

∂RHi

∂qv

dqc

dt

∣∣∣∣
growth

=−
4
3
πρDvCi(RHi− 100%)r

αi(αi−1)
2

0 N1−αi
c qαi

c , (21)

using ∂RHi
∂qv
=

RHi
qv
=

100 %
qv,si

. We use relative humidity as
a control variable instead of specific humidity, which
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has been used in former studies (e.g. Hauf, 1993;
Wacker, 1992) for liquid or mixed-phase clouds close
to thermodynamic equilibrium (water saturation). Since
pure ice clouds often exist at states far away from equi-
librium, relative humidity over ice is the relevant ther-
modynamic variable, controlling growth and nucleation
of ice crystals.

3. Approximation of sedimentation:
Since we are interested in an analytically treatable
model of a single air parcel, we need to eliminate the
partial derivatives describing sedimentation, which gen-
erally lead to a hyperbolic system of partial differential
equations, which is too complicated for theoretical anal-
ysis. For simplification of the equations we have to con-
sider terms of the form
∂

∂z
(ρv̄kµk) k = 0,1, (22)

i.e. vertical gradients in the sedimentation flux, jk =
ρv̄kµk . Since the volume does not change, we assume a
box with volume V = A ·1z with constant vertical ex-
tension1z and constant base areaA. The sedimentation
flux jk is perpendicular to the surface of the base area.
We approximate the vertical change of the flux by cen-
tred differences:
∂

∂z
jk ≈

1
1z

(
j

top
k − j

bottom
k

)
=

1
1z

(
(ρv̄kµk)

top
− (ρv̄kµk)

bottom
)
. (23)

We investigate the top layer of a cloud; therefore, by
definition j top

k = 0. Hence, we can write

1
ρ

∂

∂z
(ρv̄Nµ0)≈−

v̄Nµ0

1z
=−γ

µδ

1z
corr(T ,p), (24a)

1
ρ

∂

∂z
(ρv̄qµ1)≈−

v̄qµ1

1z
=−γ

µδ+1

1z
corr(T ,p).

(24b)

2.2.5 Final system of ODEs

In summary, the full system of the model equations reads as

dNc

dt
=a · J (RHi,T )︸ ︷︷ ︸

nucleation

−b ·N1−δ
c qδc︸ ︷︷ ︸

sedimentation

, (25a)

dqc

dt
=a ·m0 · J (RHi,T )︸ ︷︷ ︸

nucleation

−c ·N−δc q1+δ
c︸ ︷︷ ︸

sedimentation

+ d · (RHi− 100%)N1−αi
c qαi

c︸ ︷︷ ︸
growth

, (25b)

dRHi

dt
= e ·w ·RHi︸ ︷︷ ︸

vertical motion

−f · (RHi− 100%)N1−αi
c qαi

c︸ ︷︷ ︸
growth

, (25c)

where a, b, c, d , e, f > 0 denote positive real constants as
indicated in Appendix A. Note that almost all coefficients

also depend on the (fixed) parameter T . This reduced model
is an autonomous system of ordinary differential equations;
i.e. we can write the system in the following form:

ẋ = F (x), with x = (Nc,qc,RHi)
T , (26)

and F the right-hand side of Eq. (25). Note that the assump-
tion of constant temperature, pressure and vertical velocity
ensures that the system Eq. (25) possesses equilibrium states.

2.3 Setup

We examine the system for a range of parameter values
0<w ≤ 0.05 m s−1 and 190 K≤ T ≤ 230 K, at a constant
pressure of p = 300 hPa, which corresponds to upper tropo-
spheric conditions with moderate vertical motions as in syn-
optic weather situations or slow upward motions in the trop-
ics (e.g. Kelvin waves).

We investigate the reduced model using analytical tools
(see details in Sect. 3) and also integrate the model numer-
ically. For this purpose, the air parcel is initialised with no
ice particles (Nc(0)= 0, qc(0)= 0) and at high supersatu-
ration with respect to ice (RHi(0)= 140 %). The prognostic
Eq. (25) are integrated numerically with the LSODA algo-
rithm from the FORTRAN library ODEPACK (Hindmarsh,
1983).

3 Results

3.1 General features of the system

The general cloud formation mechanism works as follows:
the adiabatic cooling causes the relative humidity, and thus
the nucleation rate, to rise until ice nucleation occurs. Due to
the steepness of J with respect to RHi, occurrence of ice nu-
cleation corresponds approximately to a threshold in relative
humidity (∼ 140–150 %; see e.g. Ren and Mackenzie, 2005;
Kärcher and Lohmann, 2002). The stronger the dynamical
forcing w, the stronger the nucleation event and the more
ice particles form. Ice particle growth then reduces the rela-
tive humidity (see Eq. 19, last term) and hence the nucleation
rate is also reduced. Crystals grow to larger sizes and begin
to sediment out of the air parcel. Sedimentation reduces ice
crystal mass and number concentrations, and thus weakens
the growth term. Then relative humidity can increase again
allowing the cycle to start over. The sedimentation process
allows for oscillations in the system; without sedimentation
(the only sink for Nc and qc) RHi would drop to values close
to saturation and qc would permanently increase; no equilib-
rium state would be reached for long integration times (see
e.g. Kärcher, 2002; Spichtinger and Gierens, 2009).

From the numerical simulations we found that the system
exhibits two qualitatively distinct behaviours, depending on
values of w and T . First, we give a qualitative overview:
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Figure 1. A scenario in state 1 (stable focus regime, damped oscilla-
tion) at w = 0.01 ms−1 and T = 220 K. The continuous nucleation
as well as similar timescales of nucleation, growth and sedimen-
tation leads to a damped oscillation with an equilibrium state for
t > 7 h. In phase space, the asymptotic stability is more obvious
(see Fig. 5).

– State 1: At rather high temperatures and slow vertical
velocities, the three competing microphysical processes
(nucleation, growth, sedimentation) are relatively slow
and act on similar timescales, so none of them is dom-
inant. In particular, nucleation rates are rather small in
these cases; therefore, only few ice crystals are formed
initially, which grow and also sediment quite slowly.
The three processes are more or less in balance, result-
ing in a damped oscillation in all three variables, Nc,
qc, RHi, asymptotically reaching an equilibrium state,
as shown in Fig. 1. Note that, in this state, nucleation
is always present, as strong supersaturation with rela-
tive humidity close to the nucleation threshold persists
at all times and thus the nucleation rates are high enough
to produce considerable amounts of ice crystals con-
tinuously. This results in smooth oscillations instead of
sharp nucleation events, as usually expected (see e.g.
Kärcher and Lohmann, 2002). If the air parcel is not dis-

turbed and the vertical updraught remains unchanged in
the long-term evolution, the cloud persists and has con-
stant ice crystal mass and number concentrations. The
cloud in the steady state typically contains low crystal
concentrations. The equilibrium state remains at high
supersaturations; i.e. the cloud stays far away from ther-
modynamic equilibrium.

– State 2: When increasing w or decreasing T , re-
spectively, to a certain level, oscillations in variables
Nc,qc,RHi are no longer damped (see Fig. 2) and no
asymptotic equilibrium can be observed (e.g. a point in
phase space). Instead, we obtain pulse-like nucleation
with distinct nucleation events followed by phases with
almost vanishing nucleation rates at low relative hu-
midities. The amplitude of the oscillation is very large
in all variables; due to sedimentation, ice particle con-
centration is reduced to a small fraction of the maxi-
mum value once in a period. At colder temperatures
and faster vertical velocities, the nucleation rates are
much higher, so nucleation is the dominant process in
the beginning, leading to pulse nucleation events. Af-
ter a while, ice crystal growth becomes dominant and
when the crystals have become large, sedimentation sets
in and crystal numbers decrease rapidly. Finally, the cy-
cle starts over. In this case, the nucleation events are
clearly separated, as opposed to the first case. For the
time evolution we find that in the beginning, the ampli-
tudes in the three variables decrease slightly from one
event to the next, but after a while, the amplitude stays
constant. Therefore, it seems that the system asymptot-
ically approaches a limit cycle (one-dimensional attrac-
tor). This kind of scenario was also observed in former
studies (e.g. Spichtinger and Cziczo, 2010; Kay et al.,
2006) but not in a long-term behaviour.

Obviously, we find two qualitatively different states in the
numerical solution of the model, depending on parameters w
and T , respectively. Next, we investigate the model by means
of qualitative theory of dynamical systems.

3.2 Qualitative behaviour of the model

For a first investigation we discuss the different terms in
Eq. (25). The model is driven by an external source; verti-
cal lifting of the air parcel leads to increase of relative hu-
midity. Since temperature and pressure are kept constant, the
term e ·w ·RHi implies a permanent external water vapour
source, which is necessary for studying the long-term be-
haviour of the model. The source of water vapour leads to
particle generation. Nucleation can be interpreted as exter-
nal source, since it is forming ice crystals via water vapour
from an external inexhaustible reservoir of solution droplets.
Growth can be seen as internal transformation terms. Finally,
sedimentation terms, i.e. −b ·N1−δ

c qδc and −c ·N−δc q1+δ
c , re-

move particles (and thus water mass) from the model, so they
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Figure 2. A scenario in state 2 (limit cycle regime) is shown at
w = 0.02 ms−1 and T = 210 K. Nucleation events occur as pulses;
thus, an undamped oscillation evolves, which describes a limit cycle
in phase space (see Fig. 6).

constitute external sinks for cloud variables. Qualitatively,
the external sources of water initiate particle generation by
nucleation; diffusional growth terms transform water vapour
mass into cloud mass until the mass is lost by the external
sinks of sedimentation. The model does not fulfil mass con-
servation due to sources of water vapour and sinks of cloud
mass. Because of the external sinks due to sedimentation the
system experiences dissipation. Therefore, the system can
be seen as an externally forced dissipative system with non-
linear right-hand side.

For a first analysis of the system we compute the diver-
gence of the system (i.e. the trace of the Jacobian DF):

∇ ·F =−
[
(b(1− δ)+ c(1+ δ))N−δc qδc + fN

1−αi
c qαi

c

]
+ e ·w+ dαi(RHi− 100%)N1−αi

c qαi−1
c

=−
[
(b(1− δ)+ c(1+ δ))mδ + fNcm

αi
]

+ e ·w+ dαi(RHi− 100%)mαi−1 (27)

using the mean mass m= qc/Nc for cloudy states. For
clear air (Nc = qc = 0), we obtain∇·F = e·w > 0, hence the
system is expanding in phase space. For cloudy air (m> 0)
there is competition between different terms determining the
sign of ∇ ·F . Sedimentation and change of relative humid-
ity due to diffusional growth are sinks (i.e. negative sign in
Eq. 27), while the external source term always has a posi-
tive sign. Diffusional growth of ice particles can change its
sign depending on the thermodynamic state. Since we always
investigate a situation with w > 0, the system stays in a su-
persaturated state (RHi−100%> 0); therefore, the last term
in Eq. (27) is positive.

The balance of terms in Eq. (27), i.e. the sign of ∇ ·F for
cloudy air, is crucially determined by the mean mass of the
cloud. Note that for both exponents we have 0< αi < δ < 1,
and thus −1< αi− 1< 0. For large ice crystal mass, the
terms of form mδ will dominate, leading to a negative sign
of ∇ ·F and to contraction of the system, mainly due to
sedimentation of ice crystals. This is especially the case at
higher temperatures, since then diffusional growth is faster
and mean masses m tend to larger values. In such cases, the
system tends to state 1.

For very small ice crystals, the term including mαi−1 will
dominate leading to a positive sign of ∇ ·F . For instance, at
nucleation events, the ice crystal mass becomes very small;
thus, in this situation the system tends to expand explosively
(∇·F > 0). The same is true if almost all particles have fallen
out and only small ice crystals are contained in the air parcel.
These scenarios are more prevalent at state 2, i.e. at lower
temperatures and higher upward velocities.

3.3 Linear stability of the system

In a first step, the autonomous dynamical system Eq. (25) can
be characterised by its equilibrium states x0, i.e. the points in
phase space where F (x0)= 0. The equilibrium states of this
system cannot be determined analytically, due to strong non-
linearities. We determine the roots of the right-hand side of
system (25) numerically. First, we observe that the mass rate
of nucleation dqc

dt

∣∣
nucleation = a ·m0 · J (RHi,T ) is negligible

compared to other mass rates in the system and can be omit-
ted for simplification. This leads to a new system ẋ = F̃ (x).
After setting F̃ (x)= 0, the three resulting equations can be
combined to a single equation for RHi as follows:

a · J (RHi,T )=

e ·w · b

f
·

(
d

c

) δ−αi
δ+1−αi

·RHi · (RHi− 100%)
1

αi−1+δ . (28)

For details of the derivation of this equation see Appendix B.
The roots of Eq. (28) determine the equilibrium values of
RHi. Then, the values of Nc and qc can be derived ana-
lytically. Equation (28) has a unique solution, i.e. a single
point in phase space, because the left-hand side is a strictly
monotonic increasing function of RHi and the right-hand
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Figure 3. Real (upper panel) and imaginary part (lower panel) of the
complex eigenvalues λ1,2 of the Jacobian DF|x0 at the equilibrium
point x0.

side is strictly monotonic decreasing. Therefore, there ex-
ists a unique equilibrium point, x0, in the relevant domain
of the phase space (RHi > 100%, Nc > 0, qc > 0). The roots
of Eq. (28) are determined numerically for the relevant do-
main in the parameter space, i.e. 0<w ≤ 0.05 ms−1 and
190≤ T ≤ 235 K.

In order to examine the qualitative behaviour of the solu-
tion in a neighbourhood of the equilibrium state, the ODE
system is linearised about the equilibrium state x0:

ẋ = F (x0)+DF
∣∣
x0
(x− x0)+O(|x− x0|

2), (29)

where DF|x0 is the Jacobian of F evaluated at x0. Note that
F (x0)= 0 by definition. The three eigenvalues of the Jaco-
bian, λ1,λ2,λ3, determine the quality of the equilibrium state
(Verhulst, 1996, chap. 3). The eigenvalues must be deter-
mined numerically for the relevant parameter values w and
T . The Jacobian of the system has two complex conjugate
eigenvalues, λ1,2 ∈ C, whose real part can be positive or neg-
ative, depending on the parameters, w and T . In Fig. 3 the
values of the real part Re(λ1,2) and the absolute value of the
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Figure 4. Real eigenvalue λ3 of the Jacobian DF|x0 at the equilib-
rium point x0.

imaginary part |Im(λ1,2)| are shown. The third eigenvalue,
λ3 ∈ R, is always negative – values are shown in Fig. 4.

Complex eigenvalues of the linearised system indicate os-
cillatory behaviour, which is prevalent in all simulations. As
can be seen in Fig. 3, the real part of the complex eigenvalues
λ1,2 can change its sign depending on parameters w and T .

For negative values of the real part (Re(λ1,2) < 0) the
equilibrium state x0 is stable; i.e. solutions of the ODE (29)
starting in a neighbourhood of this point approach this point
asymptotically (Verhulst, 1996, Chapter 2). Thus, this equi-
librium point can be characterised as stable focus (e.g. Ver-
hulst, 1996; Argyris et al., 2010). According to the Poincaré–
Lyapunov theorem (Verhulst, 1996, theorem 7.1), an asymp-
totically stable linearised system also ensures asymptotic sta-
bility of the full nonlinear system Eq. (25). Therefore, x0 is
asymptotically stable for the nonlinear system Eq. (25) and
constitutes a stable focus. Since there is a unique equilibrium
state, all trajectories in phase space tend to this point asymp-
totically.

In this case the equilibrium point (stable focus) corre-
sponds to state 1 in the numerical simulations. Solutions of
the system Eq. (25) experience damped oscillations until they
asymptotically approach the stable focus in phase space. The
imaginary part of the complex eigenvalues determines the os-
cillation period. Figure 5 shows the trajectory of a solution
of the system Eq. (25) in the three-dimensional phase space,
spiralling towards the equilibrium point.

For positive values of the real part (Re(λ1,2) > 0) the equi-
librium point x0 is an unstable focus (i.e. Im(λ1,2) 6= 0). So-
lutions starting in a neighbourhood of x0 run away from the
unstable equilibrium point. In this case, the identification of
an unstable critical point in the linearised system is not suffi-
cient for a general characterisation of the full nonlinear sys-
tem, since after short time the solutions are too far away
from the equilibrium states and linear stability is no longer
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Figure 5. Stable focus for state 1 at T = 220 K,w = 0.01 ms−1: or-
bit in phase space approaching the equilibrium state asymptotically.

applicable. Numerical integration shows undamped oscilla-
tions for solutions that do not start in the equilibrium point;
this behaviour points to the possibility of a limit cycle (one-
dimensional attractor). The transition from a stable equilib-
rium point to limit cycle is a so-called Hopf bifurcation (Ver-
hulst, 1996) and is associated with a transition from two con-
jugate complex eigenvalues with negative real part to two
conjugate complex eigenvalues with positive real part, via
two purely imaginary eigenvalues. For a vanishing real part
of λ1,2, the Hopf bifurcation occurs. The existence of a limit
cycle cannot be shown analytically for this system; however,
we can determine the limit cycle numerically. For starting our
calculation close to the limit cycle, we compute the Poincaré
map of the system (Argyris et al., 2010; Verhulst, 1996). We
choose a two-dimensional plane 6 in phase space, which is
transverse to the trajectory of the solution of Eq. (26); 6 is
called a Poincaré section. The sequence of points in phase
space where the trajectory crosses 6 converges numerically
to the point on the limit cycle that is in 6. Once we find one
such point on the limit cycle, we can use it as the initial con-
dition in Eq. (26) to compute the complete limit cycle. An
example of a Poincaré section for determining the respective
limit cycle is shown in Appendix C (Fig. C1). The limit cycle
itself constitutes a one-dimensional stable attractor, i.e. solu-
tions starting outside of the limit cycle approach the limit cy-
cle asymptotically. Figure 6 shows the trajectory of a solution
of the system Eq. (25) in the three-dimensional phase space,
approaching the limit cycle, which forms a warped circle in
phase space.

The transition between the two general states of the system
(stable point attractor vs. limit cycle) can be represented in a
bifurcation diagram of the w–T space (Fig. 7). The bifurca-
tion point is a function of both w and T . The different states
are separated by points with vanishing real part of eigenval-
ues λ1,2, indicated by the thick black line. The bifurcation
points were obtained numerically.
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Figure 6. Limit cycle for state 2: orbit in phase space at T = 210 K,
w = 0.02 ms−1. Note that the solution starts “outside” of the limit
cycle and approaches the limit cycle attractor asymptotically.
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the location of the Hopf bifurcation.

3.4 Quantitative overview

After discussing the different states of the system qualita-
tively, we now give an overview of the quantitative cloud
properties and relative humidity for the stable focus and the
limit cycle, respectively.

In the stable focus regime, i.e. state 1 of the system, the
equilibrium state corresponds to the properties of the finally
persisting cloud. Hence, in this parameter regime, we de-
scribe the properties of the modelled cloud by the values of
the system variables at the equilibrium point (stable focus).
For the limit cycle regime, i.e. state 2 of the system, the un-
stable equilibrium point x0 does not describe the changing
properties of the cloud since it is only in the centre of the pe-
riodic orbit and the trajectory does not approach it. A more
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Figure 8. Ice particle number concentration Nc (upper panel) and
ice particle mass concentration qc (lower panel) at the equilibrium
state x0 as a function of vertical velocity for different temperatures.
Solid lines indicate parameter combinations (w, T ) in the stable
focus regime (state 1); dashed lines represent the limit cycle regime
(state 2), i.e. at the unstable focus x0.

revealing measure for the cloud properties in this regime is
a probability density of the values the variables take along
the limit cycle, or at least median, maximum and minimum
values.

Figure 8 shows ice crystal mass and number concentra-
tions, respectively, at the equilibrium state, x0, as a function
of vertical velocity (qc(w), Nc(w)) for different temperature
regimes. The solid lines in both panels correspond to state
1 (stable focus, damped oscillations), whereas the dashed
lines indicate the values at the equilibrium point, x0, for state
2 (limit cycle regime, undamped oscillations); note that for
state 2, the equilibrium point x0 is an unstable focus.

Ice crystal number concentrations at the equilibrium point
x0 take values in the range 3×102 kg−1

≤Nc ≤ 2×105 kg−1

(Fig. 8, top), which corresponds to ice crystal number den-
sities of 0.1 L−1

≤ nc ≤ 110 L−1. Ice crystal mass concen-
tration ranges between 4× 10−9

≤ qc ≤ 3× 10−6 kgkg−1

(Fig. 8, bottom). This corresponds to an ice water content
of 2.2× 10−9

≤ IWC≤ 1.4× 10−6 kgm−3.
As expected from theory (e.g. Kärcher and Lohmann,

2002) and from former numerical investigations (e.g.
Spichtinger and Gierens, 2009), the ice crystal number con-
centrations display a strong increase with rising vertical ve-
locity. Due to increased crystal growth rates at higher temper-
atures, Nc decreases with rising T . In the double-logarithmic
representation in Fig. 8, the number concentrations Nc(w) at
the equilibrium point x0 appear as straight lines. For differ-
ent temperature regimes, there seems to be a constant shift
between the curves Nc(w), leading to parallel lines in the
double-logarithmic representation.

For the limit cycle regime (state 2), we can still derive
the values of mass and number concentrations at the equi-
librium state x0. However, since this point is an unstable fo-
cus, another representation is needed to describe the range
of ice crystal concentrations. As indicated in Figs. 7 and 8,
the limit cycle behaviour occurs for temperatures T < 230 K
for the investigated updraught regime 0≤ w ≤ 0.05 ms−1. In
Fig. 9 we present maximum and minimum values (dashed
lines) and median values (dot-dashed lines) for ice crystal
number concentrations in the limit cycle regime for temper-
atures T = 190, 200, 210, 220 K. In addition, the ice crystal
number concentration at the unstable focus, x0, is displayed
(solid lines). We observe a large variation in the number con-
centrations of up to two orders of magnitude relative to the
median. This behaviour is reasonable since sedimentation re-
duces the amount of ice crystals in a dominant manner, while
new ice crystals are formed by nucleation in a pulsating way.
The absolute values are in the range 0.2≤ ρNc ≤ 200 L−1.

The mass concentration of the ice crystals is largely deter-
mined by the efficiency of diffusional growth. As indicated
in the model description (Sect. 2), this term depends on tem-
perature and also on number concentration, leading again to
a power law relationship as represented in Fig. 8 (bottom)
and to a constant shift between the different temperatures,
represented as parallel lines.

For the stable focus regime, we can directly investigate the
mean mass of the ice crystals,m= qc/Nc, at x0, which is dis-
played in Fig. 10. The variation of m at the equilibrium state
x0 due to the vertical velocity is marginal, as indicated in
the figure. Thus, we can assume that m can be approximated
by a function of temperature. The mean mass at x0 ranges
between m∼ 10−12 kg and m∼ 2× 10−10 kg, which corre-
sponds to mean sizes between L∼ 16 µm and L∼ 134 µm.
For the limit cycle regime (state 2), we indicate the variation
in the mean mass by box-and-whisker plots, displaying the
median value (red markers) as well as 25th/75th percentiles
and minimum/maximum values. Note here that variation of
mean mass is usually of one order of magnitude. For cold
temperatures the variation is larger due to a higher variabil-
ity in ice crystal number concentration (see Fig. 9), whereas
the mass concentration in ice clouds is mainly dominated by
available water vapour.
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trations is indicated by the shaded area bounded by minimum and
maximum values for the updraught range 0.001≤ w ≤ 0.05 ms−1;
the median is indicated by the dot-dashed line.
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For the equilibrium state x0, values of m depends only slightly
on the vertical velocity, the curve covers the area that corresponds
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≤ w ≤ 0.05 ms−1. Additionally,
box-and-whisker plots indicate median, 25th/75th percentiles, and
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Figure 11. Oscillation periods for the stable focus regime at x0
(solid lines), and for the limit cycle regime (dashed lines). For the
stable focus regime, the periods are obtained from the imaginary
part of the complex eigenvalues; for the limit cycle regime, the pe-
riods are calculated using the Poincaré map.

As indicated in Sect. 3.3, the imaginary part of the com-
plex eigenvalues λ1,2 determines the period of the oscilla-
tions in state 1 (stable focus regime) near the equilibrium
point x0. In Fig. 11 the period τ = 2π

Im(λ1,2)
as calculated from

the imaginary part is shown for the stable focus (solid lines;
colours indicate different temperature regimes). For the un-
stable focus, the imaginary part of the eigenvalues is not
meaningful, as the limit cycle is not within the linear regime
of x0. Instead, the periods of the limit cycle is shown (dashed
lines; colours indicate different temperature regimes) as cal-
culated from the Poincaré map. Note that for decreasing tem-
perature the period τ becomes very large.
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3.5 Comparison with observations

For comparison with observations we first consider in-situ
measurements of ice crystals in subvisible cirrus clouds.
Since it is very difficult to measure low number concen-
trations, only few measurement studies are available. We
compare our results with measurements by Kübbeler et al.
(2011), Lawson et al. (2008) and Davis et al. (2010). Our
model results lead to ice crystal number concentrations in the
range 0.1 L−1

≤ ρNc ≤ 200 L−1 and mean ice crystal sizes
in the range ∼ 16 µm≤ L≤ 134 µm. Note that the variation
in number concentrations span over 3 orders of magnitude
and the variation in mean sizes is still within 2 orders of
magnitude. These simulated values agree quite well with the
measurements. Kübbeler et al. (2011) observed quite high
number concentrations of the order of ∼ 100 L−1 for small
ice crystals (L∼ 10 µm) but quite low number concentra-
tions 0.1≤ ρNc ≤ 10 L−1 for large ice crystals (equivalent
radius r > 50 µm). Lawson et al. (2008) reported ice crystal
number concentrations in the range 22.5≤ ρNc ≤ 188.8 L−1

with mean value and standard deviation 66± 30.8 L−1 for
ice crystals in the size range 1≤ L≤ 200 µm. Finally, Davis
et al. (2010) reported very low ice crystal number concentra-
tions with a mean value of 2 L−1 and mean sizes of 14 µm
during the tropical measurement campaign TC4. However,
in their study values from former measurement campaigns
are reported to be in the range 10≤ ρNc ≤ 100 L−1 and for
effective radii 10≤ r ≤ 20 µm.

In a second step we expand our comparison to observa-
tions from remote sensing. Since SVCs are optically very
thin, we investigate the extinction coefficient for the visible
part of the spectrum. For comparing our results with mea-
surements, we calculate the extinction β in the solar range
using parameterisations by Fu and Liou (1993):

β = IWC ·
(
a+

b

De

)
, (30)

where IWC= qc · ρ denotes ice water content in gm−3 and
De in µm is the generalised size. Constants are given by
a =−6.656× 10−3 m2g−1 and b = 3.686 µmm2g−1. As a
useful approximation we set De = L, where the quantity L
is calculated from the mean mass m using the mass–length
relation L= Cim

αi , as indicated in Appendix A. In Fig. 12
the values for β are shown for different temperature regimes
as calculated for the mean values at the (stable and unstable)
focus (equilibrium point). Note that there is only marginal
difference in the values for different temperatures. The val-
ues are within the interval 10−4

≤ β ≤ 0.02 km−1.
Seifert et al. (2007) report mean values for extinctions

of SVCs in the range 0.015≤ β ≤ 0.02 km−1 with stan-
dard deviations σ ∼ 0.005–0.009 km−1 (see their Table 3).
Our results are in the same order of magnitude or even
smaller for slow vertical updraughts. Davis et al. (2010)
report much smaller values of extinction scattered in the
range 0< β < 0.01 with a mean value of β ∼ 0.001 km−1.
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Figure 12. Extinction coefficient at x0 for different temperatures
in the stable focus state 1 (solid lines) and the limit cycle state 2
(dashed lines).

These SVCs were measured in the tropics at high altitudes
(z∼ 16 km), i.e. at low temperatures T < 195 K, where slow
large-scale updraughts due to Kelvin waves of the order of
w < 0.01 ms−1 dominate (Immler et al., 2008b). This is con-
sistent with our results; see Fig. 12.

Overall, we can state that regarding the high spread in the
measurements the results from our reduced model agree quite
well with in situ measurements.

3.6 Comparison with other models

For comparison with a more detailed model, we carried out
simulations with the box model described by Spichtinger
and Gierens (2009) and Spichtinger and Cziczo (2010). This
model includes more sophisticated treatment of microphysi-
cal processes, although it is also a two-moment bulk model.
It allows a change in the shape of ice crystals from almost
spherical droxtals to columns. Homogeneous nucleation is
treated in detail, including deliquescence of sulphuric acid
and integration over the full size distribution of solution
droplets. For diffusional growth, kinetic and ventilation ef-
fects are included. Finally, temperature and pressure changes
due to vertical upward motions and latent heat release is
added to the air parcel’s temperature.

Henceforth this model is termed “complex model”. We
scan through the T –w parameter space using initial tem-
peratures in the range 190≤ T ≤ 235 K with a tempera-
ture increment of 1T = 5 K and vertical velocities in the
range 0.005≤ w ≤ 0.05 ms−1 with a velocity increment of
1w = 0.005 ms−1, leading to 90 simulations. Additionally,
we fixed initial conditions p = 300 hPa and RHi = 140 %.
Generally, the results of these simulations are in good agree-
ment with the results of the reduced model in this study.
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Figure 13. Stable focus case (state 1): comparison between reduced
model (this study) and the complex box model by Spichtinger and
Gierens (2009). Updraught w = 0.01 ms−1, temperature in the re-
duced model and start temperature of the complex model is T =
220 K.

We can again identify regimes in the T –w parameter space
representing the known two different states, i.e. damped os-
cillations (stable focus regime, state 1) and limit cycle be-
haviour (state 2). In Fig. 13 the case of damped oscillation is
shown in both model simulations. Here, initial temperature of
T = 220 K is used with a vertical velocity ofw = 0.01 ms−1.
Green lines indicate the evolution in the complex model sim-
ulation, whereas blue lines represent the evolution in the re-
duced model. For the variables number and mass concentra-
tion, both models produce almost the same values. The onset
of ice nucleation is shifted between the two models due to
differently detailed representation of ice nucleation in both
models. This leads to the difference in relative humidity val-
ues. Qualitatively, the models agree very well – the oscil-
lation periods and the magnitudes of the damping are very
similar.

For the complex model simulations the environmental
conditions change; i.e. temperature and pressure are decreas-
ing due to adiabatic expansion. Thus, no steady state can
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Figure 14. Limit cycle case (state 2): comparison between reduced
model (this study) and the complex box model by Spichtinger and
Gierens (2009). Updraught w = 0.02 ms−1, temperature in the re-
duced model and start temperature of the complex model is T =
210 K.

be reached. The values for ice crystal number concentra-
tions and relative humidity are slightly rising with time in
the quasi-steady state at the end of the simulation. Ice crystal
mass concentration is slightly decreasing.

In Fig. 14, a case of limit cycle behaviour is shown. As in
Fig. 13, green lines indicate the complex model simulations
and the reduced model results are represented by blue lines,
respectively. The initial conditions for both models are given
by T = 210 K andw = 0.02 ms−1. Again, we find very good
agreement in the cloud variables Nc, qc between both model
simulations. Qualitatively they also agree very well in terms
of the periods of the oscillations.

The bifurcation diagram displayed in Fig. 7 cannot be re-
produced accurately by the complex simulations. Since in
the complex model the parameter T is changed during the
simulations, switching from one regime to the other is possi-
ble within one simulation. If, for instance, a simulation starts
at a point in parameter space within the stable focus regime
(e.g. high temperature at low updraughts), the time evolu-
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tion initially follows the damped oscillations as expected
from the bifurcation diagram of the reduced model. How-
ever, the temperature change leads to a (horizontal) path in
the phase diagram (Fig. 7) and at some stage the boundary
between the two states is crossed, and from then on, the sys-
tem will perform undamped oscillations. Indeed, we observe
this transition in the complex model simulations. An exam-
ple for this situation is given in Fig. 15, with initial conditions
T = 225 K and w = 0.035 ms−1. Note that in the limit cycle
regime the properties of the theoretically expected limit cycle
also change with decreasing T . This results in increasing am-
plitudes of the oscillations in Nc, qc, RHi and in increasing
periods. Thus, we can conclude that for realistic simulations
including changes in environmental conditions there could be
transitions between the theoretically determined states. How-
ever, the behaviour of the actual states can still be explained
by the phase diagram as obtained from our analytical consid-
erations.

We also compare our results with the analytical model by
Kärcher (2002), which includes a more sophisticated rep-
resentation of nucleation and growth. The relevant equa-
tions are treated using typical timescales and approxima-
tion of the occurring integrals. Comparison with results by
Kärcher (2002) shows good agreement as well. Actually, in
our investigations with the reduced model we found low ice
crystal number concentrations similar to results by Kärcher
(2002); the dependence of number concentrations on w and
T also agrees very well with analytical considerations by
Kärcher (2002). However, our approach goes beyond the re-
sults by Kärcher (2002) since we allow for sedimentation of
ice crystals. This additional process leads to the oscillatory
behaviour in both states, whereas in the study by Kärcher
(2002) a quasi-steady state at ice saturation is reached soon.
Especially the continuous nucleation in the state 1 scenario
(stable focus, damped oscillation) is only possible if we al-
low for sedimentation of ice crystals. Otherwise, the nucle-
ation event would stop after depositional growth has reduced
the supersaturation such that nucleation rates become negli-
gible. Thus, our scenarios might be more realistic, although
values of mass and number concentrations in both studies are
very similar.

4 Conclusions

In this study we have developed a reduced model for describ-
ing subvisible cirrus clouds formed by homogeneous nucle-
ation in the tropopause region. The model consists of a set of
autonomous ordinary differential equations for the variables
ice crystal mass and number concentration, and relative hu-
midity with respect to ice. It contains the relevant cloud pro-
cesses ice nucleation, diffusional growth and sedimentation.
The model can be viewed as an externally forced dissipative
system. The model is integrated numerically and also inves-
tigated using (linear) theory of dynamical systems.
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Figure 15. Transition between stable focus regime (state 1) and
limit cycle regime (state 2): simulation with the complex model by
Spichtinger and Gierens (2009) for w = 0.035 ms−1 and start tem-
perature: T = 225 K. During the first 2 h of the simulation, the sink
property can be clearly seen. After reaching temperatures of about
T ∼ 220 K, the regime changes from state 1 (stable focus) to state 2
(limit cycle); see also phase diagram in Fig. 7. After this transition,
the amplitudes of number concentrations and relative humidity with
respect to ice increase and at the end of the simulation also a shift
in the oscillation period can be seen. Increase in amplitude and shift
in oscillation period are due to changes of the limit cycle properties
for decreasing temperature (see e.g. Fig. 11)

Integration and theoretical analysis show that the system
contains two different states, a stable focus state and a limit
cycle state. The states depend on the environmental parame-
ters vertical updraught,w, and temperature, T . The transition
between the states can be described as Hopf bifurcation. Both
states show oscillatory behaviour, either damped (stable fo-
cus) or basically undamped (limit cycle).

Ice crystal mass and number concentrations of the cloud in
both states depend mostly on the environmental conditions as
vertical velocity and temperature. However, for the limit cy-
cle case the spread in ice crystal mass and number concentra-
tion is obviously larger than in the case of stable equilibrium.
For the stable focus, the mean mass depends only slightly on
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vertical velocity; thus, we can approximate the mean mass as
a function of temperature.

Comparisons with a more detailed box model by
Spichtinger and Gierens (2009) show very good agreement.
The qualitative behaviour as determined for the reduced
model can also be found for the complex model simulations.
Also, in terms of quantitative results both models agree quite
well. Former analytical investigations by Kärcher (2002)
show good agreement with our reduced model, too. However,
since we include sedimentation in our model, our results go
clearly beyond the former investigations; the long-term be-
haviour is different, since the inclusion of sedimentation cru-
cially leads to the bifurcation, depending on environmental
conditions.

Since there are only few in situ measurements of subvisi-
ble cirrus available, it is quite difficult to carry out solid com-
parisons. However, we try to compare with measurements as
described by Kübbeler et al. (2011), Lawson et al. (2008),
and Davis et al. (2010) and find good agreement with our
model results. Also, the extinction coefficient as calculated
from model results agrees very well with observations ob-
tained with remote sensing techniques (Seifert et al., 2007;
Davis et al., 2010).

The major qualitative results can be summarised as fol-
lows:

– Homogeneous freezing of aqueous solution droplets at
low temperatures (T < 235 K) is a possible pathway for
the formation of subvisible cirrus clouds at low verti-
cal updraughts. Thus, the question about the dominance
of formation mechanisms for these thin clouds remains
open (homogeneous vs. heterogeneous nucleation).

– In unperturbed weak large-scale updraughts subvisible
cirrus clouds can exist in two different qualitative states,
reaching either a stable equilibrium point (stable focus)
in the long-term behaviour or experiencing oscillation
behaviour in a limit cycle scenario. The state depends on
external parameters as large-scale updraught and tem-
perature, respectively.

– The cloud particle properties in the long-term behaviour
are very similar for both states. Therefore, we cannot
decide from values of mass and/or number concentra-
tions in a certain range in which state the cloud might
be. Even if we had more measurements, we probably
would not be able to decide between the two states just
using the Eulerian measurements without a Lagrangian
point of view.

We might derive a minimal model for SVCs from the bi-
furcation diagram in the following way. If we assume that
SVCs are well approximated by their attractors, we could
express cloud variables and relative humidity by a simple
damped harmonic oscillator of the form

ẍ+ κẋ+ωx = 0, (31)

with x ∈ {Nc,qc,RHi} and parameters κ = κ(w,T ) and ω =
ω(w,T ), respectively. κ describes damping, whereas ω rep-
resents oscillation frequency. κ,ω can be determined using
eigenvalues λi for damping and oscillations in the stable fo-
cus case (κ 6= 0). For the limit cycle case (κ = 0), periods as
obtained from the Poincaré section (see Fig. 11) can be used
for describing ω. Such a minimal model could be used for
representing SVCs in large-scale models and can be seen as a
prototype for new-generation cloud parameterisations. These
models describe the structure of clouds in terms of cloud
variables and environmental conditions. They could be used
for describing such structures embedded into a coarse-grid
model. However, further research in this direction is neces-
sary in order to proceed from pure model prototypes to useful
cloud parameterisations.

Finally, we can state that we could develop a meaningful
reduced model for describing the main features of subvisible
cirrus clouds. Former investigations using box models indi-
cated that there might be different regimes in the behaviour
of the clouds for longer simulation times. For instance, in
studies by Kay et al. (2006) and Spichtinger and Cziczo
(2010) oscillatory behaviours as well as asymptotic stability
could be seen. However, only a detailed mathematical analy-
sis could show that there is a bifurcation in the long-term be-
haviour and that it depends mostly on environmental param-
eters such as updraught velocity and temperature. This anal-
ysis was only possible since we developed a reduced model,
which is close enough to complex models but is also simple
enough for mathematical analysis.

The observed Hopf bifurcation as a transition between
two different states shows that clouds might exhibit inherent
structures, which are crucially determined by the microphys-
ical cloud processes themselves in addition to environmental
conditions. Similar structure formation was already seen in
analytical cloud models for liquid and mixed-phase clouds
as developed by Wacker (1992, 1995, 2006) or Hauf (1993).
Investigation and analysis of the microphysical processes in
terms of sets of ordinary differential equations are a first
but urgently necessary step in order to investigate structure
formation inside clouds. Once we understand the possible
structures in clouds as determined by microphysics, we can
continue to further investigate structure formation as driven
by spatial diffusion processes, mixing and others, leading to
spatial structures of clouds. A first possible approach might
be to investigate equations with additional spatial diffusion
terms regarding possible Turing instabilities (Turing, 1952).
However, further research is necessary in order to investigate
structure formation of ice clouds.

Data availability. The data used in this work are described in
Sect. 3.5.
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Appendix A: Details of parameterisations

A1 Nucleation

Homogeneous nucleation, i.e. the transformation of a solu-
tion droplet to an ice crystal, can be seen as a stochastic pro-
cess. The transition rate ω for the transformation of a solution
droplet of volume V can be expressed using a volume nucle-
ation rate J , i.e. ω = V · J . The probability P(t) for the nu-
cleation process of droplets of volume V fulfils the following
differential equation:

dP
dt
=−ωP(t). (A1)

For further details of the general derivation we refer the
reader to Koop et al. (1997). Equation (A1) can be gener-
alised for size distributions of solution droplets, leading to
the formulation of Eq. (7). Koop et al. (2000) provide a pa-
rameterisation for the volume nucleation rate J as a function
of 1aw := aw− a

i
w (Koop et al., 2000, Table 1, Eq. 7). Here

aw is the water activity of the solution and ai
w is the water

activity of the solution in equilibrium with ice. Note that the
freezing characteristics of the droplets do not depend on the
chemical composition. By definition the water activity is the
ratio psol/pliq of the vapour pressure over a solution, psol,
and pure liquid water, pliq. Neglecting the Kelvin effect and
assuming that the solution droplets are in equilibrium with
the environment (pv = psol), we find that the water activity
is proportional to the water activity in equilibrium with ice,
which is the ratio of the water vapour pressure over ice and
pure liquid water:

aw =
psol

pliq
=
pv

pliq
=

RHi

100%
psi

pliq
=

RHi

100%
ai

w. (A2)

Both psi and pliq only depend on temperature and are param-
eterised according to Murphy and Koop (2005, Eqs. 7 and
10, respectively). Hence, 1aw is a function of RHi and T , as
given by

1aw(T ,RHi)=

(
RHi

100%
− 1

)
ai

w(T )

=

(
RHi

100%
− 1

)
psi

pliq
. (A3)

Therefore J is also a function of RHi and T . The logarithm
of the nucleation rate is parameterised by a third-order poly-
nomial in 1aw (Koop et al., 2000, Table 1, Eq. 7):

log10J (T ,RHi)=−906.7+ 8502 1aw

− 26924(1aw)
2
+ 29180(1aw)

3. (A4)

A2 Diffusional growth

The “advection velocity” g in the mass space is given by the
growth equation for a single ice crystal; this equation has the

following form (see e.g. Stephens, 1983):

g(m)=
dm
dt
= 4πCD∗vρqv,si

(
RHi

100%
− 1

)
fv. (A5)

Here, qv,si = εpsi(T )/p denotes the saturation mixing ratio,
the shape of the ice crystal is accounted for by the capacity
C (assuming the electrostatic analogy; see e.g. McDonald,
1963; Jeffreys, 1918), D∗v is the full diffusion constant in-
cluding the kinetic correction for small particles (Lamb and
Verlinde, 2011) and fv denotes the ventilation coefficient.

In this study we make use of the following simplifications:

1. Latent heat release at the crystal surface is neglected
and the temperature of the ice particles is assumed to
be equal to temperature of ambient air.

2. We neglect kinetic corrections, since we are mostly in-
terested in growth of larger crystals. Kinetic corrections
are usually important for ice crystal growth in regimes
with high concentrations of small crystals. For SVCs we
can assume small number concentrations; thus, crystals
will grow fast to sizes larger than ∼ 10µm. Thus, we
can assume

D∗v ≈Dv =D0

(
T

T0

)α(
p0

p

)
, (A6)

with D0 = 2.11× 10−5 m2 s−1, T0 = 273.15 K, p0 =

101 325 Pa, α = 1.94 (e.g. Pruppacher and Klett, 1997).

3. We neglect correction of ventilation, setting fv = 1.
Ventilation correction is only relevant for very large
crystals, so this is a reasonable assumption, since in
SVCs ice crystals are usually smaller than ∼ 200 µm.

4. The shape of ice crystals is assumed to be prolate
spheroids with length L and an eccentricity ε′, which
leads to the following expression (McDonald, 1963):

C = L
ε′

log
(

1+ε′
1−ε′

) . (A7)

For the mass–length relation we assume a simple power
law L(m)= Cim

αi using Ci = 1.02 mkg−αi , αi = 0.4.
This power law mostly represents the columnar shape
of ice crystals, which is assumed for crystals with sizes
L > 10 µm. The power law was fitted to a more complex
description in Spichtinger and Gierens (2009), where a
transition between droxtals and columns is formulated
and used.

The fraction in Eq. (A7) only depends weakly on the crys-
tal mass and can be approximated by a constant mean value
of 1/3. This yields

C =
1
3
Cim

αi . (A8)
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With these assumptions, Eq. (A5) can be approximated as
follows:

g(m)≈
4
3
πCiDvm

αiρqv,si

(
RHi

100%
− 1

)
, (A9)

leading to Eq. (11).

A3 Sedimentation

The description of sedimentation is based on the concept of
mass- and number-weighted terminal velocities defined by
Spichtinger and Gierens (2009). An expression for the sedi-
mentation flux (i.e. the integral in the sedimentation term in
Eq. 3), can be found by applying the mean value theorem.
Consider a mean velocity, v̄k , such that

∞∫
0

vt (m)ρm
kf (m)dm= v̄k

∞∫
0

ρmkf (m)dm

= ρv̄kµk. (A10)

There exists a corresponding velocity for each moment of
the distribution f (m). For the double-moment scheme, the
number-weighted terminal velocity (for the number flux),
v̄0 = v̄n (k = 0) and the mass-weighted terminal velocity (for
the mass flux), v̄1 = v̄q (k = 1), are relevant. For the calcula-
tion of the weighted velocities, we use a special representa-
tion of vt (m).

The dependency of the fall speeds of individual ice crys-
tals on the crystal mass is approximated by a simple power
law vt (m)= γm

δcorr(T ,p), including a temperature- and
pressure-dependent density correction factor,

corr(T ,p)=
(
p

p00

)a1
(
T

T00

)a2

, (A11)

with T00 = 233 K, p00 = 300 hPa, a1 =−0.178,
a2 =−0.397. The coefficients for the fall speed
γ = 63 292.36 ms−1 kg−δ and δ = 0.57 are assumed to
be constant over the entire range of m, as opposed to
piecewise constant values in Spichtinger and Gierens (2009).
This approximation is justified since we assume ice crystals
of sizes in the range between ∼ 10 and ∼ 200 µm for
SVCs. The weighted velocities for number and mass flux,
respectively, have the following form:

v̄0 = v̄n = γ
µδ

µ0
· corr(T ,p),

v̄1 = v̄q = γ
µδ+1

µ1
· corr(T ,p). (A12)

A4 Coefficients

For simplification of the representation of the main system,
we introduced coefficients in Eq. (25). In the following the

coefficients are provided:

a =
4
3
πµ3,a[r], (A13a)

b =
γ

1z
corr(T ,p)r

δ(δ−1)
2

0 , (A13b)

c =
γ

1z
corr(T ,p)r

δ(δ+1)
2

0 , (A13c)

d =
4
3
πCiρDvr

αi(αi−1)
2

0
qv,si

100%
, (A13d)

e =g
Mair

RT

(
Lice

cpT
− 1

)
, (A13e)

f =
4
3
πCiρDvr

αi(αi−1)
2

0 . (A13f)

Appendix B: Derivation of Eq. (28)

For deriving Eq. (28) we start with the slightly simplified
systems of equations:

a · J (RHi,T )− b ·N
1−δ
c qδc = 0, (B1a)

− c ·N−δc q1+δ
c + d · (RHi− 100%)N1−αi

c qαi
c = 0, (B1b)

e ·w ·RHi− f · (RHi− 100%)N1−αi
c qαi

c = 0. (B1c)

We convert Eq. (B1b) into the following form, using the
mean mass m= qc/Nc for cloudy states (Nc 6= 0):

−c ·mδ + d · (RHi− 100%)mαi−1
= 0. (B2)

From this equation we obtain a representation for the mean
mass:

m=

(
d

c
(RHi− 100%)

) 1
δ+1−αi

. (B3)

In a similar way, we can rearrange Eq. (B1a) for a represen-
tation of Nc:

Nc =
a · J (RHi,T )

b
·m−δ. (B4)

Using Eqs. (B3) and (B4) in Eq. (B1c) we obtain Eq. (28).
The roots with regard to RHi of this equation are calculated
using Newton’s method.

Appendix C: Example for a Poincaré section

In Fig. C1 we present an example of a Poincaré section, as
used for the determination of the limit cycle. The plane 6 is
such that RHi is constant on 6 and x0 is in 6. Two different
scenarios are represented here. First, we use a point close to
the unstable focus point as initial condition for the numer-
ical integration (indicated by red cross). The red dots indi-
cate the section of the trajectory with the transversal plane
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Figure C1. Example of a Poincaré section in the limit cycle regime.
Blue dots indicate intersection points of the trajectory with 6 when
starting “outside” the cycle; red dots indicate intersection points
when starting near the (unstable) equilibrium point x0 (red cross).

6. The red dots converge fast to two accumulation points,
which determine approximately the section of the limit cycle
with the plane 6. If we start “outside” of the limit cycle, the
section points (indicated by blue dots) again converge fast to
the same two accumulation points.
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