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Abstract. A review of analysis methods is given on quasi-
monochromatic waves, turbulent fluctuations, and wave—
wave and wave—particle interactions for single-spacecraft
data in situ in near-Earth space and interplanetary space,
in particular using magnetic field and electric field data.
Energy spectra for different components of the fluctuating
fields, minimum variance analysis, propagation and polariza-
tion properties of electromagnetic waves, wave distribution
function, helicity quantities, higher-order statistics, and de-
tection methods for wave—particle interactions are explained.

1 Introduction
1.1 Turbulent space plasma

Waves and turbulence phenomena are observed in various re-
gions of near-Earth space and interplanetary space such as in
the solar wind, the foreshock, and the magnetosheath. Turbu-
lence plays an important role in solar plasma (coronal heating
and dynamo mechanism), collisionless shocks (particle ac-
celeration), and interstellar space (diffusion of galactic cos-
mic ray). Due to its electrically conducting nature and colli-
sionless nature, the picture of energy cascade of plasma tur-
bulence is more diverse than that of fluid turbulence. Plasma
physical processes such as wave—wave and wave—particle in-
teractions serve as a channel of the energy cascade in addi-
tion to eddy splitting intrinsic to the fluid-like behavior of
plasma. On kinetic scales on the order of the ion gyro radius
(about 400 km in the solar wind at 1 astronomical unit from
the Sun) or the electron gyro radius (about 10km), waves
become dispersive while interacting with individual particles
(particle acceleration and scattering).

This paper is a review of analysis methods for waves, tur-
bulence, wave—wave interactions, and wave—particle interac-

tions using in situ measurement data of magnetic and electric
fields. A summary of the analysis methods is displayed in Ta-
ble 1. The emphasis of the review is on the single-spacecraft
measurements of the magnetic field and the electric field,
primarily using the second-order quantities such as energy
and helicity. While many of the current spacecraft missions
perform multi-point measurements — four-point tetrahedral
formation flights on scales of 10000 down to 100km by
the Cluster mission (Escoubet et al., 2001) and on a 10km
scale by the MMS mission (Burch et al., 2016), 1-D five-
point measurements by the THEMIS mission (Angelopou-
los, 2008), three-point measurements by the Swarm mission
(Chulliat et al., 2013; Olsen et al., 2013; Thebault et al.,
2013), and two-point measurements by the Van Allen Probes
(Mauk et al., 2013; Stratton et al., 2013) — the upcoming
spacecraft missions are more specialized to unique obser-
vational approaches toward the understanding of turbulence
processes (particularly in interplanetary space) at the cost of
returning back to single spacecraft measurements. Examples
are simultaneous remote sensing and in situ measurements by
Solar Orbiter (Miiller et al., 2013), the closest observations
to the Sun by Solar Probe Plus (Fox et al., 2016), and high-
precision sampling of particle velocity distribution functions,
electric fields, and magnetic fields by THOR (Vaivads et al.,
2016). Analysis of spatial structure or intermittency is not
covered here, and will be presented in separate papers.

1.2 Fluctuation types

Turbulent fields may be composed of various fluctuation
types such as linear mode waves, nonlinear wave compo-
nents, and coherent structures. An overview of these fluctua-
tion types is given here.
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Table 1. Wave and turbulence analysis methods.

target symbol input data

|BL % |BI> B
|BrI%, |BLI> B
|EL1% |Ej)> E

energy spectra

Izt 127>  BandU
compressibility |By1>/|BI> B
ellipticity € BorE
wavevector angle kB B
phase speed Uph B and E
Poynting vector S B and E
helicity quantities hm, he BorU
wave distribution function  F (k) BorE
higher-order statistics cm B,E,orn
resonance parameter L, ¢C w, k, and vy,
pitch angle scattering - f(v)

1.2.1 Linear mode waves

While magnetohydrodynamics (MHD) hosts three distinct
linear wave modes (fast, Alfvén, and slow modes), the kinetic
treatment of plasma exhibits a larger number of linear mode
waves. Some are natural extensions of the MHD modes, and
the others are of a purely kinetic origin, resulting from the
wave resonance with individual electrons or ions. Kinetic
wave modes from ion to electron scales relevant to plasma
turbulence (for oblique propagations to the mean magnetic
field) include the whistler mode, the ion Bernstein mode, the
kinetic Alfvén mode, the kinetic slow mode, the lower hy-
brid mode, the electron cyclotron mode, the electron Bern-
stein mode, and the upper hybrid mode (for a Maxwellian
plasma). The dispersion relations are schematically shown in
Fig. 1.

— Whistler mode is an extension of the MHD fast mode
to the kinetic scales (from the ion gyro scale down to
the electron gyro scale) (Gary, 1986). Whistler mode
is a right-hand circularly polarized mode (with the ro-
tation sense of electron gyration), and can exist even
in the limit to perpendicular propagation. The whistler
mode extends to the electron cyclotron mode at higher
frequencies.

— Jon Bernstein mode is of a strongly electrostatic nature,
and appears as a series of resonance break-ups of the
whistler mode at the harmonics of the ion cyclotron fre-
quency in the limit to perpendicular propagation. Since
the ion Bernstein mode has higher frequencies than the
ion cyclotron frequency, the ion Bernstein mode can
serve as “‘stations” of wave-wave couplings and can
sustain the daughter waves for a longer time, enabling a
cascade of the fluctuation energy to higher frequencies
(Jenkins et al., 2013).
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— Kinetic Alfvén mode is a small-scale extension of the
MHD Alfvén mode to the ion-kinetic domain, and is
obtained as a limit to perpendicular propagation of the
ion cyclotron mode. The sense of dispersion relation
shows a transition at a propagation angle of 70 to 75°
such that the frequencies increase more slowly at higher
wavenumbers; the transition is from a convex curvature
sense of the dispersion relation for the ion cyclotron
mode into a concave sense for the kinetic Alfvén mode.

— Kinetic slow mode is a counterpart to the kinetic Alfvén
mode, and is the ion-kinetic extension of the MHD slow
mode. The kinetic slow mode is of a highly compress-
ible nature, and is obtained as a quasi-perpendicular
limit of the low-frequency ion acoustic waves. The ki-
netic slow mode is only moderately damped in the
quasi-perpendicular directions (at angles around 85°
and larger).

— Lower hybrid mode is of a strongly electrostatic nature
and is a resonance mode of the gyro motion of both the
electrons and the ions. The resonance frequency is about
43 times higher than the proton cyclotron frequency (it
is at /mp/meS2p). This mode is considered an efficient
heating mechanism because the wave can accelerate
electrons through the cyclotron resonance parallel to the
mean magnetic field and, simultaneously, ions through
the Landau resonance perpendicular to the mean field.

— Cyclotron modes (for ions and electrons) propagate in
the parallel to oblique directions to the mean magnetic
field. The frequency rises up to the cyclotron frequency
of ions or electrons at which the wave electric field is in
resonance with the electron gyration. The resonance fre-
quency becomes lower at larger propagation angles. In
the limit to perpendicular propagation, the electron cy-
clotron resonance frequency falls down onto the lower
hybrid frequency.

— Electron Bernstein mode is of a strongly electrostatic
nature, and appears at frequencies close to the harmon-
ics of the electron cyclotron frequency.

— Upper hybrid mode is a resonance mode as a result
of the coupling of electron gyro motion with the elec-
tron plasma oscillation. The frequency is higher than the
electron cyclotron frequency.

1.2.2 Nonlinear modes

Nonlinear modes can be any propagating wave components
other than the linear mode fluctuations. Nonlinear modes
may appear as large-amplitude solitary waves or as small-
amplitude sideband waves at frequencies around that of the
linear mode. The lifetime can be different and presumably
depend on the fluctuation amplitude. Solitary waves may be
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Figure 1. Schematic dispersion relations on ion-kinetic to electron-
kinetic scales for oblique wave propagation to the mean magnetic
field. Ion and electron cyclotron branches are associated with the
propagate direction parallel or oblique to the mean magnetic field.
The other branches are for oblique to quasi-perpendicular directions
to the mean field. Whistler branches can exist for the quasi-parallel,
oblique, and quasi-perpendicular directions.

stable if the wave steepening effect is balanced against the
dispersion effect. Sideband waves may break into other fre-
quencies and wavevectors through a successive wave—wave
interaction.

1.2.3 Coherent structures

Coherent structures appear in various forms, such as eddies,
current sheets, flux tubes, density cavities, or shocklets. Flux
tubes may be twisted around their axis, which can be de-
ceptive to a circularly rotating wave. Coherent structures are
different from waves in that the coherent structures do not
propagate intrinsically, and appear as a zero-frequency mode
in terms of wave analysis. Formation of a thin current sheet
leads to a hypothesis of electron gyration-scale magnetic re-
connection as an effective diffusion mechanism of turbulent
fluctuations (Treumann et al., 2015).

The role of coherent structures such as current sheets and
possible associated mechanisms such as magnetic reconnec-
tion should be further highlighted. Coherent structures (par-
ticularly arising out of the turbulent field) are considered
ubiquitous in the free solar wind as well as in magnetospheric
plasma. Coherent structures populate signals in the solar
wind at a very high cadence, on scales on the order of the
electron inertial length, playing a role in the low-frequency
fluctuations, w ~ 0 (Greco et al., 2009, 2016; Bruno and Car-
bone, 2016).

2 Quasi-monochromatic waves
2.1 Spectral density matrix
Quasi-monochromatic waves are identified as local peaks

in the energy spectrum. For vectorial quantities such as the
magnetic field, the electric field, and the flow velocity, the

www.nonlin-processes-geophys.net/24/203/2017/
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method of the spectral density matrix is particularly useful to
extract the information on the wave properties.

The measured field data are Fourier transformed from the
time domain into the frequency domain:

T

B(w) :/dt B(t)e'™. (1)

0

Here we choose the magnetic field data in the time domain
B(t). The Fourier transformed quantity is expressed by tilde,
B(w). We use the angular frequencies w. The dimension of
the Fourier transformed quantity is different from the original
quantity because of the integration over the time. In the case
of Eq. (1), we compute the Fourier coefficients by the inte-
gration (i.e., continuous distribution of the spectrum) using
the time length 7. In the case of discrete time series sam-
pling and the discrete Fourier transform, the dimension must
be adapted accordingly.

The spectral density (SD) matrix R is constructed in the
frequency domain as

1/~ -
R@) = = <B(a))BT(a))>. )

Here the dagger denotes the operation of the Hermitian con-
jugate, and the angular bracket the operation of statistical av-
eraging. The SD matrix in the component-wise expression
is

[ BBy (BiB}) (B.BY)
R(U))Z? (§y§:) (Eyﬁj) (§y§;> 3)
.BY) (B.B}) (B.B)

The asterisk denotes the complex conjugate. It is worth men-
tioning that the SD matrix must be averaged over different
realizations, e.g., by chopping the time interval into sub-
intervals and averaging the matrix over the sub-intervals
(Welch, 1967). Otherwise the matrix becomes singular in that
the determinant is zero. Quasi-stationary fluctuations must be
assumed for a proper measurement of the SD matrix. The di-
mensions of SD matrix elements are in units of square ampli-
tude per frequency such as nT2 Hz~! in the case of the mag-
netic field measurement. The choice of the coordinate system
is arbitrary. Convenient choices for the SD matrix represen-
tation are to use a physically relevant direction as a reference,
e.g., the mean magnetic field direction, the wavevector direc-
tion, the minimum variance direction, or the flow direction
(Table 2).

A detailed algorithm to evaluate the spectral power is
given in Bendat and Piersol (2012) with six steps: detrending
(subtracting the mean field, correcting for the linear trend),
tapering, computing the Fourier transform, determining the
raw spectrum, statistical averaging or smoothing the spec-
trum, and adjusting the scale factor. Note that each step can
cause manipulations of the spectrum if care is not exercised.

Nonlin. Processes Geophys., 24, 203-214, 2017
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Table 2. Notations for different coordinate systems useful in wave
and turbulence analysis: MFA (mean-field aligned), K (wavevec-
tor), MVA (minimum variance analysis), and ST (streamwise).

coordinate system MFA K MVA ST
reference vector By k ey Uy
X 11 tl Al f1
y 12 2 A2 f2
z I 14 A3 fl

The confidence levels or intervals are estimated by assuming
the spectral realization follows the normal distribution. One
may use the chi-square distribution with n degrees of free-
dom (Jenkins and Watts, 1968) to estimate the confidence
interval, bounded by P; and P;, for a probability of « as

Py =log P(w) +10g(%), )
Xn (1= %)

P> = log P(w) +1og(La). )
xn (%)

Chopping the data must be treated carefully here because
the chopping may lead to violation of ergodicity. The ensem-
ble averages, as in Eq. (2), consist of a large number of real-
izations, over several correlation length scales (or correlation
times), and over different experiments (solar wind dataset).
This deals with the ergodic theorem, which is crucial in ev-
ery turbulence measurement. Chopping the data at too small
a scale violates the ensemble average, leading to ephemeral
results.

The off-diagonal elements represent covariances of differ-
ent fluctuation components. In general, one may construct the
covariance between one of the field components (e.g., paral-
lel magnetic field fluctuation to the mean field) and the other
fluctuation field (e.g., plasma density fluctuation). To sim-
plify the argument, the time factor 1/ 7T and the tilde symbol
are omitted hereafter.

2.1.1 Mean-field-aligned system

The SD matrix is conveniently analyzed by choosing the
mean magnetic field as the primary reference direction
(mean-field-aligned system, MFA) to determine the wave en-
ergy for perpendicular and parallel fluctuations (to the mean
magnetic field) and the field rotation sense around the mean
field (Fowler et al., 1967; Arthur et al., 1976). The SD matrix
in the MFA system is expressed as

Rij11 Ri1i2 Rug
Riz11 Ri212 Rig|. (6)
Ryt Rz Ry

RmrA =

The secondary reference direction must be specified by
choosing, e.g., the Earth-to-Sun direction, the flow direc-
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tion, or the maximum variance direction in the perpendic-
ular plane. The diagonal elements represent the energies for
the perpendicular fluctuating field (R1111+ Ri212, incom-
pressible sense of fluctuation) and that for the parallel fluc-
tuation (R, compressible sense of fluctuation). One may
then plot the respective energies in the spectral domain as in
Fig. 2 (typically in the spacecraft-frame frequency domain).
The trace of the SD matrix trR represents the total fluctua-
tion energy. One may construct the ratio of the compressible
fluctuation energy to the total fluctuation energy, Ry /trR, as
an index of magnetic compressibility (Bavassano and Bruno,
1989).

The rotation sense of the field fluctuation is evaluated from
the off-diagonal elements of the SD matrix using the algo-
rithm for the ellipticity shown in Egs. (7), (8), and (9) (Fowler
et al., 1967; Arthur et al., 1976). Ellipticity is a useful con-
cept to estimate the polarization, and is defined as the ratio of
the minor semi-axis to the major semi-axis of the elliptically
rotating field:

= tan. @)

The value of ellipticity is bound between —1 and +1 for
left-hand circular polarization and the right-hand one, re-
spectively. € > 0 at a positive frequency means the right-
hand field rotation sense when viewing in the direction of the
mean magnetic field (the same sense as electron gyration),
while € < 0 in the left-hand field rotation sense. Our defi-
nition of the ellipticity follows that in plasma physics (Stix,
1992; Gary, 1993). Another choice for the field rotation sense
is to analyze the rotation sense around the wave propagation
direction (Born and Wolf, 1980), associated with the notion
of the wave helicity. The rotation sense of the wave field can
be visualized (and hence double-checked) by plotting the tra-
jectory of the wave field time evolution in the perpendicular
plane (referred to as the hodogram).

Ellipticity is evaluated through the angle 1 spanned by the
minor and major semi-axes, and the angle 1 is determined by
the analysis of the two-by-two SD sub-matrix of the 1 1-L 2
plane, R/,

Riinr Rine
R = , 8
[ Ris11 Ruu] ®
through the following relation:
2Im (R’
sin2yr) = (Ri1so) - 9)
[(trR/)z — 4det (R’)] 2
Equation (9) is derived by modeling the quasi-
monochromatic wave as elliptically polarized:
Bmajoreiwt
6B = Bminorei(wti%) : (10)
0

www.nonlin-processes-geophys.net/24/203/2017/
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Figure 2. Magnetic field energy spectra for parallel and perpendic-
ular fluctuating components to the mean magnetic field.

The SD matrix is then evaluated as
2

major iBmajoerinor 0
Rumodel = | —i Bmajor Bminor Br%linor 0f- (11)
0 0 0

2.1.2 Minimum variance system

The SD matrix can be transformed into a diagonal form by
using a unitary matrix, and the wave properties are analyzed
in the minimum variance system:

A& 0 0
Rmy = 0 A 0]. (12)
0 0 X3

The diagonal elements contain the largest eigenvalue X
(maximum variance), the intermediate one \;, and the small-
est one A3 (minimum variance). The associated eigenvectors
are orthogonal to one another (because the SD matrix is Her-
mitian symmetric), pointing to the directions of the maxi-
mum, intermediate, and minimum variances (Fig. 3).

Different approaches are possible to determine the mean
magnetic field from the data, e.g., the mean values on the
sub-intervals, the smoothing method, the low-pass filtering
method, and so on. How do we find the mean magnetic field
more properly if the mean field is no longer trivial, e.g.,
in a scale-dependent or in a time-dependent fashion? The
wavelet-based technique (Horbury et al., 2008; Wicks et al.,
2010, 2011; Chen et al., 2011; He et al., 2011; Telloni and
Bruno, 2016) provides a suitable way to determine the mean
magnetic field and the parallel and perpendicular directions
to it, scale by scale. It is worth mentioning that the defini-
tion of local mean field and its interpretation in the frame-
work of plasma turbulence has been questioned, particularly
when short time intervals are used to determine global statis-
tics (Matthaeus et al., 2012).

The essence of the minimum variance analysis lies in
the fact that the minimum variance direction e)3 reasonably
agrees with the wavevector direction (the longitudinal direc-
tion), i.e., k- B} =0 (where B denotes the fluctuation di-
rection) if the polarization plane spanned by two transverse
fluctuating components is well determined, characterized by
A2 > A3 (Sonnerup and Cahill, 1967). The magnetic field is

www.nonlin-processes-geophys.net/24/203/2017/
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4

Figure 3. Polarization ellipsoid in the minimum variance analysis.

divergence-free (V - B = 0), and the fluctuation appears only
in the transverse directions (which can be checked by mod-
eling the magnetic field as a composition of the mean field
and a monochromatic wave as B = Bo+ B elkr ). Note that
only the axis of the propagation direction is determined and
there still remains a 180° ambiguity in the sense of propa-
gation. For a linearly polarized wave, the method of mini-
mum variance analysis does not work because the polariza-
tion plane is not uniquely determined. To unambiguously de-
termine the wavevector, different methods need to be com-
bined, e.g., Poynting vector, wave distribution function, or
multi-probe methods.

2.2 Electromagnetic waves

For quasi-monochromatic electromagnetic waves, one may
estimate the phase speeds and the wavevectors from the elec-
tric and magnetic field data. The phase speed is obtained as
a ratio of the electric field amplitude to that of the magnetic
field:

w (SEt]
Uph = — = .
P T 5B,

13)

Equation (13) is obtained from the induction equation d; B =
—V x E for a plane wave (Bale et al., 2005; Eastwood et al.,
2009). The electric field, the magnetic field, and the propa-
gation direction (wavevector direction) are mutually orthog-
onal, and one must use the transverse-1 component for the
electric field and the transverse-2 component for the mag-
netic field in Eq. (13). The phase speed is expressed in the
observer’s frame of reference, and is subject to the Doppler
shift in the plasma flow of the observer’s motion. If multi-
ple waves are present at the same frequency, the phase speed
cannot be determined properly.

From the phase speed vpp as a function of the frequencies,
one may obtain the wavenumber as k = w/vpp and therefore
the wavenumber—frequency diagram (the dispersion relation
diagram, Fig. 4). The wavevector direction (which is acces-
sible in the minimum variance analysis for elliptically po-
larized magnetic field fluctuations) can be double-checked
with the Poynting vector, S = %E x B. Another approach

Nonlin. Processes Geophys., 24, 203-214, 2017
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Figure 4. Wavenumber—frequency diagram derived from the phase
speed estimate.

to obtain the wavevector is to employ Ampere’s law using
the electric current density and the magnetic field data (Bel-
lan, 2016).

2.3 Wave distribution function

Wave distribution function is the concept of the wave energy
distribution in the wavevector domain assuming the existence
of dispersion relations (Fig. 5). The analysis for the wave dis-
tribution function can be implemented in single-spacecraft
measurements (Storey and Lefeuvbre, 1979, 1980; Lefeuvre
et al., 1982; Oscarsson and Ronnmark, 1989, 1990; Oscars-
son, 1994; Oscarsson et al., 2001; Santolik and Parrot, 1996).
The analysis needs the field data (either electric or magnetic
field) and the dispersion relation for the linear Vlasov theory
such as the WHAMP code (linear Vlasov dispersion solver)
(Ronnmark, 1982, 1983).

The SD matrix is constructed from the electric field mea-
surements in the frequency domain. The SD matrix can on
the other hand be modeled as a projection of the wave po-
larization matrix (a);; multiplied by the wave power in the
wavevector domain over the dispersion relations wq(k). The
number of waves does not need to be specified and the SD
matrix is modeled as an integral of the continuous wave en-
ergy distribution over the wavevectors by extracting the fre-
quencies for the linear mode waves using the Dirac delta
function.

Rij(®) = (E; E7)(a);j (14)
= [ ka0 F 105 @~ (k) (1)

2.4 Multi-probe method

Multi-spacecraft methods can be applied to multi-probe data
analysis such as the timing analysis to measure the phase
speed or the wave telescope technique or k-filtering tech-
nique to measure the fluctuation energy in the wavevector-
frequency domain (Neubauer and Glassmeier, 1990; Pincon
and Lefeuvre, 1991; Motschmann et al., 1996; Glassmeier
et al., 2001). The accessible dimension and the range of the
wavevector domain are determined by the sensor configura-
tion: 1-D wavevector domain for two probes in the direction
of the probe alignment; 2-D domain if the probes are in the

Nonlin. Processes Geophys., 24, 203-214, 2017
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k.

Figure 5. Wave distribution function F (k).

spin plane; and 3-D domain if the probes are in the spin plane
and along the spin axis. The advantages of using multiple
probes are on the wavelength resolution such that the fluctu-
ation amplitudes are estimated directly in the wavenumber—
frequency domain without using an assumption of dispersion
relation or Taylor’s frozen-in flow hypothesis. Moreover, the
fluctuation amplitude obtained from the wave telescope tech-
nique retains the phase information and the wave—wave cou-
plings can be studied in the wavevector domain, too. The
highest accessible wavenumber is determined by the probe
distance (spatial sampling distance), and the lowest recog-
nizable wavenumber is about 10 to 50 times smaller than the
highest wavenumber (Sahraoui et al., 2010). Upon the multi-
probe data analysis, the spatial aliasing (Narita and Glass-
meier, 2009) must be taken into account.

3 Turbulent fluctuations
3.1 Taylor’s frozen-in flow hypothesis

Frequencies in the observer’s (or spacecraft) frame are a sum
of the intrinsic wave frequency, modulation of the intrinsic
frequency due to the random sweeping effect by the large-
scale flow velocity fluctuation or the nonlinear (sideband) ef-
fect, and the Doppler shift by the mean flow:

w=wy+éw~+k-Uy. (16)

The random sweeping is a representation of turbulent fluctu-
ations, that small-scale fluctuations are swept by large-scale
flow variation (Kraichnan, 1964). The large-scale variation
(or the sweeping velocity) can be modeled to be random,
Gaussian, and independent of the small-scale turbulent fluc-
tuations. The Doppler shift dominates in a high-speed (super-
sonic or super-Alfvénic) stream such that the frequencies can
be mapped onto the wavenumbers along the flow (called the
streamwise wavenumbers),

w =~ kaUp. (17)

The mapping is referred to as Taylor’s frozen-in flow hypoth-
esis (Taylor, 1938).

www.nonlin-processes-geophys.net/24/203/2017/
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Figure 6. Stokes spectrum decomposing the fluctuations into circu-
larly rotating fields.

3.2 Stokes parameters

Using the Stokes parameters (Stokes, 1852; Berry et al.,
1977), the perpendicular fluctuating magnetic fields (to the
mean magnetic field) can be decomposed into a set of circu-
larly polarized waves (Fig. 6). To do this, the perpendicular
fluctuation fields B and B, must be expressed as com-
plex numbers, and are obtained with the help of the Hilbert
transform, B 11 and B 12:

B, =Bii+iBi1, (18)
B\, =Bi,+iB.,. (19)

Here the primed quantities B’ , and B’ , are the complex
numbers. Two of the Stokes parameters, I and V, are then
determined:

1= (B + (Bl = (B[ + (B, (20)
vV =—2Im (B (B,)") = (| B&[*) — (| B |*)- @1

In this method, the Stokes / parameter represents the total
fluctuation energy in the perpendicular plane, and the Stokes
V the difference between the energy for the right-hand po-
larized fluctuations and that for the left-hand polarized ones.
The energy for the circularly rotating fields is obtained from
I'and V as

I1+V
Er="11 22)
2
I1-V
EL=" 23)

for right-hand and left-hand rotation senses, respectively
(Comigel et al., 2016).

3.3 Elsisser variables

The Elsasser variables are additive couplings of the magnetic
field with the flow velocity by adapting the dimension of the
magnetic field into that of the velocity:
4 B
= +U, (24
VHopPo

where 1o and po denote the permeability of free space and
the mass density, respectively.

www.nonlin-processes-geophys.net/24/203/2017/
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Figure 7. Elsdsser variable spectrum.

The Elsisser variables give an intuitive picture of magne-
tohydrodynamics that parallel propagating Alfvén waves (to
the mean magnetic field) are expressed by z~ because the
fluctuating fields satisfy the relation U = —B/,/iopo (anti-
correlation), and anti-parallel propagating Alfvén waves by
z™T satisfying the correlation U = B/,/iopo. The nonlinear
terms of the magnetohydrodynamic equation represent a cou-
pling of a parallel propagating wave with an anti-parallel
propagating wave, z~ Vz, and vice versa (Biskamp, 2003).
The energy spectra can be estimated for z* and z~, respec-
tively (Fig. 7).

3.4 Helicity quantities

Helicity quantities play an important role in turbulence
(Matthaeus and Goldstein, 1982; Matthaeus et al., 1982).
Magnetic helicity and cross helicity are invariant in ideal
magnetohydrodynamics, and can even cascade onto different
spatial scales. Current helicity and kinetic helicity are also
useful quantities.

The magnetic helicity density is defined using the vector
potential A and the magnetic field B as hp, = (A-B), and can
be evaluated using the wavevector components and the off-
diagonal elements of the SD matrix for the magnetic field
Rij = (B B]*.) (Fig. 8, left panel):

By = — k’—2 [ke (Ryz — Rey) + Ky (Rex — Ry2)
+k; (Rxy — Ryx)]. (25)

The vector potential is obtained by un-curling the equa-
tion B =V x A and applying the Coulomb gauge V- A =0
(Matthaeus and Goldstein, 1982). The kinetic helicity density
is obtained from the off-diagonal elements of the SD matrix
for the flow velocity, as well (Fig. 8, middle panel).

The cross helicity density represents a covariance between
the flow velocity and the magnetic field, i, = (U - B), which
is the trace of the SD matrix from the flow velocity and the
magnetic field (Fig. 8, right panel). The cross helicity den-
sity can also be expressed as a difference between the two
Elsisser variables, he = |z7|* — |z~ |? (Tu and Marsch, 1995;
Biskamp, 2003). The off-diagonal elements of the SD matrix
(UBT) contain the information on the electromotive force,
amplifying the magnetic field in the dynamo mechanism. For
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Figure 8. Structure of the spectral density matrices for magnetic field and flow velocity data.

single-point measurements, only streamwise wavenumbers
can be determined using Taylor’s hypothesis.

4 Wave-wave and wave—particle interactions
4.1 Higher-order statistics

Wave—wave couplings can be measured by extending the no-
tion of covariance to multiple wave components. A three-
wave coupling, for example, occurs under the condition of
frequency and wavenumber conservations:

o = w+ws3, (26)
ki = ky+ks. 27)

The bispectrum estimator is a measure of three-wave
couplings, and is constructed as a three-body covariance
(Kim and Powers, 1979). The decay instability of a field-
aligned large-amplitude Alfvén wave results in a backward-
propagating Alfvén wave and a forward-propagating density
fluctuation (sound wave), and is one of the leading mecha-
nisms for a plasma to develop into turbulence (Longtin and
Sonnerup, 1986; Terasawa et al., 1986; Wong and Goldstein,
1986; Hoshino and Goldstein, 1989) (see Fig. 9, right panel).
The decay instability can be detected by constructing the bis-
pectrum using the magnetic field fluctuation B and the den-
sity fluctuation n as

c® — (B* (wl , klll) B (a)z, k||2) n (wa, k||3))~ (28)

The bispectrum is non-zero if the resonance condition
(Egs. 26-27, including that for the initial phases) is satisfied.
This fact can be seen by modeling the wave components as
follows:

B (w1, kj1) = Bye! kst 4 s, 29)
B (w3, kjp) = Bae' (2 Hi2st¢2) 4 5, (30)
n (a)3, k\|3) = n3ei (031—kyp2+¢3) + dn. 31

Here § B and én are random fluctuations or noise which van-
ishes after a statistical averaging, (§ B) = 0 and (én) = 0. An-
other application of three-wave couplings is spectral energy
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(b) Parallel cascade

> K

Figure 9. Three-wave coupling diagram for Alfvén wave scattering
(left) and parametric decay of Alfvén waves into Alfvén and sound
waves (right). Figure adapted from Narita (2012).

transport perpendicular to the mean magnetic field when the
Alfvén wave dispersion relation is imposed (Shebalin et al.,
1983; Biskamp, 2003) (Fig. 9, left panel). In the single space-
craft measurements, the bispectrum is studied either in the
frequency domain or in the streamwise wavenumber domain.

4.2 Landau and cyclotron resonances

Charged particles can exchange the energy with the wave
electric field both parallel to the mean magnetic field (Lan-
dau resonance) and perpendicular to the mean field (Landau
resonance). Figure 10 left and middle panels show these res-
onance types and the associated parts of the distribution func-
tion schematically. The resonance parameters for the Landau
and cyclotron resonances are

w
L=7 , (32)
1V(s)th
-Q
c_27%% (33)
kjvesyim

Here the frequency w is measured in the plasma rest frame.
Q2 denotes the cyclotron frequency of particle species s
(ion species and electrons), kj the parallel component of
the wavevector, and v, the particle thermal speed of
species s. In general, the resonance parameter can be de-
fined for arbitrary harmonics of the cyclotron frequency
(m=0,£1,%£2,---):
my _ @—mS2

. (34)
Kjvs)m
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Figure 10. Wave—particle interactions and the associated part of the
velocity distribution functions.
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Note that the resonance parameters above are defined for a
Maxwellian plasma. A correction is needed when treating a
non-Maxwellian plasma to find the suitable velocity—space
gradient for the resonance. The resonance is efficient when
the parameter ¢, or ¢c is on the order of unity. Strictly speak-
ing, the wave damping (or particle acceleration) is most effi-
cient, typically for 1 < ¢ < 5. The upper limit (5 in this case)
is not exact, but the resonance becomes gradually inefficient
at larger values of ¢. For ¢ < 1 the particle motion is slower
than the wave propagation and the particles do not have a suf-
ficient time for exchanging the energy with the wave electric
field. For ¢ > 5 there are increasingly fewer particles with
higher velocities for the resonance (higher than the thermal
speed).

4.3 Pitch angle scattering

Charged particles can be scattered by the wave electric and
magnetic fields incoherently, and the scattering deforms the
velocity distribution function along the co-centric contours
centered at the wave phase speed (Fig. 10, right panel). The
reason for the deformation is that the particle kinetic energy
Ky (per unit mass) does not change in the co-moving frame
with the apparent wave phase speed in the parallel direction
to the mean magnetic field.

Ky = ) + - — ’ = t 35)
= -1V v = const.
Wk I ky

The co-centric deformation of the distribution function
achieves a quasi-linear equilibrium in that the velocity—space
gradient becomes zero (plateau formation) in the pitch an-
gle directions. The pitch angle scattering analysis was suc-
cessfully performed on the Helios ion data in the solar
wind (Marsch and Tu, 2001; Marsch, 2006; Marsch and
Bourouaine, 2011), and obliquely propagating Alfvén/ion
cyclotron waves are found to be the resonating waves. Note
that the relevant phase speed is w/kj, and is different from
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the true phase speed w/k. The perpendicular component of
the wavevector k| does not play a role in pitch angle scatter-
ing.

5 Outlook

Revealing the fluctuation properties is essential to advance
our knowledge on turbulent plasmas using spacecraft data.
In the following, particularly challenging questions are ad-
dressed that should be focused on for the upcoming space-
craft missions.

1. “What is the role of dispersion relation in turbulence?”

Whether a dispersion relation exists in a turbulent field
is a very important problem to guide to a theory of
turbulence. One of the pictures of turbulence develop-
ment is a transition from linear mode waves into more
randomized nonlinear waves through the breakdown of
the dispersion relation. The analysis of dispersion rela-
tion diagram is possible both from single-spacecraft and
multi-spacecraft data. Perhaps the appearance of linear
mode waves depends on the evolution time from the in-
stability onset or the fluctuation amplitudes.

2. “What are the intrinsic spectra of turbulence?”

Turbulence is essentially a spatially and temporally de-
veloping phenomenon, and the energy spectra must be
viewed as a 4-D quantity as a function of the frequencies
and the three components of the wavevectors. Turbulent
fluctuations appear in the magnetic field, the electric
field, and the plasma fluctuations such as the flow ve-
locity, the density, and the temperature. Moreover, the
magnetic and electric fields are vectorial quantities and
a more complete picture of the spectra needs to be con-
structed using the SD matrices. As a consequence, a
large number of spectra are necessary to characterize
the turbulent fields unambiguously.

3. “How random are the wave phases in turbulence?”

Turbulent fields cannot have fully random phases, since
otherwise the constituent waves (or fluctuations) can-
not interact with one another and the energy cascade
through wave—wave interactions becomes impossible.
The elementary energy transport process can occur only
as a coherent process under the resonance conditions for
the frequencies and the wavevectors. On the other hand,
turbulent fluctuations are apparently incoherent. Other-
wise the superposition of individual waves ends up with
a large-scale coherent structure. The cascading waves
generated by the wave—wave coupling attain a more ran-
dom phase at some stage of evolution.

Wave analysis methods assume that the measured fluctu-
ation data are cleaned against noise or spacecraft-generated
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disturbance by proper calibration procedures. The signals in
the data must clearly be identified to separate them from the
noise. In the case of magnetometer data, the offsets and the
noise floor must be determined prior to the data analysis.

Turbulent fields may contain coherent structures with ed-
dies, current sheets, and discontinuities. Coherent structures
can be conveniently studied by, for example, introducing the
de Hoffmann-Teller frame for the shock waves (eliminat-
ing the convective electric field with the sliding frame along
with the plane of the discontinuity), the analysis of electro-
static potential through the Liouville mapping, or visualiza-
tion of the magnetic field and the plasma distribution using
the Grad—Shafranov equation for a magnetohydrodynamic
quasi-equilibrium state.

The fluctuations can also be highly intermittent such that
the small-scale burst-like fluctuations are more localized and
the fluctuation statistics strongly deviate from a Gaussian
process. Various methods have been developed to character-
ize the intermittency, such as the probability density function,
the local intermittency measure, the multi-fractal method, the
partition function, and the partial variance increments, wave
phase shuffling, and surrogation.
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