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Abstract. Parametric excitation of edge waves with a fre-
quency 2 times less than the frequency of surface waves
propagating perpendicular to the inclined bottom is investi-
gated in laboratory experiments. The domain of instability on
the plane of surface wave parameters (amplitude–frequency)
is found. The subcritical instability is observed in the sys-
tem of parametrically excited edge waves. It is shown that
breaking of surface waves initiates turbulent effects and can
suppress the parametric generation of edge waves.

1 Introduction

The study of parametric excitation of waves with half of their
external frequency has a long history. The first papers on
this subject were published by M. Faraday, who described
excitation of capillary ripples with a frequency of �/2 in a
thin horizontal layer of viscous fluid placed on a horizontal
plate oscillating vertically with a frequency of � (Faraday,
1831). After Faraday, such parametric excitation of waves
was observed in hydrodynamics (Douady, 1990; Cerda and
Tirapegui, 1998), plasma physics (Okutani, 1967; Kato et
al., 1965), chemically active media (Fermandez-Garcia et al.,
2008), and other systems. Such parametric excitation also oc-
curs in the ocean. Surface waves approaching the shore from
the open sea with a frequency of � can excite the so-called
edge waves with a frequency of �/2. Edge waves propagate
along the coastline with their amplitudes decreasing in the
offshore direction (Ursell, 1952; Grimshaw, 1974; Guza and

Davis, 1974; Evans and McIver, 1984; Johnson, 2005, 2007).
Interest in parametrically excited edge waves is related to
their ability to significantly affect morphological characteris-
tics of sea coasts. Edge waves may contain enough energy to
be responsible for beach erosion. They may also focus, form-
ing a freak wave (Pelinovsky et al., 2010). Sometimes, edge
waves are also associated with beach cusp formation (Guza
and Imman, 1975; Komar, 1998; Masselink, 1999; Dodd et
al., 2008; Coco and Murray, 2007).

Analytical solutions for edge waves excited by non-
breaking surface waves have been obtained in prior stud-
ies (Akylas, 1983; Minzoni and Whitham, 1977; Yeh, 1985;
Yang, 1995; Blondeaux and Vittori, 1995; Galletta and Vit-
tori, 2004; Dubinina et al., 2004). The correlation between
characteristics of edge waves and spectra of surface waves
approaching the shore is studied in situ (Huntley and Bowen,
1978). This kind of study is hard for analysis and interpreta-
tion of the results due to the irregularity of the coastline and
the complex spectra of the approaching surface waves.

Laboratory experiments on parametric excitation of edge
waves are described in Buchan and Pritchard (1995). The
main advantage of such experiments is the freedom to define
the bottom geometry and spectrum of the approaching sur-
face waves. However, none of the studies mentioned above
considered wave breaking, whereas in natural conditions sur-
face waves often break while propagating towards the coast-
line. Thus, the influence of wave breaking on a parametric in-
stability still remains an open question. In the present paper,
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we concentrate on the influence of wave breaking on charac-
teristics of parametrically excited edge waves.

The paper is organized as follows. In Sect. 1, we focus on
the theoretical description of the problem by providing the
nonlinear equation for parametric excitation of edge waves.
Section 2 is devoted to the experimental set-up, while Sect. 3
presents the results of measurements. In Sect. 4, we discuss
the experimental data with respect to their theoretical inter-
pretation. The main results are summarized in the conclusion.

2 Theoretical model

Let us start from the non-breaking scenario, when long waves
propagate over some changing bottom geometry, h = h(x).
In this case, they can be described by 2-D nonlinear shallow
water equations:
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where (u,v) are the two components of the depth-averaged
horizontal velocity, η= η(x,y, t) is the free surface displace-
ment, and g is the gravity acceleration. In a linear approxima-
tion, the system Eqs. (1)–(3) can be transformed into a 2-D
wave equation:
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Note that Eq. (4) describes both surface waves propagating
perpendicular to the shore and generated edge waves. For
edge waves, we assume that they propagate along the shore
and consider a linear change of the bottom slope h(x)=
βx = tan αx. In this case, an elementary solution of Eq. (4)
has the following form:

η = bcos(�nt − ky) · e−kxLn(x),

�n =
√
(2n+ 1)βgk, n= 0,1,2, . . . (5)

where Ln are the Laguerre polynomials, b is a wave ampli-
tude, k is a wave number along the propagation direction, �
is a wave frequency, and n is the number of the mode.

By using two edge waves propagating in opposite direc-
tions, it is also possible to compose a solution corresponding
to a standing edge wave:

η = bcos(�n,mt)sin(kmy)Ln(x),

km = π(1+ 2m)/L, �n,m =
√
(2n+ 1)βgkm,

m= 0,1,2, . . . (6)

Here, we used the boundary conditions v(x,y, t)=0 at
y =±L/2, where L is a channel width. For surface waves

propagating perpendicular to the shore, Eq. (4) transforms
into a 1-D wave equation,
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and has a solution:

η(x, t)= a0J0

√4ω3x

gβ

cos(ωt) , (8)

where J0 is the Bessel function of the first kind, ω is a
frequency, and a0 is an amplitude of the generated surface
waves.

In the linear approximation waves, Eqs. (6) and (8) are
independent. If nonlinear effects are taken into considera-
tion (Eqs. 1–3), coupling between the two types of waves
takes place. In the first approximation of nonlinearity, sur-
face waves described by Eq. (8) can generate edge waves de-
scribed by Eq. (6) if �≈ ω/2. It is the so-called parametric
subharmonic resonance. In this case, we can write down the
equation for slowly varying wave amplitude b of the excited
edge waves with frequency � (Rabinovich et al., 2000):

∂b

∂t
=−γ b+µb∗+ i1b+ (iσ − ρ)b|b|2. (9)

Here, γ represents an exponential decay of edge waves due
to the viscous dissipation, 1=�−ω/2 is a detuning be-
tween frequencies of edge waves and the external paramet-
ric forcing, σ is a nonlinear frequency shift, ρ is a nonlin-
ear damping coefficient, and b∗ is a complex conjugate. This
equation was initially obtained for Faraday ripples excited
by a homogeneous oscillating field. For edge waves excited
by surface waves propagating perpendicular to the shore, an
expression for a coefficient µ has been obtained in previous
studies (Akylas, 1983; Minzoni and Whitham, 1977; Yang,
1995):

µ= a0
ω3

4gβ2 S(β). (10)

Here, S is a coefficient depending on a bottom slope α. For
small slopes α, S ≈ 6.7 × 10−2. The nonlinear frequency
shift σ has been calculated in Minzoni and Whitham (1977).
The nonlinear damping coefficient ρ has been discussed in
Yang (1995).

3 Experimental set-up

The experiments have been performed in the wave flume
of the Laboratory of Continental Coastal Morphodynamics
of University of Caen Normandy, France. This flume has a
length of 18 m and width of 0.5 m. The flume is equipped
with a piston type of wavemaker controlled by the computer.
For construction of an inclined bottom slope, a PVC plate of
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Figure 1. The experimental set-up: resistance probes: vertical (P1)
and horizontal (P2, P3), a high-speed video camera (2), a wave-
maker of a piston type (3), an inclined bottom (4), and the acoustic
Doppler velocimeter (ADV).

0.01 m thickness has been used. The plate has been placed at
an angle α to the horizontal bottom so that tan α=β = 0.20;
the water depth in the flume, h, has been kept at 0.25 m (see
Fig. 1). As one can see from Fig. 1, in this geometric config-
uration only a small part of the flume can be used for exper-
iments. Three resistance probes – P1, P2, P3 (see Fig. 1) –
have been used to measure the water surface displacement.

The first of these, the immobile probe P1, has been placed
at a distance of 1 cm from the wavemaker, while probes P2
and P3 have been glued to the inclined plate. The latter two
probes placed along the bottom slope allow us to measure
wave run-up and run-down. In addition, the run-up height can
be identified by image processing from the high-speed cam-
era operating with a frame rate of 100 Hz (see Fig. 1). The
wavemaker oscillating with a given frequency and amplitude
allows us to excite the targeted mode described by Eq. (8).
The wavemaker can work in two regimes. The first regime
controls the amplitude of the wavemaker displacement, while
the second one controls the amplitude of the force applied to
the wavemaker. In both regimes, it is not possible to control
the free surface displacement. Therefore, to study the surface
wave characteristics, simultaneous measurements of a free
surface displacement near the wavemaker and the shoreline
have been carried out. For velocity fields (all three compo-
nents of the flow velocity), the acoustic Doppler velocimeter
(ADV) has been used. The quality of the signal registered
by ADV strongly depends on the concentration of particles
in the liquid. Therefore, in order to get a better signal, some
small particles with a diameter of 10 µm have been added into
the water.

For visualization of a free surface displacement in the
breaking zone by the high-speed camera, the water has also
been seeded with sand particles of 10 µm. Using a vertical
light sheet (photodiode 532 nm with a cylindrical lens), it

Figure 2. Example of wave instability developing from a natural
perturbation with f = 1.08 Hz, aL= 0.66 cm: (a) the full time se-
ries recorded by probes P2 and P3; (b) zoom of the time series
recorded during the time interval 50 s < t < 55 s, and (c) during the
time interval 85 s < t < 90 s.

has been possible to visualize the cross section of the wa-
ter in the x− z plane. The size of the visualization domain is
40 cm× 30 cm.

Our excitation frequency range was chosen following our
published study about the physical simulation of resonant
wave run-up on a beach (see Ezersky et al., 2013). In this
study, we describe edge waves excited by the third resonant
mode of the system.

4 Data processing and results

The subharmonic instability described above is investigated
in the flume for different values of (aL, f ), where aL is an
amplitude of surface waves in the vicinity of the wavemaker,
aL≈ a0, and f is the frequency of the wavemaker. In order to
understand whether the instability really occurs, we analyse
the signals from probes P2 and P3. Before each experiment,
we wait for 5–10 min to let all the perturbation in the flume
decay and let the wavemaker work in calm water conditions.

An example of the signals from P2 and P3 is shown in
Fig. 2a, whereas a more detailed zoom of the time series for
intervals 50 s < t < 95 s and 85 s < t < 90 s is given in Fig. 2b
and c, respectively. The power frequency spectra for two sur-
face wave regimes (with and without wave breaking) are
shown in Fig. 3. The first spectrum (Fig. 3a) is the fast
Fourier transform (FFT) of the signal shown in Fig. 2a. This
is a spectrum in the absence of wave breaking, where the
first peak indicates the edge wave frequency and the second
peak indicates the surface elevation frequency. The second
frequency spectrum (Fig. 3b) is plotted in the presence of
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Figure 3. Power spectrum frequency: (a) in the absence of breaking
waves, the first peak indicates the edge wave frequency, while the
second peak indicates the surface elevation frequency; (b) in the
presence of breaking waves, the peak for the edge wave frequency
is suppressed.

breaking waves and indicates the suppression of the peak for
the edge wave frequency.

It can be seen that in the beginning of the record the
waves have the same frequency and phase as the wavemaker
(Fig. 2b). However, after instability arises (Fig. 2c), the am-
plitude of generated edge wave increases and the period dou-
bles compared to the period of surface waves. The phase shift
between the signals recorded by probes P2 and P3 is approx-
imately π . These two criteria (period doubling and a phase
shift equal to π) are used to identify parametric instability.
To confirm an appearance of edge waves as a result of sub-
harmonic instability, we analyse the water level oscillations.
It is found that subharmonic oscillations represent the mode,
where maxima of horizontal displacement (antinodes) occur
near the lateral walls of the flume, while its zeroes (nodes) are
observed in the middle of the flume. This mode is a superpo-
sition of two edge waves propagating in opposite directions.
A spatial period of these edge waves is 2 times larger than
the width of the flume. Snapshots of water surface over the
time interval equal to half of the edge wave period are shown
in Fig. 4.

Figure 4. Snapshots of water surface over the time interval equal to
half of the edge wave period (approximately 1 s), f = 1.06 Hz, and
aL= 1.3 cm.

Subharmonic instability starts with an exponential growth
of an infinitely small perturbation. To describe the instabil-
ity in the system, partitioning of a (aL, f ) plane into differ-
ent stability regions is performed. Results of this analysis are
demonstrated in Fig. 5.

Instability occurs if the frequency of surface waves is close
to a double frequency of edge waves. Curve 1 represents a
border of the supercritical instability regime which occurs
for points (aL, f ) above this curve. If the amplitude of sur-
face waves decreases from a finite value above Curve 1, gen-
eration of edge waves is observed in a small region (3) be-
tween Curves 1 and 2 (see triangles in Fig. 5). When we start
from the regime without edge wave generation (points below
Curve 2) and increase the amplitude of surface waves, insta-
bility will occur above Curve 1. This type of instability is
called subcritical instability.

The partition of a plane (aL, f ) into regions with differ-
ent regimes shown in Fig. 5 corresponds to two qualitatively
different conditions of wave excitation schematically shown
by boxes (I) and (II). In Region I, surface waves excited
by the wavemaker and propagating to the shore undergo a
plunging wave breaking. In Region II, waves do not break.
Image processing of the high-speed camera data shows that
such excitation occurs only when the wave breaking parame-
ter Br > 0.9. Under the wave breaking parameter, we mean
Br= U2

max/ gR, where Umax is the maximal flow velocity
and R is the maximal wave run-up height on the shore (Di-
denkulova, 2009).

It is found that while surface wave breaking leads to the
appearance of the hydrodynamic turbulence, turbulence it-
self leads to a decrease in the amplitude of excited edge
waves and suppression of subharmonic generation for large-
amplitude surface waves.

Dependences of the increment of edge wave instability and
intensity of turbulent velocity fluctuation on the amplitude of
surface waves aL are shown in Fig. 6a and b. The dependence
of the exponential index γ on the amplitude of surface waves
aL is found by processing corresponding time series similar
to those shown in Fig. 2a. For this, we select time intervals
where the edge wave amplitude grows and calculate γ by
exponential approximation of the time-dependent amplitude.
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Figure 5. Partition of a (aL, f ) plane into different stability re-
gions of the system; circles correspond to a parametric instability,
diamonds correspond to stability regimes, and triangles indicate the
regime of subcritical instability.

Parameters of the turbulence are measured by ADV in the
middle of the experimental flume, 0.04 m below the free sur-
face (0.14 m from the bottom), at a distance of x= 0.9 m
from the shoreline. At this point, it is possible to neglect the
turbulence caused by the near-bottom oscillating boundary
layer and detect the wave breaking turbulence.

Here, we should specify some difficulties related to the
characteristic features of ADV signals. The recorded ADV
signals contain the so-called spikes, which are filtered us-
ing the MATLAB algorithm (Nikora and Goring, 1998;
Goring and Nikora, 2002). Another problem occurs due to
the complex structure of the velocity field in the breaking
zone, which represents a mixture of turbulence and veloci-
ties caused by both surface and edge waves. In this case, the
impact of surface and edge wave components is removed by
filtering harmonics with frequencies f/2, f , 3f/2, 2f , 5f/2,
and 3f . It is shown that the intensity of turbulence grows suf-
ficiently if the amplitude of surface waves aL is larger than
0.8 cm (see Fig. 6b).

5 Discussion

Thus, the range of parameters corresponding to the paramet-
ric excitation of edge waves is found experimentally. Now,
using the theoretical Eq. (10), we can estimate the threshold
of parametric excitation of edge waves. For this, we need to
find the eigenfrequencies of edge waves in the flume�n. The
frequency of the zero edge wave mode �0 is as follows:

�0 =

√
βg
π

L
= 3.41 rads−1, f0 ≈ 0.54Hz. (11)

To estimate the dissipation rate of edge waves, we study the
time evolution of the edge wave amplitude after stopping the
parametric excitation. Edge waves decay exponentially and
in this way we measure the decay rate γ , which is estimated
as γ = 0.1 s−1. For the resonance condition 1= 0, paramet-
ric instability occurs when the wave amplitude exceeds the

critical wave amplitude a0:

a0 = γ
4gβ2

ω3S(β)
≈ 0.76cm. (12)

The theoretical value of the parametric instability threshold
is calculated using the free surface displacement. To compare
experimental and theoretical values of the threshold, we need
to measure the surface wave amplitude at x = 0. As it has
been noted in several studies (see, for example, Denissenko
et al., 2011), this value can be measured indirectly. We find it
using the visualization of the flow in the middle of the flume
by the laser sheet at a time preceding the development of the
edge wave parametric instability (see Fig. 7).

Note that while the parametric instability threshold is de-
termined, there was no surface wave breaking, which corre-
sponds to Region II in Fig. 5.

Figure 7 shows what occurs before the development of the
parametric instability, when amplitudes of edge waves are
zero. To estimate the surface wave amplitude, the measured
crest-to-trough wave height (Fig. 7) is divided by 2. Compar-
ison of the experimental and theoretical values of the insta-
bility threshold is shown in Fig. 8. One can see from Fig. 8
that theoretical values are larger than experimental ones by
approximately 30 %.

Note that even when the surface wave breaking takes
place, the parametric excitation of edge waves still occurs.
However, the parametric excitation is suppressed for large
amplitudes of surface waves. The reason for this could be the
following. The wave breaking results in the irregularity of
the surface wave field: amplitudes and phases of the waves
vary chaotically. Evidently, wave breaking also leads to the
appearance of small-scale turbulence in the near-shore zone.
Below, we discuss the impact of these two physical mecha-
nisms on the suppression of the parametric instability.

The parametric wave excitation by the irregular oscillating
field has been studied in Ezersky and Matusov (1994) and
Nikora et al. (2005). It was shown that chaotic amplitudes
and phases of the external wave field lead to an increase in
the threshold of parametric excitation and decrease in the am-
plitude of parametrically excited oscillations.

Let us check whether these results can explain the de-
crease in the edge wave amplitude in the presence of the wave
breaking. For this, we calculate amplitudes and phases of
surface waves. After narrow-band filtering generated by the
wavemaker, surface waves may be described as ηm cos(ωt +
8), where ηm is a slow varying amplitude and 8 is a slow
varying phase. To extract the amplitude and the phase of the
signal, the Hilbert transformation is used:

η̂(t)=
1
π

PV

 +∞∫
−∞

η(t,τ )

t − τ
dτ

= ηm sin(ωt +8), (13)
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Figure 6. (a) Dependence of the exponential index of parametric instability γ on the surface wave amplitude aL, shown by the black dots,
and (b) dependence of the kinetic turbulent energy components on the surface wave amplitude aL; Vx is shown by blue diamonds, while Vy
is shown by black squares. Solid lines represent a fit to the experimental data.

Figure 7. Visualization of the free surface displacement: 1 indicates
the water surface; 2 indicates the inclined bottom; max and min
correspond to the maximum and minimum values of the free surface
displacement.

Figure 8. Comparison of experimental and theoretical values of
the instability threshold: triangles correspond to the theoretical for-
mula; diamonds represent experimental data.

where PV denotes the principal value of the integral. It is also
possible to determine the wave amplitude and phase:

η(t)= Re {a(t)exp(iωt} , a(t)= |a|ei8, (14)

where

|a| =

√
η2+ η̂2, 8= arctan(η̂/η)−ωt. (15)

Extracted amplitudes and phases for the time series measured
in the presence of the surface wave breaking are shown in
Fig. 9. The time series itself is given in Fig. 9a, while the
extracted amplitudes and phases are shown in Fig. 9b. The
root mean square of phase and amplitude fluctuations for the
intensive wave breaking (a = 1.4 cm) is

√〈
82
〉
≈ 0.1,

√〈
(a−〈a〉)2

〉
〈a〉

≈ 0.1. (16)

It is also possible to estimate the influence of chaotic phases
and amplitudes on the parametric wave excitation. It has been
revealed that chaotic phases decrease the effective amplitude
of the external force (Petrelis et al., 2005). Suppose that the
wave breaking leads to the Gaussian noise; then, the corre-
sponding decrease in the external forcing may be estimated
as (Petrelis et al., 2005)

e−(
〈
82〉/2
≈ 0.995. (17)

This small decrease in the effective external forcing cannot
explain suppression of the parametric excitation during the
wave breaking regime; therefore, the influence of the turbu-
lence seems to be more important.

Wave breaking generates turbulence, and the intensity of
turbulent velocity fluctuations grows with the surface wave
amplitude. On the other hand, turbulence leads to the appear-
ance of turbulent shear stresses and eddy viscosity νed. We
measure experimentally some components of the kinematic
turbulent energy at the edge wave background (see Fig. 6b).
According to our measurements, the most important compo-
nents of shear stresses are related to the longitudinal compo-
nent of turbulent fluctuations Vx (see Fig. 6b).

The eddy viscosity νed is proportional to the turbulent en-
ergy. For the wave breaking case, one can consider νed to be
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Figure 9. (a) Time series measured by P1 with aL = 1 cm,
f = 1.06 Hz; (b) non-dimensional wave amplitude and phase ob-
tained by the Hilbert transformation; (c) power spectrum of the sig-
nal (a) in log–log scale.

proportional to a2 (see Fig. 6b). In this case, the exponential
decay γ in Eq. (9) has the following form: γ = γ0+ γ1a

2,
where γ0 is the exponential decay of edge waves in the ab-
sence of wave breaking, and γ1 is responsible for energy dis-
sipation due to the eddy viscosity.

Since the external forcing µ grows linearly with the sur-
face wave amplitude and the dissipation is proportional to the
amplitude squared, the parametric instability is suppressed
for large surface wave amplitudes. We observe this effect in
our experiment under the surface wave breaking regime.

From the measurements, to calculate the energy dissipa-
tion rate, we have study the energy of wave propagating in the

Figure 10. Dependence of wave-propagating energy (f = 1.06 Hz)
E2 (energy at shore) on E1 (energy near the wavemaker) for differ-
ent amplitudes of excitation aL.

flume. We compare wave energy near the wavemaker with
wave energy at shore. The wave energy (energy on a unit
length in the direction transversal to the direction of wave
propagation) is estimated as follows:

E =
ρg

2
Cgr

∫
(η−< η̄ > )2dt, (18)

where Cgr =
dω
dK is the group velocity of the harmonic com-

ponent corresponding to the peak frequency f ; g is acceler-
ation of gravity; ρ is water density; and η and < η̄ > are free
surface displacement and mean water level, respectively.

The typical dependence of E2 (energy at shore) on E1 (en-
ergy near the wavemaker) is shown in Fig. 10 for different
amplitudes of excitation for f = 1.06 Hz. We observe that
evolution of dependence follows a law of power. An energy
dissipation of the order of 25 % occurs in the absence of the
edge waves. These losses are caused by viscous dissipation
and contact line damping. In the presence of edge waves, the
energy dissipation can reach 50 %.

6 Conclusions

The parametric edge wave excitation is studied for different
regimes of surface wave propagation. We have found that for
parametrically excited edge waves there is a region of sub-
critical instability, which is manifested by the hysteresis: dif-
ferent regimes of edge wave excitation are observed in the
case of decrease or increase in the surface wave amplitude.
Note that subcritical instability was not observed in Buchan
and Pritchard (1995), though their experimental conditions
were very close to those in our experiment.

The increase in the surface wave amplitude leads to the ap-
pearance of wave breaking. The wave breaking regime itself
does not prevent parametric excitation of edge waves; only
the developed wave breaking can suppress parametric exci-
tation of edge waves. We compare the two possible mecha-
nisms of the parametric instability suppression: (i) phase ir-
regularity of the external forcing and (ii) generation of the
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hydrodynamic turbulence. We have found that the most prob-
able mechanism responsible for the increase of the paramet-
ric instability threshold and suppression of parametric exci-
tation of edge waves is the hydrodynamic turbulence which
appears as a result of wave breaking.
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