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Abstract. Results of extensive simulations of swell evolu-
tion within the duration-limited setup for the kinetic Has-
selmann equation for long durations of up to 2 × 106 s are
presented. Basic solutions of the theory of weak turbulence,
the so-called Kolmogorov–Zakharov solutions, are shown to
be relevant to the results of the simulations. Features of self-
similarity of wave spectra are detailed and their impact on
methods of ocean swell monitoring is discussed. Essential
drop in wave energy (wave height) due to wave–wave inter-
actions is found at the initial stages of swell evolution (on the
order of 1000 km for typical parameters of the ocean swell).
At longer times, wave–wave interactions are responsible for
a universal angular distribution of wave spectra in a wide
range of initial conditions. Weak power-law attenuation of
swell within the Hasselmann equation is not consistent with
results of ocean swell tracking from satellite altimetry and
SAR (synthetic aperture radar) data. At the same time, the
relatively fast weakening of wave–wave interactions makes
the swell evolution sensitive to other effects. In particular, as
shown, coupling with locally generated wind waves can force
the swell to grow in relatively light winds.

1 Physical models of ocean swell

Ocean swell is an important constituent of the field of surface
gravity waves in the sea and, more generally, of the sea en-
vironment as a whole. Swell is usually defined as a fraction
of a wave field that does not depend (or depends slightly) on
local wind. Being generated in confined stormy areas, these
waves can propagate long distances of many thousands of

miles, thus influencing vast ocean stretches. For example,
swell from the Roaring Forties in the Southern Ocean can
traverse the Pacific and reach distant shores of California and
Kamchatka. Predicting swell as a part of sea wave forecast
remains a burning problem for maritime safety and marine
engineering.

Pioneering works by Barber and Ursell (1948), Munk et al.
(1963), and Snodgrass et al. (1966) discovered a rich physics
of the phenomenon and gave the first examples of accu-
rate measurements of magnitudes, periods and directional
spreading of swell. All the articles contain thorough dis-
cussions of the physical background of swell generation,
attenuation and interaction with other types of ocean mo-
tions. A fascinating story of a grand experiment on ocean
swell has been presented to a wide audience in the docu-
mentary “Waves across the Pacific” (can be found at https:
//www.youtube.com/watch?v=MX5cKoOm6Pk).1

Nonlinear wave–wave interactions have been sketched by
Snodgrass et al. (1966) as a novelty introduced by the mile-
stone papers by Phillips (1960) and Hasselmann (1962). A
possible important role of these interactions at high swells
for relatively short times of evolution has been outlined and
evaluated. The first estimates of the observed rates of swell
attenuation were carried out by Snodgrass et al. (1966) based
on observation at near-shore stations. Their e-folding scale
of about 4000 km (the distance at which an exponentially de-
caying wave height decreases by a factor of e) is consistent
with some of today’s results of the satellite tracking of swell
(Ardhuin et al., 2009, 2010; Jiang et al., 2016) and with the

1The authors are thankful to Gerbrant van Vledder, Delft Uni-
versity of Technology, for this reference.
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treatment of these results within the model of swell attenu-
ation due to coupling with the turbulent atmospheric layer
(e.g., Tsimring, 1986; Kantha, 2006). The alternative semi-
empirical model of Babanin (2006) predicts a quite differ-
ent algebraic law and stronger swell attenuation at shorter
distances from the swell source (Young et al., 2013). Note
that the effect of the decay of a monochromatic wave due to
turbulent wave flow is found to be quadratic in wave ampli-
tude, i.e., to be of lower-order nonlinearity than in the non-
dissipative theory of weakly nonlinear water waves.

It should be stressed that a number of theoretical and nu-
merical models, including those mentioned above, treat swell
as a quasi-monochromatic wave and, thus, ignore nonlinear
interactions of the swell harmonics themselves and the swell
coupling with locally generated wind waves. The latter ef-
fect can be essential, as observations and simulations clearly
show (e.g., Kahma and Pettersson, 1994; Pettersson, 2004;
Young, 2006; Badulin et al., 2008b, and references therein).
Usually the swell continues to be considered a superposi-
tion of harmonics that do not interact with each other and,
thus, can be described by the well-known methods of the lin-
ear theory of waves (e.g., Ewans, 1998; Ewans et al., 2004).
Many features of the observed swell can be related to such
models. For example, the observed effect of linear growth of
the swell frequency at a site can be explained as an effect of
dispersion of a linear wave packet over a long time and suc-
cessfully used for relating these observations to stormy areas
that generate the swell (e.g., Barber and Ursell, 1948; Ewans
et al., 2004).

Synthetic aperture radar (SAR) allows for a spatial res-
olution of up to tens of meters (e.g., Ardhuin et al., 2010;
Young et al., 2013). Satellite altimeters measure wave height
averaged over a snapshot of a few square kilometers. These
snapshots are adequate for currently known methods of sta-
tistical description of waves in research and application mod-
els. These can be used for swell tracking in combination with
other tools (e.g., wave models as in Jiang et al., 2016). Re-
tracking of swells allows us, first, to relate the swell events
to their probable sources – stormy areas – and, secondly,
the swell transformation enables us to estimate the effects
of other motions of the atmosphere and ocean – seasonal
wind activity (e.g., Chen et al., 2002), wave–current inter-
action (e.g., Beal et al., 1997) and bathymetry effects (Young
et al., 2013). Such a work requires adequate physical models
of swell propagation and transformation. This paper aims to
narrow the gap.

Meanwhile, the linear treatment remains quite restrictive
and cannot explain important features of swell. The observed
swell spectra exhibit frequency downshift which is not pre-
dicted by deterministic linear or weakly nonlinear models
of narrow-banded wave guide evolution (e.g., data of Snod-
grass et al., 1966, and comments on these data by Henderson
and Segur, 2013). Moreover, these spectra show invariance
of their shapes that is unlikely to appear in a linear disper-
sive wave system. These noted features are common for wave

spectra described by the kinetic equation for water waves, the
so-called Hasselmann (1962) equation.

In this paper we present results of extensive simulations
of ocean swell within the Hasselmann equation for deep wa-
ter waves. The simplest duration-limited setup has been cho-
sen to obtain numerical solutions for the duration of up to
2 × 106 s (about 23 days) for typical parameters of ocean
swell (wavelengths 150–400 m, wave periods 10–16 s, initial
significant heights 3–15 m).

We analyze the simulation results within the framework
of the theory of weak turbulence (Zakharov et al., 1992).
The slowly evolving swell solutions appear to be quite close
to the stationary Kolmogorov–Zakharov spectra. We give a
short theoretical introduction and present estimates of the ba-
sic constants of the theory in the next section. In Sect. 3 we
relate results of simulations to properties of the self-similar
solutions of the kinetic equation. Zaslavskii (2000) was the
first to present the self-similar solutions for swell assuming
the angular narrowness of the swell spectra and stated ex-
plicit analytical results. In fact, more general consideration,
in the spirit of Badulin et al. (2002, 2005a), leads to impor-
tant findings and raises questions independently of the as-
sumption of angular narrowness.

We demonstrate the fact that is usually ignored: the power-
law swell attenuation within the conservative kinetic equa-
tion. We show that it does not contradict the observations
mentioned above. We also reveal a remarkable feature of col-
lapsing the swell spectra onto an angular distribution that de-
pends weakly on initial angular spreading. Such universal-
ity can be of great value for modeling swell and developing
methods for its monitoring (Delpey et al., 2010).

We conclude this paper with a discussion of how to apply
this model. Evidently, the setup of duration-limited evolu-
tion is quite restrictive and does not reflect essential features
of ocean swell when wave dispersion and spatial divergence
play a key role. At the same time, wave–wave interactions
remain of importance independently of the setup. The weak-
ening of swell evolution is not directly related to abatement
of wave–wave interactions which are able to effectively re-
store perturbations of these quasi-stationary states (Zakharov
and Badulin, 2011). On the contrary, this favors coupling
of the quasi-stationary swell with the ocean environment.
In particular, the locally generated wind-driven waves can
switch the swell attenuation to swell amplification. This ef-
fect can be considered for interpretation of recent observa-
tions of swell from space (“negative” dissipation in the words
of Jiang et al., 2016). Many problems of adequate physical
description of swell in the ocean are still open. This paper
is an attempt to reveal essential features of swell evolution
within the simplest model of the kinetic Hasselmann equa-
tion.
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2 Solutions for ocean swell

2.1 The Kolmogorov–Zakharov solutions

In this section we reproduce previously reported theoretical
results on the evolution of swell as a random field of weakly
interacting wave harmonics. We apply the statistical theory
of wind-driven seas (Zakharov, 1999) to the sea swell, whose
description with this approach is usually considered ques-
tionable. A random wave field is described by the kinetic
equation derived by Hasselmann (1962) for weakly nonlinear
deep water waves in the absence of dissipation and external
forcing:

∂Nk

∂t
+∇kωk∇rNk = Snl. (1)

Equation (1) is written for the spectral density of wave action
N(k,x, t)= E(k,x, t)/ω(k) (E(k,x, t) is the wave energy
spectrum and the wave frequency obeys the linear dispersion
relation ω =

√
g|k|). Subscripts for ∇ correspond to the two-

dimensional gradient operator in the corresponding space of
coordinates x and wavevectors k (i.e., ∇r = (∂/∂x,∂/∂y)).

The right-hand term Snl describes the effect of wave–wave
resonant interactions and can be written in an explicit form
(see the Appendices in Badulin et al., 2005a, for a collec-
tion of the formulas). The cumbersome term Snl causes many
problems for wave modeling whenever Eq. (1) is extensively
used. Nevertheless, for the deep water case, one has a key
property of homogeneity

Snl[κk,υNk] = κ
19/2υ3Snl[k,Nk] (2)

that helps in acquiring important analytical results. Stretch-
ing in κ times in the wave scale or in υ times in the wave
action, where κ, υ are positive, leads to simple re-scaling of
the collision term, Snl. This important property gives a clue
for constructing power-law stationary solutions of the kinetic
equation, i.e., solutions for the equation

Snl = 0. (3)

Two isotropic stationary solutions of Eq. (3) correspond to
constant fluxes of wave energy and action in wave scales.
The direct cascade solution (Zakharov and Filonenko, 1966)
in terms of the frequency spectrum of energy

E(1)(ω,θ)= 2Cp
P 1/3g4/3

ω4 (4)

introduces the basic Kolmogorov constant Cp and describes
the energy transfer to infinitely short waves with constant
flux P . The wave action transfer in the opposite direction of
long waves is described by the inverse cascade solution (Za-
kharov and Zaslavsky, 1982) with wave action flux Q and
another Kolmogorov constant Cq :

E(2)(ω,θ)= 2Cq
Q1/3g4/3

ω11/3 . (5)

Note that key features of the isotropic Kolmogorov–
Zakharov solution Eqs. (4) and (5) are reproduced quite
well by means of direct numerical simulations based on
the integro-differential Zakharov equation (Annenkov and
Shrira, 2006) or on the primitive Euler equations (Onorato
et al., 2002).

An approximate weakly anisotropic Kolmogorov–
Zakharov solution has been obtained by Kats and Kon-
torovich (1974) as an extension of Eq. (4):

E(3)(ω,θ)= 2
P 1/3g4/3

ω4

(
Cp +Cm

gM

ωP
cosθ + . . .

)
. (6)

It associates the wave spectrum anisotropy with the constant
spectral flux of wave momentumM and the so-called second
Kolmogorov constant Cm. As is seen from Eq. (6), the so-
lution anisotropy vanishes as ω→∞: wave spectra become
isotropic for short waves. The whole set of the Kolmogorov–
Zakharov (KZ) solutions (Eqs. 4–6) can be treated naturally
within the dimensional approach: these are just particular
cases of solutions of the form

E(KZ)(ω)=
P 1/3g4/3

ω4 G(ωQ/P,gM/(ωP ),θ), (7)

where G is a function of dimensionless arguments scaled by
spectral fluxes of wave energy P , action Q and momentum
M .

Originally, solutions (Eqs. 4–6) were derived in particu-
larly sophisticated and cumbersome ways. Later on, simpler
and more physically transparent approaches were presented
(Zakharov and Pushkarev, 1999; Balk, 2000; Pushkarev
et al., 2003, 2004; Badulin et al., 2005a; Zakharov, 2010).
These more general approaches allow us to find higher-order
terms of the anisotropic Kolmogorov–Zakharov solutions
(Eq. 6). In particular, they predict the next term to be propor-
tional to cos2θ/ω2, which is the second angular harmonics
of the stationary solution (Eq. 6).

Swell solutions evolve slowly with time and, thus, give a
good opportunity for discussing features of the KZ solutions
(or, alternatively, the KZ solutions can be used as a refer-
ence case for the swell studies). One of the key points of this
discussion is the question of uniqueness or universality of
the swell solutions that can be treated in the context of gen-
eral KZ solutions (Eq. 7). The principal terms of the general
Kolmogorov–Zakharov solutions (Eqs. 4–6) have the clear
physical meanings of total fluxes of wave action, Eq. (5), en-
ergy, Eq. (4), and momentum, Eq. (6), and do not refer to
specific initial conditions. This is not the case for the higher-
order terms. The link between these additional terms with
inherent properties of the collision integral Snl and/or with
specific initial conditions is a subject of further studies.

2.2 Self-similar solutions of the kinetic equation

The homogeneity property Eq. (2) is extremely useful for
studies of non-stationary (inhomogeneous) solutions of the
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kinetic equation. Approximate self-similar solutions for ref-
erence cases of duration- and fetch-limited development of
the wave field can be obtained under the assumption of dom-
inance of the wave–wave interaction term Snl (Pushkarev
et al., 2003; Zakharov, 2005; Badulin et al., 2005a; Zakharov
and Badulin, 2011). These solutions exhibit the so-called
incomplete or second-type self-similarity (e.g., Barrenblatt,
1979). In terms of frequency–angle dependencies of wave
action spectra, one has correspondingly for the duration- and
fetch-limited cases (Badulin et al., 2005a, 2007; Zakharov
et al., 2015)

N(ω,θ,τ )= aτ τ
pτ8pτ (ξ,θ), (8)

N(ω,θ,χ)= aχχ
pχ8pχ (ζ,θ), (9)

with dimensionless time τ and fetch χ :

τ = t/t0; χ = x/x0. (10)

Dimensionless arguments of shape functions 8pτ (ξ) and
8pχ (ζ ) in Eqs. (8) and (9) contain free scaling parameters
bτ and bχ and exponents of frequency downshifting qτ and
qχ :

ξ = bτω
2τ−2qτ ; ζ = bχω

2χ−2qχ . (11)

The homogeneity property (Eq. 2) dictates “magic relations”
(in the words of Pushkarev and Zakharov, 2015, 2016) be-
tween exponents pτ , qτ and pχ , qχ

pτ =
9qτ − 1

2
; pχ =

10qχ − 1
2

. (12)

Additional “magic relations” coming from the homogene-
ity property (Eq. 2) fix a link between the amplitude scales
aτ , aχ and the bandwidth scales bτ , bχ of the self-similar
solutions (Eqs. 8–11):

aτ = b
19/4
τ ; aχ = b

5/2
χ . (13)

Thus, “magic relations” (Eqs. 12 and 13) reduce the number
of free parameters of the self-similar solutions (Eqs. 8 and 9)
from four (two exponents and two coefficients) to only two:
a dimensionless exponent pτ (pχ ) and an amplitude of the
solution aτ (aχ ).

The shape functions 8pτ (ξ,θ) and 8pχ (ζ,θ) in Eqs. (8)
and (9) are specified by solutions of a nonlinear boundary
problem for an integro-differential equation in self-similar
variables ξ or ζ (conditions of decay at zero and infinity) and
angle θ (periodicity) (see Sect. 5.2 in Badulin et al., 2005a,
for details). These solutions reveal relatively narrow angu-
lar distributions with a single pronounced maximum and re-
markably weak dependence on the exponent of wave growth
pξ , (pχ ), as simulations show (e.g., Badulin et al., 2008a).
This feature of quasi-universality (in the words of Badulin
et al., 2005a) of the solutions of a nonlinear problem can be
treated within a diffusion approximation for the kinetic equa-
tion (Zakharov and Pushkarev, 1999, and Zakharov, 2010) as

a “survival” of very few eigenfunctions – angular harmon-
ics of the corresponding linear boundary problem. As will
be shown below, the weakly anisotropic KZ solution (Eq. 6)
represents a principal angular harmonic of such a decompo-
sition.

Two-lobe patterns can be observed beyond the spectral
peak as local maxima at oblique directions or as “shoulders”
in wave frequency spectra. Their appearance within the ki-
netic equation approach is generally associated with wave
generation by wind (e.g., Bottema and van Vledder, 2008,
2009) and/or the effect of wave–wave interactions (Banner
and Young, 1994; Pushkarev et al., 2003). Numerical sim-
ulations within the potential Euler equations also show for-
mation of the two-lobe patterns for rather short times (a few
hundred spectral peak periods) of the evolution of an initially
unimodal spectral distribution (Toffoli et al., 2010).

An essential approximation which is widely used both for
experimentally observed and simulated wave spectra is gen-
erally treated as an important property of spectral shape in-
variance (terminology of Hasselmann et al., 1976) or the
spectra quasi-universality (in the words of Badulin et al.,
2005a). In fact, such “invariance” does not suppose a point-
by-point matching of properly normalized spectral shapes.
The proximity of integrals of the shape functions 8pτ , 8pχ
in a range of wave growth rates pτ , pχ appears to be suffi-
cient, in particular, for formulating efficient semi-empirical
parameterizations of wind-wave growth in terms of integral
values (e.g., Hasselmann et al., 1976). Consistent analysis
within the weak turbulence approach that used this important
approximation has recently lead to a remarkable theoretically
based relationship (Zakharov et al., 2015):

µ4ν = α3
0 . (14)

Here wave steepness µ is estimated from total wave energy
E and spectral peak frequency ωp:

µ=
E1/2ω2

p

g
. (15)

The “number of waves” ν in a spatially homogeneous wind
sea (i.e., for the duration-limited case) is defined as follows:

ν = ωpt. (16)

For spatial (fetch-limited) wave growth, the coefficient of
proportionality Cf in the equivalent expression ν = Cf |kp|x
(kp being the wavevector of the spectral peak) is close to the
ratio between the phase and group velocities Cph/Cg = 2.
A universal constant α0 ≈ 0.7 is a counterpart of the con-
stants Cp, Cq of the stationary Kolmogorov–Zakharov so-
lutions (Eqs. 4 and 5) and has a similar physical meaning
of a ratio between wave energy and the energy spectral flux
(in power 1/3). A remarkable feature of the universal wave
growth law (Eq. 14) is its independence of wind speed. This
wind-free paradigm based on intrinsic scaling of wave devel-
opment is shown to be a useful tool of analysis of wind-wave
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growth (Zakharov et al., 2015). Below we demonstrate its ef-
fectiveness for interpreting swell simulations.

2.3 Self-similarity of swell solutions

The self-similar solution for swell is just a member of a fam-
ily of solutions (Eqs. 8 and 9) with special values of temporal
or spatial rates:

pτ = 1/11; qτ = 1/11, (17)
pχ = 1/12; qχ = 1/12. (18)

Exponents (Eqs. 17 and 18) provide conservation of the total
wave action for its evolution in time (duration-limited setup)
or in space (fetch-limited):

N =

+∞∫
0

+π∫
−π

N(ω,θ)dωdθ = const. (19)

By contrast, total energy

E =

∫
ωN(k)dk (20)

and wave momentum

K=
∫

kN(k)dk (21)

are only formal constants of motion of the Hasselmann equa-
tion and decay with time t or fetch x

E ∼ t−1/11
; Kx ∼ t

−2/11, (22)

E ∼ x−1/12
; Kx ∼ x

−2/12. (23)

The swell decay (Eqs. 22 and 23) reflects a basic feature of
the kinetic equation for water waves: energy Eq. (20) and
momentum Eq. (21) are not conserved (see Zakharov et al.,
1992; Pushkarev et al., 2003, and references herein). The
wave action is the only true integral of the kinetic Eq. (1).

The swell solution manifests another general feature of
evolving spectra: the downshifting of the spectral peak fre-
quency (or other characteristic frequency), i.e.,

ωp ∼ t
−1/11
; ωp ∼ x

−1/12. (24)

The universal law of wave evolution (Eq. 14) is, evidently,
valid for the self-similar swell solution as well with a minor
difference in the value of the constant α0. As soon as this
constant is expressed in terms of the integrals of the shape
functions 8pτ , 8pχ and the swell spectrum shape differs es-
sentially from ones of the growing wind seas, this constant
appears to be less than α0 of the growing wind seas.

The theoretical background presented above is used below
for analysis of results of simulations.

3 Swell simulations

3.1 Simulation setup

Simulations of ocean swell require special care. First of all,
calculations for quite long periods of time (up to 2 × 106 s
in our case) should be accurate enough in order to capture
relatively slow evolution of solutions and, thus, be able to
relate results to the theoretical background presented above.
Duration-limited evolution of the swell has been simulated
with the Pushkarev et al. (2003) version of the code based on
the WRT algorithm (Webb, 1978; Tracy and Resio, 1982).
Features of the code and numerical setups have been de-
scribed in previous papers (Badulin et al., 2002, 2004, 2005a,
b, 2007; Zakharov et al., 2007; Badulin et al., 2008a, 2013;
Pushkarev and Zakharov, 2015, 2016). The frequency reso-
lution for log-spaced grid has been set to (ωn+1−ωn)/ωn =

1.03128266. It corresponds to 128 grid points in the fre-
quency range 0.02− 1 Hz (approximately 1.5 to 3850 m
wavelength).

Standard angular resolution 1θ = 10◦ has been taken as
adequate for the goals of our study. A control series of runs
with angular resolution 1θ = 5◦ showed very close but still
quantitatively different shaping of wave spectra (see discus-
sion below), while differences in integral parameters (wave
height, period, total momentum) did not exceed 1% after
2 × 106s of evolution.

Initial conditions were similar in all series of simulations:
spectral density of action in wavenumber space was almost
constant in a box of the wavenumber modulo and angles. A
slight modulation (5% of the box height) and a low pedestal
outside the box (6 orders less than the maximal value) have
been set in order to stimulate wave–wave interactions since
the collision integral Snl vanishes for N(k)= const:

N(k)=

{
N0(1+ 0.05cos2(θ/2)), |θ |<2/2, ωl < ω < ωh
10−6N0, otherwise.

(25)

In Eq. (25) the references to angle θ (cosθ = kx/|k|) and
wave frequency ω are used for conciseness of the expression
for spatial wave action spectrumN(k). The default values ωl
and ωh corresponding to wave periods 10 and 2.5 s have been
used for the most cases providing sufficient space for spec-
tral evolution to low frequencies (spectra downshifting) and
for stability of calculations at high frequencies for the default
cutoff frequency fc = 1 Hz.

Dissipation was absent in the runs. Free boundary condi-
tions were applied at the high-frequency end of the domain
of calculations: generally, short-term oscillations of the spec-
trum tail do not lead to instability; i.e., the resulting solutions
can be regarded as ones corresponding to conditions of decay
at infinitely small scales (N(k)→ 0 when |k| →∞).

Calculations with a hyper-viscosity (e.g., Pushkarev et al.,
2003) or a diagnostic tail at the high-frequency range of the
spectrum (Gagnaire-Renou et al., 2010) do not affect results
quantitatively compared to our simulations without any dis-
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Table 1. Initial parameters of the simulation series.

ID 2 N (m2 s) Hs (m)

sw030 30◦ 0.720 4.63
sw050 60◦ 0.719 4.6
sw170 180◦ 0.714 4.74
sw230 240◦ 0.721 4.67
sw330 330◦ 0.722 4.79

sipation. Thus, these “non-conservative” options can mimic
successfully the effect of energy leakage at |k| →∞ in our
formally non-dissipative problem. Very strong dissipation at
less than 10 grid points at the very end of frequency domain
suppresses the spectral level and, simultaneously, reduces the
overall energy dissipation at these points. Thus, the effect on
the evolution of the energy-containing part of the solution ap-
pears to be quite weak and depends slightly on the particular
form and magnitude of the hyper-viscosity. In some cases,
the hyper-viscosity option that suppresses high-frequency
noise can accelerate calculations. In a sense, it is equivalent
to reducing an effective number of grid points. Test runs with
the reduced frequency domain (cutoff up to fc = 0.6 Hz, 112
grid points) did not show an essential quantitative difference
with the default option (fc = 1 Hz, 128 grid points).

In contrast to wind-driven waves where wind speed is
an essential physical parameter that gives a useful physical
scale, the swell evolution is determined by initial conditions
only, i.e., by N0 (dimension of wave action spectral density
[N(k)] = [Length4

·Time]), a characteristic frequency (side-
band [ωl,ωh]) and angular spreading 2 within the setup
(Eq. 25). We tried different combinations of these parame-
ters. Three frequency bands [0.026–0.09], [0.058–0.25], and
[0.1–0.4] Hz have been chosen to generate swell with wave-
lengths approximately 200, 300, and 400 m at the final stages
of evolution. The angular spreading2 was set at 30, 50, 170,
230 and 330◦. Initial significant wave heights Hs were taken
as approximately 4.8, 8, 10, 12, and 18 m. As will be de-
tailed below, an abrupt fall in wave energy occurred at the
very first hours of evolution (up to 50% for the first 1 h).
Thus, the above high values of Hs can be accepted as realis-
tic values for sea swell. In total, more than 30 combinations
of wave height, frequency range and angular spreading have
been simulated for the duration of at least 106 s. In some
cases, for high amplitudes and narrow angular spreadings,
simulations have failed because of strong numerical instabil-
ity.

Below we focus on the series of Table 1 where initial wave
heights were fixed (within 2%) at approximately 4.8 m and
angular spreading varied from very narrow, 2= 30◦, to al-
most isotropic, 2= 330◦ (Eq. 25). The frequency range of
the initial perturbations was 0.1− 0.4 Hz. The simulations
have been carried out for duration 2× 106 s with angular res-

0.25 0.5 1 2 4
10−6

10−4

10−2

100

 (rad s )

E(
) (

m
 s

ra
d

)
2

 

 

−4

0.0
0.6
2.3
8.6
33.
136
555

−1

–1

Figure 1. Frequency spectra of energy at different times (legend, in
hours) for case sw330 (2= 330◦).

olution 1θ = 10◦ and checked for series sw030 and sw330
with 1θ = 5◦.

3.2 Self-similar features of swell

Evolution of swell spectra with time is shown in Fig. 1 for
case sw330 of Table 1. The example shows a strong ten-
dency to self-similar shaping of wave spectra. This remark-
able feature has been demonstrated and discussed for swell in
previous works (Badulin et al., 2005a; Benoit and Gagnaire-
Renou, 2007; Gagnaire-Renou et al., 2010) for special pa-
rameters that provided relatively fast evolution of rather short
and unrealistically high waves. In our simulations, we start
with the mean wave period of about 3 s that corresponds to
the end of calculations of Badulin et al. (2005a, see Fig. 8
therein). The initial spectrum evolves very quickly and keeps
a characteristic shape for less than 1 h, when wave steepness
falls dramatically below µ= 0.15 (Tp ≈ 6s), while wave
height loses only about 20 % of its initial value (see Fig. 1,
green curve for t = 0.6 h). For 555 h, the spectral peak period
reaches 11.4 s (the corresponding wavelength λ≈ 200 m)
and wave steepness becomes µ= 0.022. The final signifi-
cant wave heightHs ≈ 2.8 m is essentially less than its initial
value 4.8 m. All these values can be considered typical ones
for ocean swell.

The dependence of key wave parameters on time is shown
in Fig. 2 for different runs of Table 1. Power-law dependen-
cies of self-similar solutions (Eqs. 17, 18 and 22–24) are
shown by dashed lines. In Fig. 2a, b total wave energy E and
the spectral peak frequency ωp show good correspondence to
power laws of the self-similar solutions (Eq. 8). By contrast,
the power-law decay of the x-component of wave momen-
tum Kx depends essentially on angular spreading of initial
wave spectra. While for narrow spreading (runs sw030 and
sw050) there is no visible deviation from the Kx ∼ t−2/11

law, wide-angle cases clearly show these deviations. The “al-
most isotropic” solution for sw330 tends quite slowly to the
theoretical dependency of wave momentumKx (Eq. 23). The
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Figure 2. Evolution of wave parameters for runs of Table 1 (in the legend): (a) total energy E; (b) total wave momentum Kx ; (c) frequency
fp = ωp/(2π) of the energy spectra peak; (d) estimate of the parameter of anisotropy A (Eq. 26). Dashed lines show asymptotic power laws
(Eqs. 22 and 24)

duration of more than 3 weeks appears “too short”: one can
see a transitional behavior when wave spectra evolve from
the “almost isotropic” state to an inherent distribution with a
pronounced anisotropy.

A simple quantitative estimate of the “degree of
anisotropy” is given in Fig. 2d. Evolution of the dimension-
less parameter of anisotropy in terms of the approximate
Kolmogorov–Zakharov solution (Eq. 6) by Kats and Kon-
torovich (1974) is shown for all the cases of Table 1. We
introduce the parameter of anisotropy A as follows:

A=
gM

ωpP
, (26)

where the total energy flux P (energy flux at ω→∞) is es-
timated from the evolution of total energy:

P =−
dE
dt
. (27)

Similarly, the total wave momentum (Eq. 21) provides an es-
timate of its flux as follows:

M =−
dKx
dt

. (28)

Spectral peak frequency ωp has been used for the definition
of “degree of anisotropy”, A (Eq. 26). Different scenarios
are seen in Fig. 2d depending on angular spreading of wave
spectra. Nevertheless, a general tendency to a universal be-
havior at very large times (more than 2 × 106 s) looks quite
plausible.
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Figure 3. Evolution of the left-hand side of the invariant (Eq. 14)
(µ4ν)1/3 for runs of Table 1 (in the legend).

Similar dispersion of runs depending on anisotropy of ini-
tial distributions is seen in Fig. 3 when tracing the invariant
of the self-similar solutions (Eq. 14). Again, like in Fig. 2b,
2 × 106 s are not sufficient to demonstrate the validity of
a relationship (Eq. 14) in full. A limit α0 (Eq. 14) is very
likely reached at larger times. This limit is a bit less (by ap-
proximately 15%) than one for growing wind seas: α0 ≈ 0.7.
Again, the “almost isotropic” solution shows its stronger de-
parture from the rest of the series. The differences are bet-
ter seen in angular distributions rather than in normalized
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Figure 4. Normalized frequency spectra for direction θ = 0◦ after
11.5 days (approximately 106 s) of swell evolution for runs of Ta-
ble 1 (see the legend).

spectral shapes (Fig. 4) when we are trying to check self-
similarity features of the solutions in the spirit of Badulin
et al. (2005a); Benoit and Gagnaire-Renou (2007).

3.3 Directional spreading of swell spectra

Despite a significant difference in the runs in integral char-
acteristics of the swell anisotropy (e.g., Fig. 2b, d), the re-
sulting spectral distributions still show pronounced features
of universality, as is seen in frequency spectra (Fig. 4). As
will be shown below, this universality of swell spectra is
seen in angular distributions as well. This is of importance
in the context of remarks of Sect. 2.2: while the shape func-
tions 8pτ , 8pχ of self-similar solutions (Eqs. 8 and 9) are
not unique, there is likely a mechanism of their selection
that supports the universality of the swell spectral distribu-
tions. Within a linear theory, it could be treated as survival of
the only eigenfunction or, more prudently, of very few eigen-
modes of the problem. As mentioned in Sect. 2.2. this “lin-
ear” treatment can be used with some reservations for our
problem, which is heavily nonlinear in terms of wave spec-
tra but allows for a quasi-linear analysis in terms of spectral
fluxes (see Zakharov and Pushkarev, 1999; Pushkarev et al.,
2003).

The only physical mechanism of the mode selection in
the swell problem is nonlinear relaxation to an inherent state
due to four-wave resonant interactions. This relaxation gen-
erally occurs at essentially shorter timescales than ones of
wind pumping and wave dissipation (Zakharov and Badulin,
2011). There is no contradiction with the present vision of the
sea wave balance in the above statement. The effect of non-
linear interactions on wave spectra is 2-fold: firstly, it sup-
ports an inherent shaping of the spectra by very fast feedback
to its perturbation and, secondly, it is responsible for rela-
tively slow nonlinear cascading within this inherent shaping.
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Figure 5. Normalized dependence of swell energy spectra on an-
gle at peak frequency ωp after 11.5 days (approximately 106 s) of
swell evolution for the runs of Table 1 (see the legend). Dashed line
– Gaussian distribution (Eq. 29) with dispersion σ2 = 35◦; dotted
line – growing sea (Eq. 30) and Eq. 9.1–9.2 of Donelan et al. (1985);
dashed line – wrapped-normal fit of Ewans et al. (2004, Table 11.2,
Fig. 11.8).

Normalized sections of spectra at the peak frequency ωp

are shown in Fig. 5 for runs of Table 1 at t = 106 s (approx.
11.5 days). “The almost isotropic” run sw330 shows a rela-
tively high pedestal of about 2% of the maximal value, while
other series have a background of 1 order less. At the same
time, the core of all distributions is quite close to a Gaussian
shape

ygauss = exp

(
−
θ2

2σ 2
2

)
(29)

with half-width σ2 = 35◦ (dashed curve in Fig. 5). Experi-
mentally based spreading functions are represented in Fig. 5
by two reference curves. For growing wind seas the depen-
dence by Donelan et al. (1985, Eq. 9.2)

y1985 = sech2(βθ); β = 2.28 (30)

gives almost twice as narrow a distribution (dotted line in
Fig. 5). The wrapped-normal fit of angular distribution for
one of the case of the West Africa Swell Project (see Ta-
ble 11.2 and Fig. 11.8 in Ewans et al., 2004) with standard
deviation σ2 ≈ 14.3◦ gives a sharper distribution shown by a
dashed curve.

Evolution of directional spreading in time is shown in ab-
solute values in Fig. 6 for three runs: the most anisotropic
case sw030 (Fig. 6a, b), weakly anisotropic initial state
sw230 (Fig. 6c, d) and “the almost isotropic” run sw330
(Fig. 6e, f). In the left column the angular spreading at peak
frequency shows remarkably close patterns for the first two
cases: peak values at large times differ by a few percent only.
The weakly anisotropic case sw230 (initial angular spread-
ing 230◦ with essential counter-propagating fraction) reaches
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Figure 6. Angular spreading of the swell spectra at different times
(in hours; see the legend). Left column – wave spectra at peak fre-
quency; right – integral of wave spectra in frequency as a function
of direction. (a, b) run sw030 of Table 1 – strong initial anisotropy;
(c, d) run sw230 – weak anisotropy; (e, f) “almost anisotropic” run
sw330.

its almost saturated state for a couple of days only (cf. the
curves at t = 17 h and t = 35 h). Similar proximity of these
two cases can be observed for integrals of spectra in fre-
quency as shown in the right column of Fig. 6, i.e., for values

E(θ)=
ωc∫
0

E(ω,θ)dω. (31)

Self-similar solutions (Eq. 8) predict a power-law decay of
magnitude of E with time which is what we see in Fig. 6b, d
for the first two cases. The behavior of “the almost isotropic”
case sw330 is qualitatively different. The relatively strong
adjustment to a narrow directional spreading occurs in the
course of the entire duration 2 × 106 s. The duration appears
to be too short to reach a self-similar regime resembling cases
sw030 and sw230.

The effect of sharpening of angular distributions of the run
sw330 in Fig. 6e, f requires additional comments. First, it
manifests a transitional nature of the case sw330 when a solu-
tion is rather far from its self-similar asymptotics. Secondly,
this case illustrates the above statement of the paragraph on
two scales of wave spectra evolution. The angular adjustment
occurs at relatively short temporal scales as compared with

θ (deg)

ω
ω/

p

−180 −90 0 90 180
0.5

1

2

3

4

0.1

0.2

0.3

0.4

0.5

0.6

θ (deg)
ω

ω/
p

−180 −90 0 90 180
0.5

1

2

3

4

0.4

0.5

0.6

0.7

0.8

0.9

1
θ (deg)

ω
ω/

p

−180 −90 0 90 180
0.5

1

2

3

4

0.1

0.2

0.3

0.4

0.5

0.6

θ (deg)

ω
ω/

p

−180 −90 0 90 180
0.5

1

2

3

4

0.4

0.5

0.6

0.7

0.8

0.9

1
θ (deg)

ω
ω/

p

−180 −90 0 90 180
0.5

1

2

3

4

0.1

0.2

0.3

0.4

0.5

0.6

θ (deg)

ω
ω/

p

−180 −90 0 90 180
0.5

1

2

3

4

0.4

0.5

0.6

0.7

0.8

0.9

1
θ (deg)

ω
ω/

p

−180 −90 0 90 180
0.5

1

2

3

4

0.1

0.2

0.3

0.4

0.5

0.6

θ (deg)

ω
ω/

p

−180 −90 0 90 180
0.5

1

2

3

4

0.4

0.5

0.6

0.7

0.8

0.9

1(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Isolines of spreading functions for different runs (see Ta-
ble 1): (a, b) sw030; (c, d) sw170; (e, f) sw330; (g, h) run sw330
with finer resolution at angle 1θ = 5◦. Left column – definition
(Eq. 32); right – directional distribution (Eq. 33).

slow evolution of integral parameters (cf. Fig. 2). This adjust-
ment is provoked by excursion of initially “almost isotropic”
distribution from an anticipated “inherent state” that, thus,
stimulates wave–wave interactions as a mechanism of relax-
ation. The example demonstrates ability of wave–wave inter-
actions to effectively rebuild directional distributions. Note
that in some cases, say, in the problem of relaxation of wave
field to sudden changes of wind direction the wave–wave
interactions are considered ineffective as compared to re-
laxation “due mainly to imbalance Sin < Sdiss” (e.g., Young
et al., 1987, Sin – wind input, Sdiss – wave dissipation).

3.4 Bi-modality of swell spectra

Bi-modality of directional spreading of ocean swell is widely
discussed for experimental data as a possible result of swell
evolution (e.g., Ewans, 1998, 2001; Ewans et al., 2004). Our

www.nonlin-processes-geophys.net/24/237/2017/ Nonlin. Processes Geophys., 24, 237–253, 2017



246 S. I. Badulin and V. E. Zakharov: Ocean swell within the kinetic equation

simulations encounter this effect as a persistent feature of
swell spectra. Figure 7 represents directional spreading of
swell spectra in two ways. The left column shows directional
distribution functionH(ω,θ) in the spirit of widely used def-
inition (e.g., Ewans, 1998)

E(ω,θ)= E(ω)H(ω,θ), H(ω,θ)≥ 0,
π∫
−π

H(ω,θ)dω = 1. (32)

An alternative representation in the right column of Fig. 7
uses spectral densities normalized by their maxima at a fixed
frequency to trace “ridges” of the surface Ẽ(ω,θ) defined as
follows (cf. Eq. 1 in Young et al., 1995):

Ẽ(ω,θ)= E(ω,θ)/ max
−π<θ≤π

(E(ω,θ)) . (33)

Both representations reveal bi-modality of swell spectra
fairly well for all cases of Table 1. “Narrow” initial spectrum
sw030 and “wide” one sw170 evolve to very close X-shaped
side-lobe patterns (Fig. 7a, c). Pronounced side lobes are seen
both above and below the spectral peak frequency. The direc-
tional distribution functionH(ω,θ) (Eq. 32) does not show a
similar pattern for “the almost isotropic” case sw330 (Fig. 7e,
g), but the X-shapes are seen fairly well in the “ridge” repre-
sentation (Eq. 33) for all the cases. Directional spreading for
run sw330 is shown for simulations with standard angular
resolution 1θ = 10◦ (Fig. 7e, f) and with fine one 1θ = 5◦

(Fig. 7g, h). Higher resolution makes “ridges” sharper and al-
lows for resolving of more details of the directional distribu-
tion. In particular, side lobes appear for counter-propagating
waves at θ ≈±3π/4 and ω/ωp ≈ 5/4. At the same time,
the standard angular resolution in our simulations 1θ = 10◦

seems to be adequate for the bi-modality phenomenon.
The patterns similar to ones of Fig. 7 have been obtained

in simulations of the Hasselmann equation for wind-driven
waves with the exact term of nonlinear transfer Snl by Ban-
ner and Young (1994); Young et al. (1995) at formally finer
resolution 1θ = 6.67◦. It should be noted that directions be-
yond the cone θ =±120◦ have not been taken into account
to speed up calculations in the cited papers. It can explain
the discrepancy with our results at the high-frequency end of
Fig. 7f, h (cf. Plate 1 in Young et al., 1995). This point can
be clarified in further studies.

An important issue of agreement of our results and find-
ings by Banner and Young (1994) and Young et al. (1995)
is the presence of low-frequency (below the spectral peak)
side lobes. Experimental results by Ewans (cf. Figs. 8 and 16;
1998) show good correspondence of the directional spread-
ing functions to numerical results at high frequencies, but do
not fix any side lobes below the spectral peak.

Generally, the phenomenon of side-lobe occurrence is as-
sociated with a joint effect of wave–wave interactions and
wave generation by wind (e.g., Banner and Young, 1994;

Pushkarev et al., 2003; Bottema and van Vledder, 2008). The
theoretical background of Sect. 2.1 and our simulations of
swell can propose an interpretation and alternative ways of
advanced analysis of the effect in terms of stationary solu-
tions of Kolmogorov–Zakharov (Eq. 7). These solutions be-
ing presented as power series of dimensionless ratios of spec-
tral fluxes and as an extension of the approximate solution
Eq. (6) by Kats and Kontorovich (1974) predict higher-order
angular harmonics and can be found within the formal pro-
cedure of Pushkarev et al. (2003, 2004). This approach is not
fully correct in the vicinity of the spectral peak, but still looks
plausible and useful for interpretation of the effect of wave–
wave interactions. Analysis of the next paragraph shows per-
spectives of the KZ solution paradigm.

3.5 Swell spectra vs. KZ solutions

The very slow evolution of swell in our simulations provides
a chance to check the relevance of the classic Kolmogorov–
Zakharov solutions (Eqs. 4–7) to the problem under study.
The key feature of the swell solution from the theoretical
viewpoint is its “hybrid” (in the words of Badulin et al.,
2005a) nature: the inverse cascade (negative fluxes) deter-
mines the evolution of the spectral peak and its downshift-
ing, while the direct cascade (positive fluxes) occurs at fre-
quencies slightly (approximately 20 %) above the peak. This
hybrid nature is illustrated by Fig. 8 for energy and wave mo-
mentum fluxes. In order to avoid ambiguity in the treatment
of the simulation results within the weak turbulence theory,
we will not discuss this hybrid nature of swell solutions, and
will focus on the direct cascade regime. Thus, the general
solution (Eq. 7) in the form

E(ω,θ)==
P 1/3g4/3

ω4 G(0,gM/(ωP ),θ)

and its approximate explicit version Eq. (6) by Kats and Kon-
torovich (1971, 1974) will be used below for describing the
direct cascading of energy and momentum at high frequency
(as compared to ωp).

Two runs of Table 1, sw030 and “almost isotropic” sw330,
are presented in Fig. 8 in order to show qualitative similar-
ity of extreme cases of initial directional spreading. Positive
fluxes P and M decay with time, in good agreement with
power-law dependencies (Eq. 22), and have rather low varia-
tions in a relatively wide frequency range 3ωp < ω < 6ωp in
Fig. 8. For energy flux P (Fig. 8a, b) one can see good quan-
titative correspondence (note that the times for some curves
are slightly different). Absolute values of momentum fluxM
as well as magnitudes of wave momentum itself (see Fig. 2)
differ by more than 1 order.

The domain of quasi-constant fluxes ω > 3ωp can be used
for verification of the relevance of the stationary KZ solu-
tions (Eqs. 4–6) to the quasi-stationary swell solutions. All
the cases of Table 1 show very close patterns of spectral
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Figure 8. Top row – spectral fluxes of energy for series sw030 (a)
and sw330 (b); bottom row – spectral fluxes of momentum for series
sw030 (c) and sw330 (d) at different times (legend, in hours).

fluxes (e.g., Fig. 8) and, what is more important, very close
estimates of Kolmogorov’s constants.

The first and second Kolmogorov constants can easily be
estimated for the approximate solution (Eq. 6) from combi-
nations of along- and counter-propagating spectral densities
as follows:

Cp =
ω4 (E(ω,0)+E(ω,π))

4g4/3P 1/3 , (34)

Cm =
ω5P 2/3 (E(ω,0)−E(ω,π))

4g7/3M
. (35)

These estimates provide very close values of the Kolmogorov
constants for all the series of Table 1 with the only excep-
tion of “the almost isotropic” run sw330 for the second Kol-
mogorov constant Cm. Fig. 9 gives the first Kolmogorov con-
stantCp ≈ 0.21±0.01 (slightly lower values for initially nar-
row distributions) and Cm ≈ 0.08± 0.02 for all the runs ex-
cept sw330 (cf. Figs.9b, d for “narrow” sw030 and “wide”
sw230).

The analytic estimate gives the very close result Cp =
0.219 (Zakharov, 2010, Eq. 4.33). Numerical simulations
by Lavrenov et al. (2002), Pushkarev et al. (2003), and
Badulin et al. (2005a) missed a factor of 2 in definitions
of the Kolmogorov constants (cf. our definitions in Eqs. 4–
6 and Eqs. 4.29 and 4.30 in Zakharov, 2010). Taking this
into account, one has the reported values 0.151< Cp <
0.162; 0.105< Cm < 0.121 in Lavrenov et al. (2002, Ta-
ble 1), 0.16< Cp < 0.23; 0.09< Cm < 0.14 in Pushkarev
et al. (2003, eqs. 5.3, 5.6, 5.8) and 0.19< Cp < 0.20 in
Badulin et al. (2005a). The first experimental attempt to eval-
uate the first Kolmogorov constant by Deike et al. (2014)
presented the value C = 1.8± 0.2≈ 2πCp, i.e., a 2π times
bigger counterpart of Cp.
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Figure 9. Left – estimates of the first Kolmogorov constant Cp;
right – estimates of the second Kolmogorov constant Cm for the
approximate anisotropic KZ solution (Eq. 6). (a, b) run sw030; (c,
d) sw230; (e, f) sw330. Time in hours is given in the legend.

While the estimates of the Kolmogorov’s constants for the
swell look consistent, the numerical solutions differ essen-
tially from the approximate weakly anisotropic KZ solution
(Eq. 6). The directional spreading cannot be described by the
only angular harmonics as in Eq. (6); higher-order correc-
tions are clearly seen in Fig. 7 as side lobes. Nevertheless,
the robustness of the estimates of the second Kolmogorov
constant Cm provides a good reference for estimates of the
spectra anisotropy.

The estimates of Cm for sw330 (Fig. 9f) demonstrate a
specific nonstationarity of the swell solution in terms of wave
momentum flux, while the first Kolmogorov constant Cp
(Fig. 9f) shows the relevance of the stationary KZ solutions
to the swell problem.

4 Discussion. Swell and the ocean environment

Results of our simulations showed their fairly good corre-
spondence to findings of the theory of wave (weak) turbu-
lence. The relevance of these results to experimental facts
seems to be a logical conclusion of this work. The issue of
relevance is 2-fold. First, our results can help in explain-
ing effects whose interpretation in terms of alternative ap-
proaches (mostly, within linear theory) is questionable. Sec-
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Figure 10. Top – dependence of significant wave heightHs on time
for the cases of Table 1. Bottom – attenuation of swell for models
Ardhuin et al. (2009); Young et al. (2013) and one of this paper (see
the legend). Results of duration-limited simulations are recasted
into dependencies on fetch by simple transformation (Eq. 36).

ondly, one can formulate, or, at least, sketch cases where our
approach becomes invalid or requires an extension. Both as-
pects are considered in the final section.

Attenuation in course of long-term swell evolution is an
appealing problem of the swell monitoring. We show that
contribution of wave–wave interactions to this process can
be important mostly at initial stages of swell evolution. The
observed rates of swell attenuation in an open ocean cannot
be treated within our approach for a number of reasons. First
of all, the duration-limited setup of our simulations do not
account for important mechanisms of frequency dispersion
and spatial divergence due to sphericity of the Earth. These
mechanisms can both contribute into swell attenuation to-
gether with wave–wave interactions and essentially contam-
inate results of observations. The intrinsic swell attenuation
is, generally, small as compared to the effect of reduction (or
amplification at large fetches) (see Fig. 2b in Ardhuin et al.,
2009) which is accounted for within the linear model of geo-
metrical optics whose validity is generally assumed for ocean
swell.

Ocean swell for long times (fetches) likely becomes an
important constituent of the ocean environment which can be
heavily affected by relatively short wind-driven waves. We
discuss the effect of swell amplification at rather low wind
speeds and give tentative estimates based on the approach of
this paper.

4.1 Swell attenuation within the kinetic equation

Dependence of wave height on time is shown in upper panel
of Fig. 10 (see also Fig. 2) for the runs of Table 1. All the

runs show quantitatively close evolution. Strong drop of up
to 30% of initial value occurs within a relatively short time
of about 1 day. An essential part of the wave energy leakage
corresponds to this transitional stage at the very beginning of
swell evolution when swell tends very rapidly to self-similar
asymptotics. Afterwards, the decay becomes much slower
following the power-law dependence of the self-similar so-
lutions (Eq. 22).

For comparison with other models, and available obser-
vations, the duration-limited simulations have been recasted
into dependencies of fetch through the simplest time-to-fetch
transformation (e.g., Hwang and Wang, 2004; Hwang, 2006):

x(s)=

s∫
0

Cg(ωp(t))dt. (36)

The equivalent fetch is estimated as a distance covered by
a wave guide travelling with the group velocity of the spec-
tral peak component. The corresponding dependencies are
shown in bottom panel in Fig. 10. Two quasi-linear models
by Ardhuin et al. (2009) and Babanin (2006) predict rela-
tively slow attenuation at fetches in a “near zone” less than
1000 km (approximately 1 day) and then gradual decay up to
very few of the percentage points of initial value at final dis-
tances about 18000 km where our model shows qualitatively
different weak attenuation.

It should be noted that our model describes attenuation
of the ocean swell “on its own” due to wave–wave inter-
actions without any external effects. Thus, the effect of an
abrupt drop in wave amplitude at short times (fetch) should
be taken into consideration above all others when discussing
the possible application of our results to swell observations
and physical interpretation of the experimental results.

4.2 Swell and wind-sea coupling. Arrest of weakly
turbulent cascading

Extremely weak attenuation of swell due to wave–wave in-
teractions provokes a question on robustness of this effect.
A variety of physical mechanisms in the ocean environment
can change the swell evolution qualitatively. The above dis-
cussion of swell attenuation presents a remarkable exam-
ple of such transformation when dissipation becomes dom-
inant. Tracking of swell events from space gives an alter-
native scenario of transformation when swell appears to be
growing. Satellite tracks can comprise up to 30% of cases
of growing swell; “most of them are not statistically signif-
icant” (Jiang et al., 2016). Nevertheless, a possible effect of
wind-sea background on long ocean swell opens an impor-
tant discussion in view of theoretical (Badulin et al., 2008b)
and experimental (Benilov et al., 1974; Badulin and Grig-
orieva, 2012) results that demonstrate swell amplification by
a wind-wave background.

As noted and shown above, evolution of swell can oc-
cur at different timescales for different physical quantities.
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Integrals of motion (energy, action, momentum) evolve at
relatively large scales: frequency downshift and energy fol-
lows power-law dependencies 1/11 (ωp ∼ t

−1/11 and E ∼
t−1/11). The slow evolution is supported by interactions
within a wave spectra that is close to an “inherent” quasi-
stationary state.

Oppositely, spectral shaping is evolving due to excursions
from an “inherent state” at much shorter scales that can be es-
timated following Zakharov and Badulin (2011, see Eqs. 21
and 22 therein). The nonlinear relaxation rate as defined by
eqs. 14–16 of the cited paper can be written as

0(ω)= Bω

(
ω

ωp

)3

µ4H(ω,θ). (37)

Here B is a big dimensionless coefficient (e.g., B = 22.5π ≈
70.7 for an isotropic spectrum; see Zakharov and Badulin,
2011) and H(ω,θ) is the directional distribution function
(Eq. 32). The big coefficient B in (37) provides relatively
fast relaxation of local excursions (in wave scales) from the
slowly evolving “inherent” swell, especially, in the high-
frequency domain (factor (ω/ωp)

3 in Eq. 37). Evidence of
this relaxation can be seen in the evolution of the angular dis-
tribution of run sw330, where visible transformation of an-
gular distribution is observed for the entire duration of more
than 3 weeks (Fig. 6): the non-self-similar background of the
swell spectra is feeding the core of the spectral distribution.

A similar effect can be realized in the mixed sea when
background of relatively short wind-driven waves feeds the
swell. Total energy flux of the swell is decaying as rapidly
as dE/dt ∼ t−12/11 and at sufficiently large time the asso-
ciated direct cascading can be arrested by inverse cascading
of wind-driven waves which fast relaxation to an “inherent”
swell ensures the swell feeding. This mechanism has been
analyzed numerically (Badulin et al., 2008b) and showed its
remarkable efficiency.

Simple estimates of the possibility of the effect can be
made in terms of balancing of two fluxes: direct cascade of
swell and inverse cascade of wind-driven fraction. The swell
energy leakage can be estimated from the weakly turbulent
law (Badulin et al., 2007, eq.1.9) as follows:(

dE
dt

)
direct
=

E3ω9
p

α3
swellg

4
=
µswell

6C3
swell

α3
swellg

. (38)

Here swell parameters are marked by proper subscripts:
Cswell = g/ωp – phase velocity of the spectral peal compo-
nent; µswell – swell steepness by definition (Eq. 15); and
αswell – self-similarity parameter (αss in Badulin et al., 2007).
Similar conversion of sea state parameters to spectral flux can
be done for the wind-sea fraction (see Sect. 5.1 in Badulin
et al., 2007, or Table 1 in Gagnaire-Renou et al., 2011):(

dE
dt

)
inverse

≈ Cw

(
ρa

ρw

)3 U3
10

α3
windg

, (39)

where coefficient Cw =O(1) is introduced as soon as the
conversion is based on dimensonal analysis and generaliza-
tion of experimental results (Toba, 1972). A counterpart of
αswell, the self-similarity parameter αwind, is approximately
2 times less in magnitude (Badulin et al., 2007). Thus, the
condition of the balance of fluxes assotiated with different
fractions of the mixed sea (Eqs. 38, 39) says that

2Cw
ρa

ρw

U10

Cswell
≈ µ2

swell. (40)

For relatively short swell with period Tp = 10 s (λ≈ 150 m)
and wind speed U10 = 7 m s−1 one gets a critical swell steep-
ness µswell ≈ 0.03. In other words, the mean-over-ocean
wind 7 m s−1 can balance (arrest) direct cascading of rather
steep swell and, hence, provoke a growth of the swell due
to absorbing short wind-driven waves. Evidently, this sim-
ple balance model gives very tentative estimate of the effect.
Nevertheless, visual observations (Badulin and Grigorieva,
2012) and satellite data (Jiang et al., 2016), in our opinion,
provide telling arguments for this phenomenon. Thus, “neg-
ative dissipation” of swell (in the words of Jiang et al., 2016)
could find its explanation within the simple model.

The simple estimate (Eq. 40) shows the limited value of
our “pure swell” model for the ocean environment. Poten-
tially, the effect of even light wind on long-term propagation
of swell can change the result qualitatively. Our pilot numer-
ical studies (see also Badulin et al., 2008b) show the impor-
tance of the swell and wind-sea coupling. This effect will be
detailed in our further studies.

5 Conclusions

We presented results of sea swell simulations within the
framework of the kinetic equation for water waves (the Has-
selmann equation) and treated these properties within the
paradigm of the theory of weak turbulence. A series of
numerical experiments (duration-limited setup, WRT algo-
rithm) has been carried out in order to outline features of
wave spectra in a range of scales usually associated with
ocean swell, i.e., wavelengths larger than 100 m and dura-
tion of propagation up to 2 × 106 s (more than 23 days). It
should be stressed that the exact collision integral Snl (non-
linear transfer term) has been used in all the calculations. Al-
ternative, mostly operational approaches, like the DIA (dis-
crete interaction approximation approach), can corrupt the
results quantitatively and even qualitatively.

Key results of the study are the following.

1. A strong tendency for self-similar asymptotics is
demonstrated. These asymptotics are shown to be in-
sensitive to initial conditions in terms of evolution of in-
tegral quantities (wave energy, momentum). Moreover,
universal angular distributions of wave spectra at large
times have been obtained for both narrow (initial angu-
lar spreading 30◦) and almost isotropic initial spectra.
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Bi-modality of the spectral distributions in our simula-
tions is found to be in agreement with previous numeri-
cal and experimental results (Banner and Young, 1994;
Ewans, 2001; Ewans et al., 2004). The universality of
the spectral shaping can be treated as an effect of mode
selection when very few eigenmodes of the boundary
problem determine the system evolution. The inherent
features of wave–wave interactions are responsible for
this universality making the effect of initial conditions
insignificant. Generally, the self-similar swell co-exists
with a background, which is far from a self-similar state.

2. The classic Kolmogorov–Zakharov (KZ) isotropic and
weakly anisotropic solutions for direct and inverse cas-
cades are shown to be relevant to slowly evolving sea
swell solutions. Estimates of the corresponding KZ con-
stants are found to agree well with previous analytical,
numerical and experimental results. Thus, features of
KZ solutions can be used as a reference for advanced
approaches in the swell studies.

3. We show that an inherent peculiarity of the Hasselmann
equation, energy and momentum leakage, can also be
considered a mechanism of the sea swell attenuation.
Today’s models of sea swell are unlikely to account for
this effect. Possible problems of the models are sketched
in Sect. 3.1 when different options of simulation of
the “conservative dissipation” are discussed. All these
options require sufficiently large high-frequency range
where the short-term oscillations in absence of dissipa-
tion or hyper-viscosity can mimic the energy leakage
at |k| →∞. It should be noted that the energy decay
rates of sea swell in the numerical experiments, gener-
ally, do not contradict the results of recent swell obser-
vations and modeling. These studies based on satellite
data and wave model hindcasting are focused mostly on
“far field” behavior of swell, generally, 1000 or more
kilometers away from a stormy area. Our simulations
show that a dramatic transformation of the swell occurs
at shorter distances, in the “near field”. The essential
swell energy losses in the near field, mostly due to non-
linear transfer, is an intriguing challenge for sea wave
forecasting since the very first discussions of the phe-
nomenon within the concept of wave–wave interactions
(e.g., Sect. 8a, b in Snodgrass et al., 1966). Thus, Fig. 10
outlines different domains of our model relevance rather
than the model relevance for the general problem of
ocean swell attenuation.

4. Long-term evolution of swell is associated with rather
slow frequency downshift (ωp ∼ t

−1/11) and energy at-
tenuation (E ∼ t−1/11). Meanwhile, the decay of other
wave field quantities is essentially faster: wave steep-
ness is decaying as µ∼ t−5/22, and total spectral flux
is even faster: dE/dt ∼ t−12/11. This point is of key
importance in our analysis as far as we consider non-

linear cascades of wave energy as governing the physi-
cal mechanism of swell evolution. As we showed in the
discussion, the weak direct cascade of swell can be ar-
rested by relatively light winds and then swell can start
to grow. In our opinion, this conclusion correlates with
manifestations of swell amplification in satellite data
(Jiang et al., 2016) and in visual observations (Badulin
and Grigorieva, 2012). Thus, “negative dissipation” of
swell (in the words of Jiang et al., 2016) could find
its explanation within the simple estimate (Eq. 40) of
Sect. 4.2.

5. The last conclusion uncovers deficiency of the duration-
limited setup for the phenomenon of swell. An alterna-
tive setup of fetch-limited evolution (∂/∂t ≡ 0, ∇r 6= 0)
introduces dispersion of wave harmonics as a com-
peting mechanism that can change the swell evolu-
tion dramatically. Recent advances in wave modeling
(Pushkarev and Zakharov, 2016) make the problem of
spatial–temporal swell evolution feasible and specify
the perspectives of our first step study. The theoreti-
cal background for the classic fetch-limited setup when
solutions depend on the only spatial coordinate (i.e.,
∂/∂x 6= 0, ∂/∂y ≡ 0) is sketched in Sect. 2 of this pa-
per. The one-dimensional model adds an essential phys-
ical effect of wave dispersion. A passage to polar co-
ordinates allows us to consider an effect of spatial di-
vergence in formally one-dimensional problem where
solutions depend on the radial coordinate but are still
anisotropic in wavevector space. Self-similar solutions
for this problem in the spirit of Sect. 2 can be easily
found and related to numerical results. All the prospec-
tive simulations require developing effective numerical
approaches. In particular, high angular resolution (not
worse than 5◦) could be recommended for these stud-
ies. V. Geogjaev and V. Zakharov has developed such
code recently (a talk at the meeting Waves in Shallow
Water Environment, 2016, Venice). We plan to use it in
the swell studies.
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