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Abstract. Fluid parcels can exchange water properties when
coming into contact with each other, leading to mixing. The
trajectory encounter mass and a related simplified quantity,
the encounter volume, are introduced as a measure of the
mixing potential of a flow. The encounter volume quantifies
the volume of fluid that passes close to a reference trajec-
tory over a finite time interval. Regions characterized by a
low encounter volume, such as the cores of coherent eddies,
have a low mixing potential, whereas turbulent or chaotic re-
gions characterized by a large encounter volume have a high
mixing potential. The encounter volume diagnostic is used
to characterize the mixing potential in three flows of increas-
ing complexity: the Duffing oscillator, the Bickley jet and
the altimetry-based velocity in the Gulf Stream extension re-
gion. An additional example is presented in which the en-
counter volume is combined with the u∗ approach of Pratt et
al. (2016) to characterize the mixing potential for a specific
tracer distribution in the Bickley jet flow. Analytical relation-
ships are derived that connect the encounter volume to the
shear and strain rates for linear shear and linear strain flows,
respectively. It is shown that in both flows the encounter vol-
ume is proportional to time.

1 Encounter volume

1.1 Main idea

Mixing is an irreversible exchange of properties between dif-
ferent water masses. This process is important for maintain-
ing the oceanic large-scale stratification and general circu-
lation, and it plays a key role in the redistribution of biogeo-

chemical tracers throughout the world oceans. Mixing occurs
between different water masses when they come into direct
contact with each other. Thus, the mixing potential of the
flow, i.e., the opportunity for mixing to occur, is generally
enhanced in regions where water parcels meet or encounter
many other water parcels and are thus exposed to a large
amount of fluid passing by them as the flow evolves. This
would be the case, for example, for a parcel within a chaotic
zone, which is a region of the flow that is in a state of chaotic
advection. There, the separation between initially nearby wa-
ter parcels grows exponentially in time and, in the infinite
time limit, each water parcel encounters all the other water
parcels within the same zone and comes into contact with the
entire volume of the chaotic zone. Similarly, high encounter
volumes will exist in turbulent regions. In contrast, the mix-
ing potential and encounter volume is expected to be smaller
in regions where water parcels do not experience many en-
counters with other water parcels and remain close to their
initial neighbors as the flow evolves. This would be the case,
for example, for a water parcel that is located inside a coher-
ent eddy. If the eddy is in a state of solid body rotation, the
water parcel would forever stay close to its initial neighbors
and will not have any new encounters at all. If some amount
of azimuthal shear is present within the eddy, then for a water
parcel located at a radius r from the eddy center, the encoun-
ters will be limited to those water parcels located within a
circular strip centered at the same r .

Of course, the presence of a mixing potential does not
guarantee that the mixing of a tracer will occur; it is also es-
sential that the tracer distribution is nonuniform so that irre-
versible property exchange can take place between the differ-
ent water parcels during their encounters. This exchange hap-
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pens through diffusion and therefore relies on a concentration
difference between the two parcels. Thus, the intensity of the
mixing would depend on both the tracer distribution and the
flow, whereas the mixing potential is the property of only the
flow field alone. In this work, we introduce the concept of
an encounter mass, M , and the encounter volume, V , which
serves as a simplified representation of M in incompressible
flows, as an objective measure of the encounters between dif-
ferent fluid elements in order to quantify the mixing poten-
tial of a fluid flow. There are many existing trajectory-based
measures of fluid stirring; ours has the virtue of having a
straightforward physical interpretation that is easy to imple-
ment and immediately applicable to ocean float and drifter
data. Our method does not require sophisticated bookkeep-
ing as in braid theory (Allshouse and Thiffeault, 2012) or
finite-time entropy (Froyland and Padberg-Gehle, 2012).

1.2 Definition and numerical implementation

For a given reference trajectory, x(x0, t0;T ), the encounter
mass, M(x0, t0;T ), is defined as the total mass of fluid that
passes within a radius R of a reference trajectory over a fi-
nite time interval t0< t < t0+T . One might imagine a sphere
that has a radius R and that is centered at and moves with the
reference trajectory. The encounter mass then consists of the
mass of the fluid that is initially located within the sphere
along with the mass of all the fluid that passes through the
sphere over the time interval t0 < t < t0+ T . Note that it is
generally not possible to compute the latter by simply in-
tegrating the mass flux into the sphere over t0 < t < t0+ T
since some fluid may leave and then reenter the sphere and
would be counted more than once; Lagrangian information
is therefore required to keep track of the history of each fluid
parcel trajectory entering the sphere.

To this end, we subdivide the entire fluid at t = t0 into
small compact fluid elements with masses δMi = ρiδVi ,
where ρi is the density of a fluid element and δVi is its vol-
ume. We wish to follow the motion of each fluid element
over time interval t0 < t < t0+T , and we assume that the el-
ements remain compact over such time so that the motion of
each fluid element can be well represented by one trajectory.
If the fluid elements stretch and deform too much, we can
evoke the continuum hypothesis and make δM sufficiently
small that such compactness is assured. In the limit of in-
finitesimal fluid elements, δMi→ dMi , we can associate a
unique trajectory with each infinitesimal fluid element. The
encounter mass is then

M = lim
dMi→0

6idMi .

For an incompressible flow, the density and volume of each
fluid element, ρi and δVi , remain constant following a tra-
jectory, although different fluid elements are still allowed
to have different densities such as, for example, in stratified
three-dimensional geophysical flows. If the flow is unstrati-
fied, the densities of all fluid elements are equal, ρi = ρ, and

the encounter mass becomes

M = ρV,

where

V (x0, t0;T )= lim
dVi→0

6idVi

is the encounter volume defined as the total volume of fluid
that passes within a radiusR of the reference trajectory over a
finite time interval t0 < t < t0+T . When all volume elements
are equal, dVi = dV , the encounter volume can be further
simplified to

V = lim
dV→0

NdV,

where the encounter number, N(x0, t0;T ), is the number
of trajectories that come within a radius R of the refer-
ence trajectory over a time interval t0 < t < t0+ T . We will
refer to t0 as the starting time, T as the trajectory inte-
gration time and x0 as the trajectory initial position; i.e.,
x (x0, t0;T = 0)= x0. For practical applications with geo-
physical flows, the limit in the definition of the encounter
volume can be dropped, and one can simply use the approxi-
mation

V ≈NδV, (1a)

with the dense grid of initial positions x0. Mathematically,
the encounter number can be written as

N (x0, t;T )=

K∑
k=1

I (min(|xk(x0k, t0;T )− x(x0, t0;T )|)≤ R), (1b)

where the indicator function I is 1 if true and 0 if false, and
K is the total number of Lagrangian particles released. The
encounter volume depends on the starting time, the integra-
tion time, the encounter radius and the number of trajectories
(i.e., the grid spacing); all of these parameter dependences
will be discussed below. Once the encounter volume is esti-
mated, regions of space with large or small V would then be
associated with enhanced or inhibited mixing potential. For
the remainder of this paper, we will focus on incompressible
fluid flows and will be concerned with the encounter volume
rather than the encounter mass.

We define V (x0, t0;T ) and N(x0, t0;T ) in Eq. (1a, b)
based on the number of encounters with different trajectories,
not the total number of encounter events; even if a trajectory
first comes close to the reference trajectory and then moves
away and reapproaches it again later, it is only counted once.
In a flow field with no sources or sinks of tracer variance,
where the variance is therefore decaying, it is reasonable to
expect that the most property exchange between two parcels
will often occur during their first encounter; this is thus the
motive for counting only the first encounter. Note that this
assumption may not hold if the parcels reacquire different
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properties after their first encounter due to encountering and
exchanging properties with other parcels. In this case, or in
the case when tracer variance is continuously introduced, it
may be more reasonable to count the total number of encoun-
ters.

For a numerical implementation of the trajectory en-
counter volume-based mixing characterization, one would
need to start at a chosen time t0 with a grid of initial po-
sitions spanning the flow domain, and then evolve the tra-
jectories under the flow field over the time interval T . This
time interval should be chosen based on the physical proper-
ties of the flow and with specific scientific questions in mind.
For example, if the research focus is on ocean submesoscale
dynamics, the timescale T would be on the order of hours
to days, whereas the corresponding timescale for mesoscale
dynamics would be on the order of weeks to months.
V (x0, t0;T ) is a Lagrangian quantity that characterizes the

mixing potential of a flow over a time interval from t0 to
t0+ T . As the flow field evolves in time, its mixing charac-
teristics can change, and V (x0, t0;T )will reflect this change.
For example, if a coherent eddy with weak mixing potential
embedded in a chaotic zone with enhanced mixing potential
was present in the flow from time t1 to time t2 but dispersed
and disappeared afterwards, then V (x0, t0;T ) is expected to
be small at those locations x0 that correspond to the interior
of an eddy for t0 ≥ t1 and t0+ T ≤ t2. For t0 > t2, when the
eddy is no longer present, V (x0, t0;T ) would increase. De-
pendences on T and t0 are similarly expected to be present
within a chaotic zone.

In the infinite time limit, T →∞, when all parcels within
a chaotic zone (or turbulent region) of a finite extent en-
counter all other parcels within the same chaotic zone, the
encounter volume V (x0, t0;T →∞) approaches a constant
equal to the volume (or the area in two dimensions) of the
chaotic zone. For a two-dimensional, incompressible flow,
the encounter rates over finite T are locally the largest near
a hyperbolic trajectory and along the segments of its asso-
ciated stable manifolds. The stable manifolds serve as path-
ways that bring water parcels from remote regions into the
vicinity of the hyperbolic trajectory, where parcels stay for
extended periods of time and where many encounters oc-
cur. Note that the unstable manifolds, on the other hand, will
rapidly remove a particle from a hyperbolic region, thus lim-
iting its exposure to the high-encounter region near the hy-
perbolic trajectory. For this reason, the unstable manifolds
are not revealed by the encounter volume calculation per-
formed in forward time and require a backward-time calcu-
lation instead. This exclusive link between the forward- and
backward-time calculations of the trajectories and the stable
and unstable manifolds, respectively, is not specific to the en-
counter volume diagnostic. It is rather typical for many finite-
time methods from the dynamical systems theory, including
finite-time Lyapunov exponents (FTLEs), which in forward
time approximate segments of the stable manifold as max-

imizing ridges (Haller, 2002; Shadden et al., 2005; Lekien
and Ross, 2010).

Since the locations of the hyperbolic trajectories and man-
ifolds generally evolve in time, V (x0, t0;T ) is also expected
to vary with t0. As the trajectory integration time T increases,
the water parcels initially located further from the hyper-
bolic trajectory will have the opportunity to come into its
vicinity along the stable manifold. Such parcels, as they ap-
proach the hyperbolic trajectory, are expected to have more
encounters than their neighbors that are initially located off
the manifold and thus bypass the vicinity of the hyperbolic
trajectory where many encounters occur. Thus, V (x0, t0;T )

reveals longer segments of stable manifolds for longer inte-
gration time T , as will be illustrated numerically in the next
section. In the long integration time limit when each mani-
fold, either stable or unstable, densely fills the entire chaotic
zone forming a dense homoclininc or heteroclinic tangle, the
whole tangle will be characterized by high encounter vol-
umes in both forward and backward time. Again, this is sim-
ilar to how the maximizing ridges of the forward-time FTLEs
elongate and sharpen with increasing integration time.

The radius R, which defines how close to a reference tra-
jectory another trajectory should come in order to be counted
as an encounter, is an important parameter for the calculation
of the encounter volume V . Generally, R should be small
compared to the spatial scale of the smallest features of in-
terest. Specifically, for the V field to delineate a flow feature
like an eddy, the trajectories within the eddy interior should
not encounter those on its exterior. The boundary region near
the eddy perimeter where such encounters can occur has the
width 2R. So, if that width is comparable to or larger than the
eddy size, then the eddy would become completely smeared
out and not be resolved. From a practical viewpoint, how-
ever, using a very small R would require very dense grids of
trajectories to be computed. Otherwise, zero or a very small
number of trajectory encounters will occur in the entire flow
domain. The numerical examples in the next section suggest
that choosing R to be a fraction, up to about half of the radius
of the smallest features of interest, works best.

Finally, the approximation V ≈NδV breaks down for
sparse grids of initial positions with the insufficient number
of Lagrangian particles when N is small and δV is large. It
also works poorly when applied to two-dimensional diver-
gent flows due to δV changing following trajectories. The
numerical simulations in the next section suggest that a grid
spacing of ≤ R/2 is sufficient and that the method can also
be applied to characterize the mixing potential in slightly di-
vergent two-dimensional flows.

Once the timescale T is identified, the grid of initial po-
sitions is chosen, the trajectories are computed, the radius
R is defined and the number of encounters, N(x0, t0; t), is
counted for each trajectory, then the encounter volume can
be estimated as V ≈NδV and plotted as a function of the
trajectory initial position x0. The resulting V field delineates
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the flow regions with different mixing properties as subdo-
mains having different values of V .

2 Examples

We proceed to test the performance of the encounter volume
technique in quantifying the mixing potential of several geo-
physically relevant sample flows of increasing complexity,
starting from a simple analytically prescribed periodically
perturbed double-gyre Duffing oscillator system, followed
by a dynamically consistent solution of the PV conservation
equation on a beta plane known as the Bickley jet and finish-
ing with an observationally based geostrophic velocity field
in the North Atlantic derived from the sea surface height al-
timetry.

2.1 Duffing oscillator

The Duffing oscillator flow with its figure-eight geometry has
become a standard test case for emerging techniques related
to the dynamical systems theory. This flow consists of two
gyres with the same sign of rotation (clockwise in our case)
with elliptic centers that oscillate in time around their mean
positions. A hyperbolic point is located at the origin between
the two gyres, and a pair of stable and unstable manifolds
emanate from it, forming a figure eight in the absence of
the time-dependent perturbation or forming a classic homo-
clinic tangle in the presence of the perturbation. The velocity
field is two-dimensional, incompressible and given by u= y
and v = (x−ax3)(1+ε cos(ωt+φ)) with a = 1, ω = 3π/2,
φ = π/4 and ε = 0.1. With these parameters, the Poincaré
section (Fig. 1b) shows the presence of two main regular el-
liptical regions with a O(1) radius corresponding to the in-
teriors of the gyres, which are embedded in a chaotic zone
shaped like a figure eight, within which a number of island
chains with smaller regular islands are present. The winding
time for most of the trajectories in the system is on the order
of 5Tpert with Tpert =

2π
ω

, except for the trajectories near the
hyperbolic point, for which the winding time is much longer
(Fig. 1a).

The encounter volume was computed for a range of trajec-
tory integration times from T = Tpert (which is significantly
shorter than the trajectory winding time) to T = 50Tpert (sig-
nificantly longer than the trajectory winding time) and for
a range of encounter radii from R = 0.01� Reddy (signifi-
cantly smaller than the eddy core radius) to R = 1≈ Reddy
(comparable to the eddy core radius). The results in Fig. 2
suggest that the encounter volume method works best for in-
tegration times longer than the trajectory winding time and
with an encounter radius about one-third to one-half of the
gyre radius (the right three panels of the middle row). For a
very small encounter radius (top row), V is noisy because the
trajectories simply do not encounter many neighbors. Thus,
delineating the domain into regions with different mixing po-

Figure 1. The trajectory segments for the different integration
times (a) and the Poincaré section (b) for the Duffing oscillator.

tentials, as in the top right panel, requires a long integra-
tion time. For T = 50Tpert, good agreement with the Poincaré
section is observed, and the use of a small encounter radius
allows for a precise identification of smaller regular island
chains, such as the chains of four islands located just outside
of the perimeter of both the left and right eddy cores. Note
that the noise in the V field can be suppressed by using a
denser initial grid of trajectories, but at the cost of a more
expensive computation. For very short integration times (left
column) when the trajectory segments are very short, the en-
counter volume does not capture the difference between the
regular and chaotic regions. This is not surprising as velocity
shear is probably a dominating factor over such small times.
As the integration time increases, the difference in the en-
counter volume becomes more pronounced between the tra-
jectories that remain within the eddy cores and the trajec-
tories that are free to move around the chaotic zone. Over
a timescale of approximately one winding period (or about
five periods of the perturbation; second column), the two
regular eddy cores (the blue regions with the small V ) and
a segment of the stable manifold (the red curve emanating
from the origin with the largest V ) become clearly visible
for R = 0.2 and R = 1. The revealed manifold segment be-
comes longer, narrower and more tangled, eventually filling
up the whole chaotic zone. At the same time, the shape of the
core region becomes more exact and approaches the “true”
core in the Poincaré section as the integration time increases
to 50 periods of the perturbation. The agreement with the
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Figure 2. The encounter volume for the Duffing oscillator for the various integration times from T = 0.1Tpert (on the left) to T = 50Tpert
(on the right) and for the various encounter radii from R = 0.01 (on the top) to R = 1 (on the bottom). The trajectories were released on a
regular grid spanning the entire domain with a grid spacing of 0.013 in both the x and y directions.

Poincaré section is excellent in the right middle panel, al-
though the smaller island chains are not as visible as in the
top right panel because of the use of a larger encounter radius
that is comparable to their size (see Fig. 3). Finally, for the
large encounter radius that is comparable to the size of the
eddy (bottom row), the boundary region near the perimeter
of an eddy, within which the trajectories on the inside of the
eddy can encounter the trajectories passing by on the outside,
is as wide as the eddy itself, essentially wiping out all small
scales from the V field. All of these trends are in agreement
with the theoretical expectations described in Sect. 1.

In order to more clearly highlight the link between high
values of V and stable (rather than unstable) manifolds, we
have computed both the stable and unstable manifolds for
the Duffing oscillator flow using a direct method, where we
grew manifolds from a small segment starting at the hyper-
bolic trajectory. For the Duffing oscillator, this computation
is straightforward since the the hyperbolic trajectory stays at
the origin at all times. Both the stable and unstable directly
computed manifolds were then superimposed on a forward-
time encounter volume plot in Fig. 4. The comparison shows
that, as anticipated, the encounter volume diagnostic clearly
highlights the stable manifolds as maximizing ridges of V
computed in forward time.

With a variety of dynamical systems techniques available,
it is important to understand the advantages and limitations
of the different methods. We compared the encounter vol-

Figure 3. The Poincaré section (the black dots; same as in Fig. 1b)
superimposed onto the encounter volume (in color; same as the top
and middle right panels in Fig. 2). Only select trajectories from the
Poincaré section are shown.

ume to two well-established and commonly used methods,
the Poincaré section (Fig. 3) and the FTLEs (Fig. 5). Since
the Poincaré section requires stroboscopic sampling of the
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Figure 4. The encounter volume (in color; the same as the second
row and the second column subplot of Fig. 2) and the stable (black)
and unstable (white) manifolds for the Duffing oscillator flow com-
puted using the direct method.

trajectories in time, it can only be applied to time-periodic
flows and requires that the trajectories are computed over a
long integration time, typically thousands of periods of the
perturbation. On the other hand, it generally requires only a
few parcels to be released at some key locations rather than
releasing a dense grid of initial positions to map out the en-
tire phase space. The encounter volume and FTLEs, on the
other hand, are not limited to time-periodic flows and also
work with significantly shorter segments of trajectories (the
longest integration time in our simulations in Fig. 2 is only
50 periods of the perturbation). They are also better suited
for identifying the manifolds than the Poincaré sectioning as
they do not require any a priori knowledge about the loca-
tion of the hyperbolic trajectory. On the other hand, they re-
quire many more parcels to be released in order to map out
the phase space. When applied to the same set of trajectories
(the same initial positions and integration times), the FTLEs
and the encounter volume methods produced similar results
(Fig. 5), with V being arguably better suited for (1) iden-
tifying the coherent core regions of the eddies where the
FTLEs have spiraling patterns that complicate the analysis
and (2) producing more continuous segments of manifolds at
intermediate integration times when the FTLE-based ridges
become discontinuous near the turning points of a manifold.
The advantage of FTLEs, on the other hand, is that they have
fewer parameters (T and grid spacing), whereas V also de-
pends onR, and they are less expensive computationally. The
more expensive computational cost of V compared to FTLEs
is due to two reasons: first, the FTLEs only depend on the ini-
tial and final positions of the trajectories, whereas V depends
on the entire trajectory history; second, the FTLEs depend
on the relative distance between a trajectory and its closest
neighbors, whereas V keeps tracks of the encounters with
all trajectories, not just the neighboring trajectories. Thus,
the cost of evaluating the FTLE for each particle is indepen-

dent of the total number of particles released, and the cost of
evaluating V for each particle increases in proportion to the
number of particles (since one needs to keep track of the en-
counters with all particles). The calculation of V is still feasi-
ble for realistic geophysical flows, as illustrated below. Also
note that, depending on the physical question being studied,
the information about the entire trajectory and not only about
the final and initial position might, in fact, be advantageous.

Related to the issue of computational cost is the question
of a sufficient grid size. We have carried out numerical simu-
lations (Fig. 6) to investigate the dependence of the encounter
volume on the grid size and to come up with a rule-of-thumb
recommendation regarding the appropriate grid spacing. Our
simulations suggest that the encounter volume values (ap-
proximated by V ≈NdV ) are relatively insensitive to the
variations in the grid spacing between one-tenth and one-half
of the encounter radius (with the encounter radius being a
fraction of the size of the feature of interest, as suggested by
Fig. 2) and that the major effect of a coarser grid is the de-
graded resolution of the resulting V map rather than incorrect
V values.

2.2 Bickley jet

The meandering Bickley jet flow is an idealized, but linearly
dynamically consistent, model for the eastward zonal jet in
the Earth’s stratosphere (del-Castillo-Negrete and Morrison,
1993; Rypina et al., 2007, 2011). This flow consists of a
steady eastward zonal jet on which two eastward propagat-
ing Rossby-like waves are superimposed. All flow param-
eters used here are identical to those used in our previous
2007 and 2011 papers. In the reference frame moving at a
speed of one of the waves, the flow consists of a steady back-
ground velocity subject to a time-periodic perturbation. The
background looks like a meandering jet, with three recircu-
lation gyres to the north and south of the jet core. Between
the recirculation gyres, there are three hyperbolic points with
the associated stable and unstable manifolds. Under the influ-
ence of the time-periodic perturbation imposed by the second
wave, heteroclinic tangles are formed by the manifolds em-
anating from different hyperbolic regions between the recir-
culations, and a chaotic zone emerges on either side of the
jet. The manifolds, however, cannot penetrate through the
jet core, which remains regular and acts as a transport bar-
rier separating the northern and southern chaotic zones. All
of these features are clearly visible in the Poincaré section
shown in Fig. 7 (top). The bottom subplot shows the V field
computed using the encounter radius R = 5× 105, which is
about half of the recirculation region radius, and using a tra-
jectory integration time on the order of a few winding times
within the recirculations. As expected, the encounter volume
identified six recirculation regions and the jet core as zones
with a small mixing potential (blue). Six blue recirculation
regions are embedded in two distinct chaotic zones with an
enhanced mixing potential (yellow and red) on either side
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Figure 5. A comparison between the FTLEs (a) and the encounter volume (bottom; same as the middle row of Fig. 2) for the Duffing
oscillator flow for various integration times from T = 0.1Tpert = 0.13 (on the left) to T = 50Tpert = 66.67 (on the right). The same set of
trajectories deployed on a dense initial grid with a 0.02 grid spacing is used in all simulations. (b) R = 0.2.

Figure 6. The encounter volume, V , for the Duffing oscillator flow for various grids of the initial positions from a dense grid spacing of
0.02 (a), to an intermediate grid spacing of 0.04 (b) to a coarse grid spacing of 0.1 (c). The encounter radius, R = 0.2, and integration time,
T = 6.67, are the same in all three simulations.

of the jet. The mixing potential is the largest (red) along the
segments of stable manifolds emanating from the hyperbolic
trajectories between the recirculations.

2.3 Altimetry-based velocity in the meandering Gulf
Stream region

Past its separation point from the coast at Cape Hatteras, the
strong and narrow Gulf Stream current turns offshore, where
it loses its coherence, broadens and weakens and then starts
to meander. Some of the meanders then grow and eventually
detach from the current, forming strong mesoscale eddies
known as the Gulf Stream rings. On 11 July 1997, a num-
ber of such Gulf Stream rings of various strengths and sizes
at different stages of their lifetimes were clearly present both
north and south of the Gulf Stream extension current (Fig. 8).

The flow in the Gulf Stream extension region, with a non-
steady meandering jet, the Gulf Stream rings and the recircu-
lations to the north and south of the jet core, has a lot in com-
mon, at least qualitatively, with the Bickley jet example. Un-
like the idealized model, however, the real Gulf Stream rings
have finite lifetimes, and the jet is not periodic in the zonal

direction. Nevertheless, many of the qualitative features of
the Bickley jet’s V field hold in this example. Specifically,
the trajectories inside the coherent eddy cores have smaller
encounter volumes than the eddy peripheries, and the jet cen-
terline has a smaller encounter volume than the flanks.

The velocity field that we used was downloaded from
the AVISO website (http://www.aviso.altimetry.fr/en/data/
products/sea-surface-height-products/global.html) and cor-
responds to their gridded product with 0.25◦ spatial resolu-
tion and a temporal step of 1 day. This velocity is based on
the altimetric sea surface height measurements made from
satellites. The heights were converted into velocities using a
geostrophic approximation. For the encounter volume esti-
mation, the trajectories were seeded on a regular grid with
dx = dy ∼= 0.06◦ on 11 July 1997 and were integrated for-
ward in time for 90 days using a fifth-order, variable-step
Runge–Kutta integration scheme with a bilinear interpola-
tion between grid points in space and time. The encounter
radius was chosen to be 0.3◦, which is about one-third of the
radius of a typical 200 m wide Gulf Stream ring.
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Figure 7. The Poincaré section (a) and the encounter volume V (b)
for the Bickley jet flow. For the V calculation, the trajectories were
released on a regular grid spanning the entire domain with a grid
spacing of about 105 in both the x and y directions.

The encounter volume was estimated for three different in-
tegration times, T = 30, 60 and 90 days (Fig. 8). The V field
clearly indicates that a number of Gulf Stream rings were
present on both sides of the meandering jet. Among those, the
two strongest ones can be seen at 54◦W, 36◦ N and 52◦W,
41◦ N with a low-V (blue) core and a high-V (red) periphery.
As the integration time increases from 30 to 90 days, the Gulf
Stream rings generally start to leak fluid. Their cores start
to lose coherence and the encounter volume within the eddy
cores starts to increase as more and more trajectories escape
into the eddy surroundings over time. After a 90 day integra-
tion time, only a few Gulf Stream rings still possess coher-
ent cores, whereas others become leaky throughout. Even for
the two strongest rings, the coherent Lagrangian cores (the
bluish regions with V ≈ 0) shrink down in size and, impor-
tantly, become significantly smaller than what the Eulerian
velocity field would suggest. The core of the northern eddy
also becomes slightly shifted to the east from the correspond-
ing Eulerian stagnation point and becomes deformed into a
non-convex, sickle-like shape.

The overall leakiness of the Gulf Stream rings and the
small extent of their coherent Lagrangian core regions sug-
gests that the coherent transport by the Gulf Stream rings
(and maybe by mesoscale eddies in general) over time inter-
vals of a few months or longer may be significantly smaller
than what is generally anticipated from Eulerian diagnostics
based on closed streamlines or Okubo–Weiss criteria. Inter-

estingly, the prominent red rings (the large V values) around
the eddy cores in Fig. 8 indicate that the significant contri-
bution to transport by Lagrangian eddies may be due to the
peripheries with a high mixing potential rather than the co-
herent cores themselves.

To visualize the Lagrangian evolution of the core regions
and to illustrate the eddy leakiness, we extracted the trajec-
tories from the core of the northern eddy in Fig. 8a (i.e., the
trajectories with V < 6000 km2 from the 30-day V field) and
plotted their subsequent positions after 30, 60 and 90 days.
The results in Fig. 9 confirm that the eddy core stays com-
pletely coherent over 30 days (i.e., all trajectories stay to-
gether), but starts to deteriorate at 60 days with only a small
fraction of the initial patch still staying together and the rest
of the patch dispersing and forming long and narrow fila-
ments.

The jet region, although noisy, seems to suggest higher V
near the flanks and smaller V near the centerline. The center
region is not as well defined as in the Bickley jet example,
possibly because the Gulf Stream inhibits but does not fully
prevent the meridional transport in this region, and because
our encounter radius might have been too large to reveal the
central region if the true center region was narrower than 2R
(0.6◦). Finally, the V field suggests that the mixing potential
of the flow is not symmetric with respect to the jet centerline
and is higher on the northern side. It would be interesting to
see if this is a general property of the flow in this region or if
this phenomenon is specific to the time interval chosen. This
investigation is left for a future study.

3 Encounter volume for some simple flow regimes

By analogy with molecular diffusion, the eddy diffusivity,K ,
is often used to characterize the eddy-induced downgradient
tracer transfer in realistic geophysical fluid flows (LaCasce,
2008; Vallis, 2006; Rypina et al., 2012; Kamenkovich et al.,
2015). Because of the simplicity of this approach, the major-
ity of existing non-eddy-resolving oceanic numerical models
are diffusion based, despite the somewhat questionable as-
sumptions underlying this approach. An analytical connec-
tion between the encounter volume and the diffusivity would
thus be useful for the parameterizations in numerical models.

Although we have not been able to find an analytical ex-
pression connecting V and K , we outline below some steps
in that direction that help frame the problem. Let us start by
considering a simple, diffusive, random walk particle mo-
tion in two dimensions, where particles take steps of a fixed
length L in random directions at time intervals 1t . For such
a process, the single particle dispersion is

D =< (x− x0)
2
+ (y− y0)

2 >,

which characterizes the mean square displacement from the
particle’s initial position (x0,y0) and grows in proportion to
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Figure 8. The encounter volume for the AVISO velocities in the Gulf Stream extension region for the trajectories released on 11 July 1997
and integrated over 30 days (a), 60 days (b) and 90 days (c). The trajectories were released on a regular grid spanning the domain from 65 to
35◦W and 30 to 50◦ N with a grid spacing of about 0.06◦ in both longitude and latitude. Additional simulations were performed to ensure
that the release domain was sufficiently large and that a further increase of the release domain does not lead to changes in the encounter
volume for the trajectories starting in the subdomain shown.

Figure 9. The positions of the trajectories that were initially located
within the eddy core on 11 July 1997 (blue patch) after 30 days
(green), 60 days (red) and 90 days (yellow) of integration. The back-
ground shows the kinetic energy of the flow as a snapshot on 11 July
1997.

the number of steps, n:

D =Kn1t,

with the proportionality coefficient, K = L2/1t , denoting
the diffusivity. The angular brackets denote the ensemble av-
erage. We are interested in finding an analytical expression
for the encounter number, i.e., the number of particles that
pass within radius R from a reference particle over time T as
a function of K and T .

It is convenient to move to a reference frame that is tied to
a reference particle, which would then always stay at the ori-
gin, while the other particles would be involved in a random
walk motion. The problem of finding the encounter number
is then reduced to counting the number of particles that come
within the radiusR from the origin over time T in the moving
frame. The properties of the random walk process in the mov-
ing reference frame are different from those in the stationary

frame. Specifically, the direction of each step in the moving
reference frame still remains random (since it is a sum of two
random variables, each uniformly distributed within an inter-
val [0;2π ]), but the step size is no longer fixed. Instead, the
step size can be written as

L2
m = dx2

m+ dy2
m = (dx− dxref)

2
+ (dy− dyref)

2

= 2L2
− 2(dxdxref+ dy dyref) ,

where dx and dy correspond to the displacements of a par-
ticle in the x and y directions at an instance in time, and
the subscripts m and ref denote the moving reference frame
and the reference trajectory, respectively. Denoting the an-
gle in which the step is taken by ϕ, the displacements
are dx = Lcosϕ, dy = Lsinϕ, dxref = Lcosϕref and dyref =

Lsinϕref, leading to Lm = 2Lsinα, where α = ϕ−ϕref
2 . Since

both ϕ and ϕref are random variables uniformly distributed
between 0 and 2π , α is a random variable with a flat pdf
distribution ∈ [0;π ].

This change in the step size between the stationary and
moving frames leads to a doubling of the diffusivity in the
moving reference frame. To show this, we write the disper-
sion in the moving frame as

Dm=<
(
xm− x0m

)2
+
(
ym− y0m

)2
>

=<
(
x− xref− x0− x0ref

)2
+
(
y− yref− y0− y0ref

)2
>

=D− 21xref <1x >−21yref <1y >+1x
2
ref+1y

2
ref

=D+1x2
ref+1y

2
ref,

where 1x = x− x0 is the deviation from the initial posi-
tion in the stationary frame (similarly for 1y, 1xref and
1yref). We have used <1x >=<1y >= 0 to obtain the
last equality. When averaged over many reference trajecto-
ries, <1x2

ref+1y
2
ref >=D. This is because in the station-

ary reference frame, the reference particle is doing a random
walk just like all the other particles, so that <Dm >= 2D;
equivalently, <Km >= 2K .
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We thus seek an expression for the number of particles in-
volved in a random walk process with a diffusivity of 2K that
come within an encounter radius R from the origin during
their first n steps (n plays the role of discretized integration
time). This quantity is related to the first-passage time den-
sity, which characterizes the probability that a particle has
first reached an absorbing boundary (often referred to as a
cliff in statistics) at time t , and its integral quantity, called
the survival probability, which characterizes the probability
that a particle has not come into contact with an absorbing
boundary over time t (i.e., it survived after time t without
falling off a cliff). So far, however, we have not been able to
complete the derivation, and we leave this development for a
future investigation.

The numerical Monte Carlo simulations of a random walk
process suggest that the dependence of the encounter number
(and the encounter volume) on the integration time T is nei-
ther a linear nor a square root function. The power-law least
square fit of the form V ∼ T α returns α values between 0.64
and 0.78 for a wide variety of R and K , each spanning an
interval of values equaling an order of magnitude. Similarly,
the power-law least square fits V ∼Kβ and V ∼ Rγ yield
β ∼= 0.664 and γ ∼= 0.69.

The ballistic spreading that is dominated by a local ve-
locity shear is another commonly encountered spreading
regime. The separation between particles grows in propor-
tion to time. Ballistic spreading can often be observed in
nonsteady realistic oceanic flows at timescales that are much
shorter than the onset of diffusive spreading (which develops
after a trajectory samples multiple different eddies or other
flow features). To derive a connection between the encounter
volume and the velocity shear, we consider a trajectory that is
advected by a flow field with a constant meridional velocity
shear, γ , of the zonal velocity. In a reference frame moving
with a reference trajectory, the velocity profile is u(y)= γy,
where u denotes the x component of velocity and the en-
counter volume becomes

V ∼=Ndxdy = 2

R∫
0

dy

R+x(T )∫
R

dx

= 2

R∫
0

dy

T∫
0

u(y)dt = γR2T . (2)

This suggests a linear growth with time for a ballistic regime.
Note that expression (2) quantifies the encounter volume as
a volume of fluid that is initially located outside of the en-
counter sphere and that passes through the sphere over time
T . To include the volume of fluid that is initially located
within the encounter sphere (or within the encounter circle
in this two-dimenstional case), one needs to add πR2 to ex-
pression (2). The contribution of this term becomes negligi-
bly small as T →∞. Expression (2) has been tested numer-

Figure 10. A comparison between the numerically computed en-
counter volume (blue) and the analytical predictions (Eqs. 8 and 9;
red) for the linear strain (a) and linear shear flows (b). For the lin-
ear shear flow, α = 0.1, r = 5 and dx = dy = r/25; for the linear
strain flow, γ = 0.1, r = 5 and dx = dy = r/25. The other parame-
ter choices show good agreement as well.

ically and shows good agreement with the numerically esti-
mated encounter volume for a linear shear flow (Fig. 10b).

The steady linear saddle flow with a constant strain rate α
and the following velocities

u= αx; v =−αy (3)

is another commonly considered example that is often used
to approximate the vicinity of a hyperbolic trajectory in more
complicated, nonsteady and nonlinear situations. A unique
property of this flow is that the velocity profile is unchanged
in any reference frame moving with a trajectory. This can
be shown by applying the coordinate transformation x̂ =

x− xtr(t); ŷ = y− ytr(t), where (x;y) are coordinates in a
stationary frame, (x̂; ŷ) are coordinates in a moving frame
and (xtr(t); ytr(t)) is the trajectory. The velocity in a moving
frame is then

û= u−
dxtr

dt
= αx−

dxtr

dt
= αx̂+αxtr−

dxtr

dt
= αx̂

v̂ = v−
dytr

dt
=−αy−

dytr

dt
=−αŷ−αytr−

dytr

dt
=−αŷ, (4)

where the last equality holds because dxtr
dt = αxtr;

dytr
dt =

−αytr. Thus, without a loss of generality, we can consider
a flow in a reference frame, which is moving with a refer-
ence trajectory that is located at the origin. The encounter
volume that comes within a radius R of the origin over the
time interval T can be written as

V ∼=Ndxdy =

T∫
0

F⊥(t)dt, (5)

where dx and dy denote the grid spacing between neighbor-
ing trajectories, and the flux in the trajectories entering the
circle is given by

F⊥ =

∫
u⊥ds. (6)
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Again, as in our treatment of the linear shear flow, expres-
sion (5) does not include the volume of fluid that is initially
located within the encounter sphere (or the encounter cir-
cle in this two-dimensional case), but only the volume that
was initially located outside that passes through the sphere
over time T . The contribution of that fixed volume (πR2)

becomes negligibly small as T →∞. Here, u⊥ is the inward-
looking normal component of the velocity at a circle of radius
R, and ds is an infinitesimal segment of the circle arc. From
symmetry, the flux is the same in each of the four quadrants,
so we will consider the first quadrant only. From geometry
(Fig. 11),

u⊥ =−usinβ − v cosβ = αR
(

cos2β − sin2β
)

and ds = rdβ, leading to

F
1st quad
⊥

= αR2

π/4∫
0

(
cos2β − sin2β

)
dβ =

αR2

2
(7)

and

V 1st quad
=

T∫
0

F⊥(t)dt = αR2 T

2
. (8)

Adding the other three quadrants then gives

V = 2αR2T . (9)

The numerical simulations of the encounter volume in a lin-
ear strain flow show excellent agreement with theoretical ex-
pression (9) (Fig. 10a).

The linear growth of the encounter volume with time in
the linear shear and linear strain flows could be anticipated by
noting that both flows are steady in a reference frame moving
with a reference trajectory, and all particles only encounter
the origin once and never come back. Thus, the flux through
the encounter circle is constant in time, and the encounter
volume, which is a time integral of flux, is proportional to
time. The random walk flow seems to be different because
the particles can encounter the reference trajectory more than
once, leading to a nonsteady flux of first encounters and a
nonlinear time dependence of the encounter volume.

4 Mixing potential for a specified tracer: the u∗

approach

The above examples are centered on the mixing potential of a
flow field, but there may be value in computing the encounter
volume for swarms of trajectories of biological organisms,
drifting sensors and other non-Lagrangian trajectories. For
example, if one is interested in the actual transport of scalar
properties such as heat, salt or vorticity, then it may be useful
to calculate V using a velocity field that is directly linked

Figure 11. A schematic diagram for estimating the encounter num-
ber for a linear saddle.

to the vector flux of the scalar of interest. This approach
has been used in connection with heat transport in advec-
tive and diffusive flows (Bejan, 1995; Costa, 2006; Mahmud
and Fraser, 2007; Mukhopadhyay et al., 2002, and Speet-
jens, 2012) and more recently with the transport of more gen-
eral scalars in forced and dissipative (and possibly turbulent)
flows (Pratt et al., 2016). The central idea is to a define ve-
locity field u∗ based on the (known) flux F of a scalar with
concentration C. Here, the bold italic quantities denote vec-
tors. The concentration is assumed to obey a conservation
equation of the form

∂C

∂t
=−∇ ·F + S, (10)

where S contains the sources and sinks of C. The velocity u∗

is defined as the velocity of a hypothetical flow in which the
flux of C is purely advective: F = Cu∗. Pratt et al. (2016)
show that, in the absence of sources or sinks of C, the to-
tal amount of C contained within any material boundary ad-
vected by this hypothetical flow is conserved: ddt

∫
V
CdV = 0.

Thus, u∗ is linked to scalar property fluxes, while u is limited
to fluid volume (or area) fluxes.

If indeed F is due entirely to advection by the actual fluid
velocity field u, then u∗ = u. More generally, F will contain
contributions from eddy fluxes, molecular or subgrid diffu-
sion, and even forcing and dissipation terms that can be ex-
pressed as the divergence of a flux. In addition, F may be
augmented by the addition of any non-divergent vector with-
out altering Eq. (10). As shown by Speetjens (2012), this
lack of uniqueness can be dealt with by defining a physi-
cally relevant reference scalar distribution and then focusing
on the flux of the scalar anomaly, which is an approach that
we adapt below. Thus, by estimating the encounter volume V
for trajectories of the u∗ field, one is quantifying the rate at
which different “parcels” of tracer anomaly are brought into
contact with each other. An example is presented next. We
applied the encounter volume diagnostic to quantify the mix-
ing potential for a specific tracer in the Bickley jet flow. Our
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goal is to describe an example where the u∗ field for a given
tracer is significantly different from the flow velocity u and
where the corresponding encounter volume field for a given
tracer, V ∗, is significantly different from the water particle
trajectory-based encounter volume V .

Consider the Bickley jet flow with the same parameters
as in Sect. 2.2 and assume that one is interested in a tracer
that, at initial time t0, has a uniform value c0 south of the
jet and a constant meridional gradient north of the jet; i.e.,
C0 = c0+0.5y(sign(y−5×105)+1) with c0 = 1. Ignoring
the diffusive terms, the tracer evolution is governed by the
advection equation ∂C

∂t
=−∇ · (uC), where u is the Bickley

jet flow velocity. Since the jet core acts as a transport bar-
rier separating the northern and southern chaotic zones, this
tracer will rapidly filament and develop high property gradi-
ents north of the jet, but will remain uniform south of the jet.
So, despite the fact that the mixing potential of the Bickley
jet flow is exactly the same on both sides of the jet (Fig. 7b),
stirring will not lead to mixing for this particular tracer distri-
bution south of the jet where the tracer gradient is zero, thus
leading to zero mixing potential for this particular tracer. We
seek to capture this effect by applying a mixing diagnostic
based on the encounter volume to the corresponding u∗ field
for this tracer.

In the spirit of Speetjens (2012), we regard c0 as the
reference concentration, here constant, and define F to be
the flux of a tracer anomaly: F = u(C− c0). The resulting
u∗ = F

C
= u(1− c0

C
) is zero south of the jet where C = c0

and approximately equal to u north of the jet where C� c0,
leading to the u∗-based encounter number V ∗ = 0 south of
the jet and V ∗ ≈ V north of the jet.

This behavior was further numerically validated in Fig. 12,
where we first numerically simulated the evolution of this
tracer in the Bickley jet flow and then estimated u∗, counted
N∗ and estimated V ∼=NdV for the trajectories advected by
the u∗ field. The result confirms that the mixing potential
for this tracer is zero south of the jet, V ∗ = 0. North of the
jet, however, V ∗ is very close to V from Fig. 7b. Thus, by
combining the u∗ approach with the encounter volume idea,
we were able to correctly capture the mixing potential for a
specific tracer.

5 Summary and discussion

When water parcels come into direct contact with each other,
they can exchange water properties, leading to mixing. The
trajectory encounter volume, V , quantifies the volume of
fluid that passes close to a reference trajectory over a time
interval t0 < t < t0+ T . Thus, the encounter volume is pro-
portional to, and can be used as a measure of, the mixing
potential of a flow. For incompressible flows densely seeded
with particles, the encounter volume can be approximated by
V ∼=NδV , where N is the encounter number, i.e., the num-
ber of trajectories that come come within radius R from the

Figure 12. The u∗-based encounter volume, V ∗, for a tracer with
an initial distribution south of the jet and a constant meridional gra-
dient north of the jet.

reference trajectory over time t0 < t < t0+ T , and δV is a
small volume element.

The encounter volume diagnostic was tested in three flows
with increasing complexity: the Duffing oscillator, the Bick-
ley jet and the altimetry-based velocity in the Gulf Stream
extension region. In all cases, V was smaller within the cores
of the coherent eddies and jets, where the mixing potential
was low, and V was larger in the chaotic zones near the pe-
ripheries of the eddies and at the flanks of the meandering
jets, where the mixing potential of the flow was high.

Similar to finite-time Lyapunov exponents (FTLEs) that
are commonly used to delineate regions with qualitatively
different motion (Haller, 2002; Shadden et al., 2005; Lekien
and Ross, 2010), V depends on the trajectory starting time,
t0, which allows us to track the evolution of oceanic fea-
tures by repeating the calculation at different t0, and on the
trajectory integration time, T , revealing different structures
that impact the mixing potential of the flow from time t0 to
time t0+ T . Specifically, longer segments of stable or unsta-
ble manifolds emanating from the hyperbolic regions are re-
vealed for longer T in forward or backward time. In the long
T limit, when both the stable and unstable manifolds densely
fill the entire chaotic zone, V approaches a constant equaling
the volume of the chaotic zone.
V also depends on the encounter radius R, which defines

how close two trajectories need to be in order to be counted
as an encounter. The analytic arguments and numerical sim-
ulations both suggest that R on the order of a fraction (one-
third) of the radius of the smallest feature of interest should
work well in most cases.

Finally, while V was initially introduced in the continuous
limit of infinitely many and infinitely small fluid elements
(i.e., an infinitely dense grid of initial positions), its approxi-
mation V ∼=NδV depends on the initial spacing between the
neighboring trajectories. The numerical simulations suggest
that this approximation works well for a grid spacing as large

Nonlin. Processes Geophys., 24, 189–202, 2017 www.nonlin-processes-geophys.net/24/189/2017/



I. I. Rypina and L. J. Pratt: Trajectory encounter volume as a diagnostic of mixing potential 201

as R/2 (with the appropriately chosen R as discussed above)
and that the major effect of increasing the grid spacing is the
degraded resolution of the resulting V map rather than incor-
rect V values.

As with FTLEs, complexity measures (Rypina et al.,
2011), Lagrangian descriptors (Mendoza et al., 2014) and
other techniques from the dynamical systems theory (Beron-
Vera et al., 2013; Budisic and Mezic, 2012; Froyland et al.,
2007; Haller et al., 2016), V can be computed for forward-
and backward-time trajectories, with the backward computa-
tion revealing the unstable manifolds. Our encounter number
could plausibly be related, in a limiting case, to the mixing
geometry of Karrash and Keller (2017).

For a ballistic spreading regime dominated by the velocity
shear γ and for the linear saddle flow with a constant strain α,
V was shown to be proportional to γ T and αT , respectively.
The linear growth of the encounter number with integration
time for the linear shear and the linear strain flows is a con-
sequence of the steady flux of first encounters through the
encounter circle.

An analytical connection between the encounter volume
and a widely used measure of mixing, the diffusivity K ,
would be a desirable result for parameterizing the effects of
eddies in numerical models. Some initial developments to-
wards deriving such a formula were outlined for a diffusive
random walk process. It was numerically shown that the de-
pendence of V on time is nonlinear, but the numerical simu-
lations were too inconclusive to make further inferences.

The mixing potential is the property of the flow field
and characterizes the intensity of stirring, whereas the ac-
tual tracer mixing depends on both the flow and the tracer.
For example, no tracer mixing will occur if the tracer gradi-
ent is zero, even if the mixing potential of the flow is high.
To address this, we have proposed combining the encounter
number diagnostic with the u∗ approach of Pratt et al. (2016)
for characterizing the mixing potential for a specific tracer
C. The u∗ depends on, and includes information about, the
tracer fluxes. In the absence of sources and sinks of C, the
amount of tracer is conserved within any Lagrangian vol-
ume advected by u∗, so the encounter volume V ∗ computed
for the trajectories advected by u∗ can be used to quantify
the mixing potential for a specific tracer. An example was
presented where V ∗ for a specified tracer distribution in the
Bickley jet flow was significantly different from V in a large
part of the domain.

The encounter volume is a frame-independent quantity be-
cause it is based on the relative distances between water par-
cel trajectories rather than on the properties of isolated tra-
jectories. The encounter volume values do not change under
the orthogonal transformations of the coordinates, i.e., under
the rotations and translations of a reference frame. This is a
desirable property because the ability of a flow to mix tracers
should not depend on the reference frame.

The encounter volume and, more generally, the encounter
mass ideas presented in this paper are not restricted to two

dimensions and can be used to quantify the mixing potential
in three-dimensional flows. This framework also does not re-
quire incompressibility and can work with unstructured ir-
regular grids. The investigation of the performance of the
method in quantifying the mixing potential of a flow in more
complicated cases is left for a future study.
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altimetry.fr/en/data/products/sea-surface-height-products/global.
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