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Abstract. We propose a cellular automata model for earth-
quake occurrences patterned after the sandpile model of self-
organized criticality (SOC). By incorporating a single pa-
rameter describing the probability to target the most suscep-
tible site, the model successfully reproduces the statistical
signatures of seismicity. The energy distributions closely fol-
low power-law probability density functions (PDFs) with a
scaling exponent of around − 1.6, consistent with the ex-
pectations of the Gutenberg–Richter (GR) law, for a wide
range of the targeted triggering probability values. Addition-
ally, for targeted triggering probabilities within the range
0.004–0.007, we observe spatiotemporal distributions that
show bimodal behavior, which is not observed previously
for the original sandpile. For this critical range of values for
the probability, model statistics show remarkable compari-
son with long-period empirical data from earthquakes from
different seismogenic regions. The proposed model has key
advantages, the foremost of which is the fact that it simul-
taneously captures the energy, space, and time statistics of
earthquakes by just introducing a single parameter, while in-
troducing minimal parameters in the simple rules of the sand-
pile. We believe that the critical targeting probability param-
eterizes the memory that is inherently present in earthquake-
generating regions.

1 Introduction

The sandpile model, introduced as a representative system
for illustrating self-organized criticality (SOC; Bak et al.,
1987), has opened up new avenues for the use of discrete
cellular automata (CA) models in capturing the salient fea-

tures of many systems in nature (Olami et al., 1992; Drossel
and Schwabl, 1992; Malamud and Turcotte, 2000; Piegari
et al., 2006; Juanico et al., 2008). Seismicity, which is rife
with power-law statistical distributions (Saichev and Sor-
nette, 2006), is an interesting test case for such approaches.
Despite the complexity of the processes in the earth’s crust
that limit our ability for accurate, short-term prediction of
events, it is worth noting that many statistical features of seis-
micity, as obtained from substantially complete earthquake
records, can be recovered using simple CA models.

One of the earliest attempts for sandpile-based model-
ing of earthquake distributions is by Bak and Tang (1989),
who used a two-dimensional sandpile to show the power-
law Gutenberg–Richter (GR) distributions of earthquake en-
ergies (Gutenberg and Richter, 1954). Subsequent authors
also noted that the simple sandpile produces power-law dis-
tributions of earthquake waiting times upon introducing a
threshold magnitude (Paczuski et al., 2005). Additional pa-
rameters have been introduced in the model to account for
other features of seismicity. Ito and Matzusaki (1990) in-
troduced aftershock triggering to the sandpile model to re-
cover the aftershock frequencies and the hypocenter distri-
butions, which also follow power-law decays. To represent
a scale-invariant distribution of earthquake faults, Barriere
and Turcotte (1991) incorporated a power-law distribution of
box sizes in the CA model and recovered not only the GR
distribution but the occurrence of foreshocks. On the other
hand, Steacy et al. (1996) investigated the effect of a hetero-
geneous strength distribution and found that the power-law
exponent of the magnitude distribution is dependent on the
degree of the heterogeneity. Inspired by the sandpile design,
Olami et al. (1992) used a CA implementation of the earlier
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Burridge–Knopoff model (Burridge and Knopoff, 1967) that
incorporates dissipative terms and inhomogeneous energy re-
distribution rules to capture key elements of seismicity, along
with foreshocks and aftershocks (Hergarten and Neugebauer,
2002). In another work, Jagla (2013) has shown that the GR
law can be recovered in a forest-fire model, with the fires
interpreted as the earthquake occurrences.

The introduction of additional parameters to subsequent
models indicates that the simplest rules of the original sand-
pile are not able to capture key features of seismicity. In the
sandpile model, the stress in the grid is released in a sin-
gle avalanche event resulting from small-neighborhood cas-
cades; for seismicity, the energy is released in a sequence of
correlated events. Additionally, the single triggering at ran-
dom locations will tend to produce normal distributions of
interoccurrence distances and times, which, again, deviate
from those observed in records of seismicity. Finally, the con-
servative sandpile with symmetric nearest-neighbor redistri-
bution rules does not take into account the memory that may
be present in actual earthquake-generating zones.

In this work, we adhere to the key features of the sandpile
model, and introduce a very simple modification: for a frac-
tion of the iteration times, determined randomly, we direct
the triggering into the most susceptible site in the grid. In this
case, the avalanches in the grid are deemed to be analogous to
the energy release during an earthquake occurrence. Interest-
ingly, this very simple modification in the sandpile rule en-
abled us to recover, simultaneously, the distributions of event
sizes, interevent distances, and interevent times that are com-
parable to those obtained from substantially complete earth-
quake records.

2 Model specifications

The model utilizes a two-dimensional space discretized into
a grid of L×L cells arranged in a square lattice. The cells
contain continuous-valued information states σ representing
the local measure of susceptibility to rupture. At time t =
0, the states are initialized to have values within [0,σmax),
where, in this case, we set σmax = 1.0 as the relative measure
of the rupture threshold.

The dynamical evolution of the grid is guided by rules pat-
terned after the Zhang sandpile that uses continuous-valued
states (Zhang, 1989). We choose an asynchronous update
rule, such that every discrete time step the grid is triggered
by adding a constant value ν to a single location (x,y),
σ(x,y, t+1)→ σ(x,y, t)+ν, with all the other sites unper-
turbed. The asynchronicity may represent the nonuniformity
of crustal motion that drives the accumulation of elastic po-
tential energy at faults. Moreover, the model introduces a tar-
geted triggering probability p that the most susceptible site,
i.e., the site with the highest σ value in the grid, will receive
the driving term ν. Triggering is therefore applied to the most
susceptible site with probability p and to a randomly chosen

site with probability 1−p. The value of p represents a mem-
ory term, and parameterizes the tendency of fracture to occur
at more susceptible locations along an earthquake-generating
zone.

In the event that a cell matches or exceeds a maximum
possible value σmax, the local region is deemed to rupture.
No new trigger is added to the system during such events;
instead, the stress from the collapsing site is transferred to
the four nearest neighbors in the grid, σ(x± 1,y± 1, t)→
σ(x±1,y±1, t)+ 1

4σ(x,y, t), leading to the relaxation of the
original site, σ(x,y, t)→ 0. Such relaxations may produce a
cascade of subsequent stress redistributions and relaxations
in the grid when one or more of the neighbors are driven to
the threshold. As in the previous sandpile models, the num-
ber of affected sites in the grid, A, is tracked to quantify the
relative event size. Additionally, we also recorded the num-
ber of unique activations V , the number of times a cell has
been affected by a cascade, as a proxy for the actual energy
or seismic moment of the relaxation event.

Prior calibrations show that ν = 10−3 produces power-law
event size distributions comparable to the GR law, and that
tmax = {1,4,16}×107 iterations, where the first 10 % are ne-
glected for transient behavior, produces a substantial number
of avalanche events for L= {256,512,1024} grids, respec-
tively. We investigated the case of different targeted trigger-
ing probabilities, p = {0,1× 10k,5× 10k,1}, where the in-
teger k ranges from −5 to −1, to scan a wide range of pos-
sible system behaviors. For each of the p values, we track
all nonzero Ai and Vi and their avalanche origins and occur-
rence times (xi,yi, ti), where i denotes the temporal index of
occurrence of an event. The spatial and temporal separations
of successive events,Ri = [(xi−xi−1)

2
+(yi−yi−1)

2
]
1/2 and

Ti = ti−ti−1, are computed, and the probability density func-
tions (PDFs) of all A, V , R, and T values are plotted.

Records of very low-magnitude earthquakes are often-
times incomplete because they are both too weak for detec-
tion and their occurrence is orders of magnitude in frequency
as compared with the higher-magnitude ones. In the model,
however, we can resolve all the avalanches, even the smallest
ones that affect only single neighborhoods. To mimic the ef-
fect of the non-retention of the smallest earthquakes, we em-
ployed a thresholding procedure in the analyses by setting
Ath = {5,10,50,100,500,1000,5000} such that all events
with A<Ath are removed from the sequence. Because the
A PDF is just expected to be cut off below Ath, we observed
how the statistical distributions of R and T will be affected
upon employing different Ath values.

Finally, as a way of comparison and verification, we
compare the model statistics with those obtained from ac-
tual earthquake catalogs from Japan (JP), Philippines (PH),
and southern California (SC), as investigated in a previous
work by Batac and Kantz (2014). The JP records are ob-
tained from the Japan University Network Earthquake Cat-
alog (JUNEC), with approximately 137 000 events from July
1985–December 1998; the PH earthquakes are composed
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Figure 1. Avalanche size and earthquake energy PDFs. For all figures, lines corresponding to the power-law trend with exponent α = 1.6
are provided as guides. (a) Model results show similar behaviors despite the large differences in p, signifying the retention of sandpile
characteristics. The obtained power-law distributions are comparable to the power-law trends in the energy distributions from (b) Japan (JP),
(c) Philippines (PH), and (d) southern California (SC). In panels (b)–(d), the horizontal axes scales are preserved; shaded regions denote
energy values with substantial completeness which will be used for subsequent analyses.

of 70 000+ events from 1973 to 2012, as obtained from
the Preliminary Determination of Earthquakes (PDE) Cat-
alog; while the SC records are from the Southern Califor-
nia Earthquake Catalog (SCEC) containing 516 000+ events
from 1982 to 2012 (events due to man-made activities are re-
moved). We compared the behaviors of the model and data
statistics using scaling factors derived from model parame-
ters.

3 Model results

Figure 1a shows the avalanche size PDFs for the differ-
ent values of the targeted triggering probability p. For the
broad range of p values considered, the distributions are
found to be comparable to a power-law A−α with α =

1.6. Continuous-state sandpiles have been known to have
avalanche size scaling exponents greater than 1.0, the expo-
nent of the discrete Bak–Tang–Wiesenfeld (BTW) sandpile.
Lübeck (1997) conducted large-scale simulations of a similar
Zhang sandpile and obtained exponents slightly higher than
1.2, which can go even higher for large driving rates ν. In
a similar model that incorporated non-conservation, Piegari
et al. (2006) obtained power-law exponents that approach
1.6 in the conservative limit for the same order or magni-
tude of ν that we used. The higher exponents and the effect
of the driving rates are also verified by an equivalent con-
servative model and actual sand avalanche experiments by
Juanico et al. (2008), and in other asynchronous updating
models (Paguirigan et al., 2015).

The resulting power-law exponent is deemed to be a re-
sult of the accumulation of stress at various locations; be-

cause the triggering is done at only a single site every time,
there is little global connectivity among critical sites, result-
ing in a preponderance of smaller, isolated avalanches. The
fact that the distributions are almost similar regardless of the
value of p indicates that the targeted triggering probability
has minimal effect on the avalanching mechanism of the grid,
such that the system preserves the SOC characteristics of the
original sandpile. In contrast, the Olami–Feder–Christensen
(OFC) model, one of the foremost discrete models of seis-
micity, tends to lose the universality of the exponents upon
the introduction of non-conservation (Olami et al., 1992).

In Fig. 2a, we observe that the original sandpile p = 0
produces unimodal statistics, whose tails decay towards the
largest possible distance

√
2L in the finite grid. The simple

sandpile, therefore, is not capable of replicating the observed
earthquake separation distance distributions, which are found
to exhibit bimodality due to the difference in the character-
istic times of the correlated aftershock sequences and the in-
dependent mainshocks (Baiesi and Paczuski, 2004; Zaliapin
et al., 2008; Touati et al., 2009; Batac and Kantz, 2014). This
inspired the introduction of p, which is a random occurrence
in time but is inherently affecting the spatial distribution of
events in the grid. We do note here that the parameter p is
just the probability to target the most susceptible site in the
lattice, unlike previous implementations that actually pres-
elect the next targeting location within the vicinity of the
previous avalanche (Ito and Matzusaki, 1990). Indeed, with-
out the imposition of such a spatial bias, the replication of
the short-R regimes is not guaranteed. Interestingly, how-
ever, the plots in Fig. 2a show increased probability of oc-
currence of the short-R distances upon introducing nonzero
p. From this, we can deduce that the most susceptible sites
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Figure 2. Interevent distance statistics of model, with rescaling for comparison with actual earthquake separation distance data. (a) For an
L= 256 grid, higher p results in the preponderance of short-R values. The trends of the model closely mimic those of the data for (b) JP,
(c) PH, and (d) SC, where calibration was done by comparing the modes of the model p = 0 and shuffled sequences of the empirical data.
Larger grids in panels (b)–(d) result in the capability to replicate the shorter R regimes.

in the lattice are most likely to be found within the vicinity
of a previous large avalanche, a fact that was not exploited
by earlier similar models. In fact, in the biased case p = 1,
we recovered unimodal statistics, as shown in Fig. 2a, albeit
at a shorter characteristic distance; for the L= 256 grid, the
average location of the most susceptible site from the previ-
ous avalanche origin was found to be around 21 cell lengths.
Midway between these two extremes (p = 0 for the original
and p = 1 for the completely biased sandpile), we can find
a suitable value of p where reasonable comparison with em-
pirical data can be obtained.

The interevent time distributions are shown in Fig. 3a for
the L= 256 and tmax = 107 iterations. We observe the ex-
pected shift of the tail cutoff towards shorter T values as p
is increased; triggering the highly susceptible sites will more
likely result in a new avalanche event, thereby shortening the
average waiting time. The resulting distributions are for the
case wherein all the events are included in the sequence; we
expect a lengthening of the tails of the distributions when we
neglect other events below the threshold Ath.

4 Discussion

4.1 Energy distributions and the Gutenberg–Richter
law

The GR law, which is usually presented in terms of the
magnitude m and as a complementary cumulative distribu-
tion function (CCDF) log10m= a− bm, can be shown to be
equivalent to an energy E CCDF that behaves as E−2/3 from
the definition of m and by assuming b = 1, which is the case

for most complete records (Jagla, 2013). By noting that the
CCDF is effectively an integral of the PDF, the earthquake
energy PDF will then behave as E−5/3. In Fig. 1b–d, simi-
lar power-law trends have been obtained for the JP, PH, and
SC records, which have different levels of catalog complete-
ness, as indicated by the extent of the power-law regimes. To
minimize the problems associated with the inherent incom-
pleteness of smaller-energy events (Zaliapin and Ben-Zion,
2015), we impose a threshold magnitude mth for succeeding
analyses such that earthquake events with magnitudes lower
than mth are dropped from consideration. The range of such
magnitudes considered, which are well within the power-law
regimes of the plots, is shaded in Fig. 1b–d: mth ∈ [2.5,3.5]
for JP and SC and mth ∈ [4.5,4.8] for PH.

In keeping with the earlier sandpile-based approaches
where the avalanche size A is used for comparison with
earthquake energies (Bak and Tang, 1989; Ito and Matzusaki,
1990), we present in Fig. 1 the PDFs of A with those of E
from the seismogenic regions considered. It is worth empha-
sizing that similar power-law trends result from the introduc-
tion of the parameter p, regardless of how large its relative
value is. We note, however, that aside from the avalanche size
A, there are other parameters that can be used to track the ex-
tent of the avalanche event. One such measure is the number
of activations V , wherein the sites repeatedly affected by the
avalanching process get to be counted multiple times. Previ-
ous works have shown that V and A in discrete models may
in fact have actual associations with the seismic moment and
fracture area, respectively, and may exhibit nontrivial scaling
relations (Landes and Lippiello, 2016). We present in Fig. 4a
the distributions obtained upon tracking V .
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Figure 3. Interevent time statistics of model, and rescaling for comparison with actual earthquake waiting time data. (a) For an L= 256
grid, higher p results in the shift of the distribution to shorter T values. To obtain substantial power-law regimes, we used the results for the
L= 1024 grid to replicate the waiting time statistics of (b) JP, (c) PH, and (d) SC. By preserving the fraction of events left upon imposing
thresholding, we obtained Ath values of (b) 5×103 for JP, (c) 5×105 for PH, and (d) 5×103 for SC. The shortest waiting times in the data
are scaled to be a unit of iteration. The finite total iteration times resulted in model distributions that are not able to capture the very long tails
of those of the empirical data, especially for (d) SC, which has the longest period among the catalogs considered.

Figure 4. Model statistics for V and scaling with A. (a) The PDF of V (shown here with a power-law V−β where β = 1.45 as a guide) also
shows minimal changes upon introducing p. (b) The scaling behavior of V with A is supralinear, with behaviors ranging from V ∝ A1.5 for
p = 0 to V ∝ A1.3 in the regime of large A values for p = 1.

The V PDFs also show a behavior similar to those of their
corresponding A: there are minimal changes upon scanning
for different p values. The distributions also follow power-
law behaviors V −β with β around 1.4 to 1.5 (the case of
β = 1.45 is plotted as a guide in Fig. 4a). The parameter V
is a better representation of the energy E in earthquakes, and
the obtained scaling exponent β is still deemed to be close
to the earthquake energy scaling exponents. The fact that the
model can replicate the energy statistics is a vital first re-

quirement for any discrete model of earthquakes. Addition-
ally, the preservation of the power-law exponent for almost
any value of p indicates that the model does not deviate sig-
nificantly from the original sandpile behavior, and may ex-
hibit (self-organized) criticality.

To understand the scaling relations between V and A, we
plot the V (activated cells) versusA (affected cells) in Fig. 4b
and note that the scaling relations, which are higher than
linear, change for higher p. The case of p = 0 (randomly
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symbols) for (a) JP, (b) PH, and (SC). The broken lines indicate the R∗ values where the original and the shuffled sequences begin to show
similar trends.

triggered sandpile) results in a V (A)∝ A1.5 scaling. On the
other hand, for p = 1 (sandpile with targeted triggering), the
behavior appears to shift towards V (A)∝ A1.3 for very large
A values. This lower scaling exponent of the activation for
large avalanche sizes is expected for targeted triggering; be-
cause the most susceptible site is always targeted, there is
minimal accumulation of near-critical sites near the location
of the avalanche origin, which results in a lower number of
reactivations of affected sites near an avalanche event.

4.2 Spatial separation of earthquake events

In the original asynchronous sandpile models, one only re-
covers unimodal statistics for interevent distances. This is
due to the stochastic nature of the triggering: the next lo-
cation to be perturbed is drawn from an oftentimes uniform
distribution; i.e., all sites are likely to be triggered next. Ad-
ditionally, the nature of internal cascading within the sand-
pile grid results in the depletion of all the critical sites within
the extent of the avalanche area. The same cannot be said of
earthquakes: after the release of elastic potential energy at
a fault location, the subsequent crustal motion may tend to
favor other fractures near the vicinity of the earlier event to
release the remaining stored energy.

Interestingly, the addition of the simple targeted triggering
probability p has enabled us to recover statistical distribu-
tions that are comparable to those observed in regional earth-
quake records up to a scaling factor. It should be noted that
without any form of spatial clustering, the characteristic sep-
aration distance is limited by the finite system size. Rescaling
is therefore conducted by comparing the characteristic sizes
(modes) of the memoryless cases of the model (p = 0) and
the data (shuffled sequence). The interevent distance distribu-
tions of the shuffled sequences are shown as the black sym-
bols in Fig. 5, while the corresponding model p = 0 distribu-
tion is shown in Fig. 2a, with both clearly showing unimodal
statistics.

Upon getting the rescaling factor, we scan through the pos-
sible p values to obtain p values that will result in compa-
rable R distributions between model and data. We observe
that the model parameters that will correspond to the empir-
ical distributions upon such a simple rescaling range from
p∗ ≈ 0.004 to 0.007. Figure 2b–d show the interevent dis-
tances between successive earthquakes in the different re-
gional records considered, superimposed with the rescaled
statistics of the model.

The rescaled model statistics for p = 0.007 show good
agreement with interevent distances from the three seismo-
genic regions. As expected, larger grid sizes will result in a
better discrimination of shorter R; i.e., one pixel unit will
correspond to shorter actual distance units. In our case, for
the largest grid size used (L= 1024), we find that the scaling
factors obtained by matching the modes result in the follow-
ing correspondence with a unit cell length: 1.3 for JP, 1.2
for PH, and 0.5 km for SC. The distributions are found to be
similar regardless of the threshold magnitude Ath considered
due to the finite system size; even upon removing the weak-
est events, the avalanche origins are confined within the grid,
resulting in the same probability density distribution of R.

4.3 Temporal separation of earthquake events

The temporal separation of aftershocks and mainshocks that
have different characteristic waiting times is an intuitive re-
sult that is both well known and widely studied (Zaliapin et
al., 2008; Touati et al., 2009; Batac and Kantz, 2014; Batac,
2016). The proposed model, therefore, must also show these
features to be able to compare reasonably well with the tem-
poral distributions of seismicity. In the following, we com-
pare the results of the model having p∗ = 0.007 and grid di-
mension L= 1024, which has been shown to have compara-
ble R statistics with empirical data.

In comparing model and empirical temporal interevent
statistics, one does not have the similar advantage of hav-
ing a finite “space.” The goal of rescaling in time is to re-
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Figure 6. Conditional relative frequency distributions of Tin and Tout for (a)–(c) earthquake data and (d)–(f) corresponding rescaled model
results, plotted with the relative frequency plot of all T values. Nearby (far away) events have a higher (lower) chance of having short waiting
times and a lower (higher) chance of having long waiting times, as can be seen from the modes of the conditional frequency distributions.
The insets of panels (d)–(f) show that the Tin PDFs of model and rescaled data have significant overlap, signifying the similarities in their
correlated origins.

cover the relatively short T regimes first; theoretically, the
longest T will be recovered if the model is allowed to run
for very long iteration times. Additionally, in rescaling the
time, one should take into account the fact that the earth-
quake record is thresholded by mth, effectively lengthening
the average time between the occurrence of two events. Ide-
ally, if all the events, no matter how weak, can be detected
and recorded, we would not have long tails in the waiting
time distribution of earthquakes. This is also observed in
sandpile-based models; previous approaches have shown that
the waiting time distribution will be Poisson distributed when
all the events are considered, but will begin to show apparent
power-law characteristics upon thresholding (Paczuski et al.,
2005; Juanico et al., 2008).

For our purpose, we arbitrarily chose the following thresh-
old avalanche sizes for removing weaker events: for compar-
ison with JP and SC, which are both taken to havemth = 2.5,
we used Ath = 5× 103; on the other hand, for PH, with rel-
ative completeness beyond mth = 4.5, Ath = 5×105 is used.
The values of Ath are obtained by maintaining the fraction of
events left after neglecting the weaker events. Still, because
of the limited number of regional data sets considered, which
does not allow for further testing their correspondence, we
emphasize that the values of the Ath obtained do not neces-
sarily translate into an exact equivalence with the threshold
magnitude mth for the data.

Upon removing the events with A<Ath, we obtained the
modes of both the data and the model for visual comparison.
This resulted in slight differences in the rescaling factors for
the different data sets. One iteration of the model corresponds

to 0.006 s for JP, 0.004 s for PH, and 0.002 s for SC. Fig. 3b–
d above show the rescaled model distributions alongside the
those of the empirical data, showing qualitative similarities
in their trends.

Apart from recovering the qualitative trends in the T

PDFs, we conducted additional analyses to check if the
model results also show spatiotemporal clustering and sep-
aration behaviors. In Fig. 5, we mark the location of R∗, the
characteristic separation distance where the empirical distri-
butions and those of the shuffled sequences begin to show
comparable trends. The R∗ values of the region considered,
which are similar to the results of Batac and Kantz (2014),
are deemed to be a good marker for separating “nearby”
and “far away” events. We note that a similar procedure
done using the rescaled model statistics results in compa-
rable R∗ values. Using R∗ = 164 km for JP, R∗ = 125 km
for PH, and R∗ = 79 km for SC, we separated the corre-
sponding waiting times T into the sets Tin = {T |R ≤ R

∗
} and

Tout = {T |R > R
∗
}. Figure 6 shows the relative frequency

plots of T , superimposed with those of Tin and Tout, for the
empirical data and the rescaled model values.

As shown in Fig. 6a–c, for all the seismogenic regions
considered, the distributions of Tin and Tout differ signifi-
cantly from that of the total T . The relative frequency plots
of T in all cases can be shown to be a crossover between
Tin and Tout that have different modes. As expected, the Tout
distributions do not coincide due to the different periods in-
volved in the catalogs considered. On the other hand, the Tin
distributions all have modes at short T values, suggesting a
strong dependence among the interevent properties in space
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and time (Livina et al., 2005). This conditional distribution
therefore quantifies the spatiotemporal clustering observed
in earthquakes, particularly among aftershock sequences that
result from the correlated mechanisms: “nearby” events are
also more likely to be separated by shorter waiting times.

In Fig. 6d–f, we observe that despite the shorter iteration
times being considered, the model was able to show the sep-
aration of the Tin and Tout distributions, a feature that is also
found in empirical data (Batac and Kantz, 2014) and in other
earthquake models (Touati et al., 2009). Moreover, it is par-
ticularly interesting to note that the rescaled Tin statistics of
model and corresponding Tin from the earthquake data show
comparable trends, especially for shorter waiting times, as
shown in the insets. The Tin statistics have been shown to cor-
respond with the statistics of aftershocks, as shown in stud-
ies of fresh aftershock statistics from empirical data (Batac,
2016). This suggests that the correlated mechanisms in ac-
tual earthquake systems that produce the Tin distributions are
also present in the model.

4.4 Model advantages and insights on empirical
modeling

Introducing the parameter p into the sandpile driving is a
straightforward way of incorporating memory into the sys-
tem. This simple parameter holds a distinct advantage over
other models that introduced additional parameters, because
it spans a wide range of possible statistical distributions in
event size, space, and time, without actually biasing the lo-
cation of the next triggering event. Being a single parameter,
the correspondence between p and actual properties of the
earthquake-generating system may be difficult, if not impos-
sible, to ascertain. At best, we may think of p as a combined
effect of many different factors on the ground that lead to the
preferential triggering of a location.

We believe that this parameter, which, for earthquakes,
show comparable statistics for the range p∗ ≈ 0.004–0.007,
may be introduced in other sandpile-based models of other
events in nature deemed to show self-organized (critical)
characteristics. It may be possible to quantify the extent of
“memory” of these systems through the value of the param-
eter p that best replicates their statistical distributions.

Moreover, a deeper analysis of the other regimes of p may
lead to a better comparison between the model and other sim-
ilar protocols. For example, for higher values of p, the model
may exhibit extremal dynamics, resulting in more avalanche
events due to the tendency to always trigger the most sus-
ceptible site. On the other hand, for very low values of p,
the dynamics may be comparable to other models that em-
ploy uniform loading. Knowing these limits, and establishing
how similar and/or different the model is from other discrete
models may help put the results in a better context.

5 Conclusions

In summary, we have presented a simple cellular automata
model inspired by the original sandpile model. The model
avoids introducing biased rules and instead incorporates
a probability of targeting the most susceptible site in the
grid, reminiscent of the assumed fracture mechanism of ac-
tual earthquake systems. Within a small range of values
(p∗ ≈ 0.004–0.007), we have observed that the model statis-
tics show comparable trends with empirical distributions of
earthquake occurrences in energy, space, and time, upon sim-
ple rescaling.

The work has also uncovered an important property of the
sandpile grid: the most susceptible sites lie within the vicin-
ity of a previous large avalanche event. Previous sandpile-
based models that synchronously update all lattice sites, or
those that asynchronously update at random locations, are
not able to exploit this important property, preventing the
possibility of directly modeling earthquakes using the sand-
pile paradigm. The introduction of such a targeting proba-
bility without destroying the sandpile properties may hint at
self-organized critical mechanisms at work in the grid. The
fact that the simple targeted triggering probability simulta-
neously recovers these important statistical features of earth-
quakes is a simple yet novel concept that has not been ex-
ploited by previously proposed discrete models based on the
sandpile.

Deeper analyses and comparisons with other established
models of seismicity may help further establish similarities
and differences and put the model results in a better context.
Additionally, the parameterization of memory in the form of
the targeted triggering probability may be extended to other
similar models to possibly capture the statistical distributions
of other self-organized (critical) events in nature and society.
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