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Abstract. Several studies have shown that vegetation indexes
can be used to estimate root zone soil moisture. Earth sur-
face images, obtained by high-resolution satellites, presently
give a lot of information on these indexes, based on the data
of several wavelengths. Because of the potential capacity
for systematic observations at various scales, remote sens-
ing technology extends the possible data archives from the
present time to several decades back. Because of this advan-
tage, enormous efforts have been made by researchers and
application specialists to delineate vegetation indexes from
local scale to global scale by applying remote sensing im-
agery.

In this work, four band images have been considered,
which are involved in these vegetation indexes, and were
taken by satellites Ikonos-2 and Landsat-7 of the same ge-
ographic location, to study the effect of both spatial (pixel
size) and radiometric (number of bits coding the image) res-
olution on these wavelength bands as well as two vegeta-
tion indexes: the Normalized Difference Vegetation Index
(NDVI) and the Enhanced Vegetation Index (EVI).

In order to do so, a multi-fractal analysis of these multi-
spectral images was applied in each of these bands and the
two indexes derived. The results showed that spatial reso-
lution has a similar scaling effect in the four bands, but ra-
diometric resolution has a larger influence in blue and green
bands than in red and near-infrared bands. The NDVI showed
a higher sensitivity to the radiometric resolution than EVI.
Both were equally affected by the spatial resolution.

From both factors, the spatial resolution has a major im-
pact in the multi-fractal spectrum for all the bands and the

vegetation indexes. This information should be taken in to
account when vegetation indexes based on different satellite
sensors are obtained.

1 Introduction

Soil moisture is a critical condition affecting interaction of
land surface and atmosphere. Remotely sensed data are an
important source of information and can indirectly mea-
sure soil moisture in space and time. However, the signal
only penetrates the top few centimetres, and soil moisture
at deeper layers must be estimated. One method to estimate
soil moisture at deeper layers is through vegetation indexes.
Several authors have investigated the potential of vegetation
indexes to estimate root zone soil moisture. The Normalized
Difference Vegetation Index (NDVI) and Enhanced Vegeta-
tion Index (EVI) have been used by several authors (Wang
et al., 2007; Ben-Ze’ev et al., 2006; Deng et al., 2007) in
different conditions to find significant estimations with root
zone soil moisture. For the estimation of these indexes near-
infrared (NIR), red and blue wavelengths are needed (Huete
et al., 2014).

The images provided by the satellites show the land sur-
face in a wide range of wavelengths (from visible to thermal
infrared or microwaves) and also with a great variety of spa-
tial resolutions (from a few kilometres to tens of centime-
tres). The analysis of these varied images and their synergic
possibilities are a challenging problem, especially with new
sensors, which have small spatial resolution and a large range
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142 C. Alonso et al.: Spatial and radiometric characterization of multi-spectrum satellite images

of radiometric quantification. Fractal analysis offers signifi-
cant potential for improvement in the measurement and anal-
ysis of spatially and radiometrically complex remote sensing
data. This analysis also provides quantitative insight on the
spatial complexity in the information of the landscape con-
tained within these data.

In the general mathematical framework of fractal geome-
try, many analytical methods have been developed, including
the following: textural homogeneity, which has been charac-
terized using the fractal dimension (Fioravanti, 1994) (it has
also been used as a spatial measure for describing the com-
plexity of remote sensing imagery; Lam and De Cola, 1993));
and changes in the image complexity, which have been de-
tected through the spectral range of hyperspectral images af-
fecting the fractal dimension (Qiu et al., 1999). Similarly,
De Cola (1989) and Lam (1990) have found that fractal di-
mension also depends on the spectral bands of Landsat-7 TM
imagery.

Motivated by the fractal geometry of sets (Mandelbrot,
1983), the development of multi-fractal theory, introduced in
the context of turbulence, has been applied in many areas,
such as earthquake distribution analysis (Hirata and Imoto,
1991), soil pore characterization (Kravchenko et al., 1999;
Tarquis et al., 2003), image analysis (Sánchez et al., 1992) or
remote sensing (Tessier et al., 1993; Cheng and Agterberg,
1996; Schmitt et al., 1997; Laferrière and Gaonac’h, 1999;
Cheng, 2004; Lovejoy et al., 2001b; Du and Yeo, 2002; Par-
rinello and Vaughan, 2002; Harvey et al., 2002; Turiel et al.,
2005).

The acquisition of remotely sensed multiple spectral im-
ages is thus a unique source of data for determining the scale-
invariant characteristics of the radiance fields related to many
factors, such as soil and bedrock chemical composition, hu-
midity content and surface temperature (e.g. Laferrière and
Gaonac’h, 1999; Maìtre and Pinciroli, 1999; Lovejoy et al.,
2001a, b; Harvey et al., 2002; Beaulieu and Gaonac’h, 2002;
Gaonac’h et al., 2003). In one of the schemes used in the
multi-fractal analysis, the satellite image is considered as a
mass distribution of a statistical measure on the space domain
studied, and it is analysed through a multi-fractal (MF) spec-
trum (Cheng, 2004; Mao-Gui Hu, 2009; Tarquis et al., 2014),
which gives either geometrical or probabilistic information
about the pixel distribution with the same singularity. Other
techniques focus on the variations of a measure analysing the
moments of the absolute differences of their values at differ-
ent scales, e.g. the Generalized Structure Function and the
Universal Multi-fractal model (Lovejoy et al., 2001a, 2008;
Renosh et al., 2015)

The aim of this work is to characterize by MF analysis
the image patterns in the wavelength range for the common
bands of the satellites used, as well as both NDVI and EVI
indexes. In order to investigate how the image information is
affected by the sampling with different spatial and radiomet-
ric resolutions, we have also analysed images of the same

site but acquired by two different satellites: Landsat-7 and
Ikonos-2.

We present a comparative analysis of multi-fractal (MF)
tools applied to multi-spectral images obtained by Ikonos-2
and LANDSAT-7. Both satellites have several bands in vis-
ible and near-infrared spectral regions in common that can
be used in vegetation-index estimation. However, the bands
have different spatial resolution (4 m for Ikonos-2 and 30 m
for LANDSAT-7), and radiometric resolution (11 bits for
Ikonos-2 and 8 bits for LANDSAT-7). The bands we have
chosen are red, green, blue and near infrared. For each of
those bands, the MF spectrum has been calculated directly
from the Hölder exponents α and the singularity spectrum
f(α). The same calculations were applied for NDVI and EVI
estimated on red, blue and near-infrared bands for each im-
age.

2 Materials and methods

2.1 Images

As already noted, in this work we have analysed two images
of the same site acquired from different satellites, Landsat-
7 and Ikonos-2. Both are multi-spectral images with several
bands that cover several regions of the electromagnetic spec-
trum in the visible and near-infrared wavelength.

Landsat-7 was put in orbit in April 1999. This satellite fol-
lows a sun-synchronous orbit at 705 km of altitude, with an
equatorial crossing time of 10:00 LT in the descending node.
It requires 98.8 min to circle the Earth, tracing a worldwide
reference system (WRS) of just over 230 ground paths. Over
at least three decades, Landsat-7 orbits over each of these
paths once every 16 days in a repetitive cycle (Mika, 1997).

The main Landsat-7 sensor for Earth observation is the En-
hanced Thematic Mapper Plus (ETM+). The ETM+ oper-
ates as a whiskbroom scanner and acquires data for seven
spectral bands: visible (ETM+#1, from 0.45 to 0.52 µm;
ETM+#2, from 0.53 to 0.61 µm; ETM+#3, from 0.63 to
0.69 µm), near infrared (ETM+#4, from 0.78 to 0.9 µm),
shortwave infrared (ETM+#5, from 1.55 to 1.75 µm, and
ETM+#7, from 2.09 to 2.35 µm) and thermal infrared
(ETM+#6, from 10.4 to 12.5 µm). The ETM+ ground sam-
pling distance (pixel size in the images) is 30 m for the six
reflective bands and 60 m for the thermal band. The ETM+
also acquires images for a panchromatic band (ETM+#8,
from 0.52 to 0.9 µm) with a 15 m ground sampling distance.
The radiometric resolution of the Landsat-7 data is 8 bits per
pixel or 256 grey levels for the pixel digital value.

Ikonos-2 was launched in September 1999. Its panchro-
matic sensor, with a resolution of 0.82 m, provided the first
very high-resolution images of the Earth’s surface from earth
observation satellites (EOS). The Ikonos-2 orbiting altitude
is approximately 681 km; it is inclined 98.1◦ to the equa-
tor and it provides sun-synchronous operation. The equato-
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rial crossing time of Ikonos-2 is 10:30 LT in the descending
node. The orbit provides daily access to sites within 45◦ of
nadir (Dial et al., 2003).

The multi-spectral sensor simultaneously collects blue
(IK#1, from 0.445 to 0.516 µm), green (IK#2, from 0.506
to 0.595 µm), red (IK#3, from 0.632 to 0.698 µm) and near-
infrared (IK#4, from 0.757 to 0.853 µm) bands with 3.28 m
resolution at nadir. Both images, panchromatic and multi-
spectral, have a radiometric resolution of 11 bits per pixel
or 2048 grey levels for the pixel digital value.

The Landsat-7 multi-spectral image used in this study was
acquired on 6 August 2000 at 10:46 LT. and it corresponds
to the scene with WRS coordinates: path and row 201 and
32, respectively. This scene is located in the central region of
Spain and it covers a square surface of approximately 180 km
side length, located around Madrid. Solar azimuth and eleva-
tion angles for this scene are 132.44 and 58.62◦ respectively.

The Ikonos-2 datum used in this study is a multi-spectral
image acquired on 8 August 2000 at 11:03 LT. It covers an
area of 11 km2 located near Aranjuez, south of Madrid, in the
central region of Spain. Solar azimuth and elevation angles
for this scene are 139.5 and 60.79◦ respectively. Both im-
ages were corrected geometrically to the same cartographic
projection: Universal Transverse Mercatorprojection (UTM),
zone 30◦ N, by a co-registration process.

The analysis has been carried out on a subset that covers
(approximately) the same area in both the Landsat-7 and the
Ikonos-2 images, corresponding to a region located north of
the town of Aranjuez. The representative elements of the land
used in the selected area are irrigation crops, pastures, heaths,
unirrigated land cultivations and olive groves. The Landsat-7
subset image is a square of 512×512 pixels with a resolution
of 30 m covering a somewhat larger surface than the Ikonos-
2 image. The Ikonos-2 image consists of a square subset with
2048× 2048 pixels and 4 m resolution.

2.2 Vegetation indexes

Vegetation is one of the landscape elements that has received
the most attention in the field of image analysis. Therefore,
there are many parameters that can be used to obtain infor-
mation on vegetation from remote sensing imagery.

One of the main parameters is made up of the vegetation
indexes. These indexes allow to detect the presence of vege-
tation in an area and its activity, since its values are related to
this activity. For this, we can use the reflectance values cor-
responding to the different wavelengths, interpreting these in
relation to the photosynthetic activity. Of these indexes, the
most commonly used is the NDVI.

The NDVI is defined by

NDVI=
NIR−R
NIR+R

, (1)

where NIR is the pixel value in the near-infrared band and
R the pixel value in the red band. The values of this in-

dex are within the range (−1, 1) and their positive values
are sensitive to the proportion of soil and vegetation in each
pixel (Carlson and Ripley, 1997). Pixels with NDVI < 0.2
are considered without vegetation or bare soil. Pixels with
NDVI > 0.5 are considered as fully covered by vegetation.

EVI, the other vegetation index, is defined by

EVI= 2.5
(NIR−R)

(L+NIR+C1R−C2B)
, (2)

where NIR is the pixel value in the near-infrared band, R the
pixel value in the red band and B the pixel value in the blue
band. L, C1 and C2 are constants with the values 1, 6 and 7.5
respectively. The main characteristic of this index is that it
corrects some distortions caused by the light dispersion from
aerosols, as well as the background soil (Huete et al., 2014).

2.3 Multi-fractal image analysis

A monofractal object can be measured by counting the num-
ber N of δ size boxes needed to cover the object. The mea-
sure depends on the box size as

N(δ)∝ δ−D0 , (3)

where

D0 = lim
δ→0

logN(δ)

log 1
δ

(4)

is the fractal dimension. D0 is calculated from slope of a
log–log plot. However, many examples are found where a
single scaling law cannot be applied and it is necessary to do
a multi-scaling analysis.

There are several methods for implementing multi-fractal
analysis. The universal multi-fractal (UM) model assumes
that multi-fractals are generated from a random variable with
an exponentiated extreme Levy distribution (Lavallée et al.,
1991; Tessier et al., 1993). In UM analysis, the scaling expo-
nent K(q) is highly relevant. This function for the moments
q of a cascade conserved process is obtained according to
Schertzer and Lovejoy (1987), as follows:

K (q)=


C1 (q

αL − q)

αL− 1
if αL 6= 1

C1q log(q) if αL = 1

 , (5)

where C1 is the mean intermittency codimension and αL is
the Levy index. These are known as the UM parameters.

Other method is the moment method developed by Halsey
et al. (1986) and applied to this case study. This method
mainly uses three functions: τ(q), known as the mass ex-
ponent function; α, the coarse Hölder exponent; and f (α),
multi-fractal spectrum (MFS). A measure (or field), defined
in two-dimensional image embedding space (n× n pixels)
and with values based on grey tones (for 8 bits, from 0 to
255), cannot be considered as a geometrical set and therefore
cannot be characterized by a single fractal dimension.
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To characterize the scaling property of a variable measured
on the spatial domain of the studied area, it divides the im-
age into a number of self-similar boxes. Applying disjoint
covering by boxes in an “up-scaling” partitioning process we
obtain the partition function χ(q,δ) (Feder, 1989) defined as
follows:

χ(q,δ)=

N(δ)∑
i=1

µ
q
i (δ)=

N(δ)∑
i=1

m
q
i , (6)

wherem is the mass of the measure, q is the mass exponent, δ
is the length size of the box and N(δ) is the number of boxes
in which mi > 0. Based on this, the mass exponent function
τ(q) shows how the moments of the measure scales with the
box size:

τ(q)= lim
δ→0

log< χ(q,δ) >
log(δ)

= lim
δ→0

log<
N(δ)∑
i=1

m
q
i >

log(δ)
, (7)

where < > represents a statistical moment of the measure
µi(δ) defined on a group of non-overlapping boxes of the
same size partitioning as the area studied.

The singularity index, α, can be determined by the Legen-
dre transformation of the τ(q) curve (Halsey et al., 1986) as
follows:

α(q)=
dτ(q)

dq
. (8)

The number of cells of size δ with the same α, Nα(δ), is re-
lated to the cell size asNα(δ)∝ δ−f (α), where f (α) is a scal-
ing exponent of the cells with common α. Parameter f (α)
can be calculated as follows:

f (α)= qα(q)− τ(q). (9)

MFS, shown as plot of α versus f (α), quantitatively char-
acterizes variability of the measure studied with asymmetry
to the right and left indicating domination of small and large
values respectively (Evertsz and Mandelbrot, 1992). There
are three characteristic values obtained from MFS, the singu-
larity α(q) values for q = {0,1,2}. The first value (α (0)) cor-
responds to the maximum of MFS and it is related to the box-
counting dimension of the measure support; the second value
is related to information or entropy dimension (α (1)) and
the third with the correlation dimension. The entropy dimen-
sion quantifies the degree of disorder present in a distribu-
tion. According to Andraud et al. (1994) and Gouyet (1996),
a α (1) value close to 2.0 characterizes a system uniformly
distributed throughout all scales, whereas a α (1) close to 0
reflects a subset of the scale in which the irregularities are
concentrated. These three values will be shown from each
calculation of MFS.

The width of the MF spectrum (1) indicates overall vari-
ability (Tarquis et al., 2001, 2014) and we have split it in
two sections. Section I correspond to values α(q) < α(0) or

q > 0 and section II to values with α(q) > α(0) or q < 0.
In section I the amplitude, or semi-width, was calculated
with differences 1+ = α(0)−α(+5), and in section II with
1− = α(−5)−α(0).

To study the asymmetry of the MFS we have chosen the
asymmetry index (AI) estimated as follows (Xie et al., 2010):

AI=
1αL−1αR

1αL+1αR

1αL = α0−αmin
1αR = αmax−α0

. (10)

In our case, α0 is the singularity for q = 0 or α(0), αmin is
α(+5) and αmax is α(−5). Therefore, we can rewrite the AI
as follows:

AI=
1+−1−

1++1−
. (11)

Expressing AI as Eq. (11), we can see that it is a normalized
index based on the amplitudes 1+ and 1−.

There are several works relating the UM model and the
multi-fractal formalism based on τ(q) (Gagnon et al., 2003;
Aguado et al., 2014; Morató et al., 2017, among others)
through the following equations:

f (α)= E− c (γ ) ; α = E− γ, (12)
τ (q)= E(q − 1)−K (q), (13)

where E is the Euclidean dimension in which the measure is
embedded, in this case E = 2, and c(γ ) is the codimension
of the singularity of the density of the multi-fractal measure
γ .

3 Results and discussion

3.1 Radiometric influence in the multi-fractal spectrum

To study the influence of radiometric resolution on Ikonos-
2 image information complexity, the original pixel code
(11 bits) has been transformed to 8 bits through a rescaling
based on minimum and maximum values between 0 and 255,
with the aim of preserving the initial histogram shape.

We first discuss the results obtained for the 2048× 2048
pixel Ikonos-2 image shown in Fig. 1, in bands combination
of false colour (IK#4, IK#3, IK#2 band combination in RGB
visualization). In Fig. 2 IK#1, IK#2, IK#3 and IK#4 band
histograms are shown. In the right column are histograms
with the original radiometric resolution and in the left col-
umn the corresponding histograms are rescaled to 8 bits.
The histograms present a bimodal structure with a narrow
peak of low-value pixels (dark grey) showing a sharp max-
imum and a wider peak around a second lower maximum.
For bands IK#1, IK#2 and IK#3, the narrow peak maximum
corresponds to vegetation, mainly irrigation crops, showing
strong water absorption. This effect is particularly important
in band IK#3. High-value pixels (lighter grey) correspond
to ground zones with lower vegetation content. However, as
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Figure 1. The Ikonos-2 image in band combinations of false colour
(IK#4, IK#3 and IK#2 in RGB). The image has a size of 2048×2048
pixels, each area unit corresponding to 4× 4 m. The coordinates
UTM (zone 30) of the upper left and lower right pixel in the image
are: ULX= 446 037 m, ULY= 4 441 684 m, LRX= 454 229 m and
LRY = 4 433 492 m.

vegetation shows high reflectivity in the near-infrared, IK#4
band histogram shows a predominance of high-value pixels
(lighter grey pixels) corresponding to dense vegetation parts.
For both radiometric resolutions the shapes of the histograms
are very similar, as it was our intention (see Fig. 2).

We cover the image with boxes of size δ = 2−n and we
change the box size from 2048 to 2 pixels, that is, δ =
2048/2n with n= 0, 1, 2, . . . , 10. For each value of the pa-
rameter q, from −5 to +5 with increments of 0.5, the parti-
tion function (Eq. 6) is computed and log χ(q,δ) versus logδ
is plotted in Fig. 3. Each graph contains 11 points and from
these a range of scales are selected for the least-square lin-
ear fit reaching the maximum possible scales and with a stan-
dard error in the slope, the estimated values of τ(q), less than
0.01. Then, using Eqs. (7)–(8), α(q) and f (α) are obtained.
Comparing the range of scales used in both radiometric res-
olutions, the bands using the original data (11 bits) showed a
wider range of scales for the linear fit, up to 4 pixels, whereas
in the 8-bit radiometric resolution were required up to 32 pix-
els (see arrows in Fig. 3).

The MF spectra f (α) corresponding to the four bands of
multi-spectral Ikonos images are shown in Fig. 4. These dif-
ferences found in the multi-scaling behaviour of each band
are in agreement with previous works (Cheng, 2004; Lovejoy
et al., 2008). Just by visual observation, there is a remarkable
difference between the bands #3 and #4, and red and NIR,

between 8 and 11 bits respectively. Higher radiometric reso-
lution gives a higher range of possible grey values per pixel.
Note that this radiometric resolution effect is manifested in
both sections of the MF spectra (for q > 0 and for q < 0).

Some characteristic parameters obtained from these MF
spectra are shown in Table 1 and Table 2. As expected, in
both radiometric resolutions and in each band the α (0) is
practically 2, as the measure is defined in the entire plane and
it has an Euclidean dimension of 2. With respect to the α (1)
value, certain differences are found. Comparing the bands
in 8 bits to the same ones in 11 bits, the entropy dimen-
sion was always higher. However, considering the standard
errors, only IK#1 (B) and IK#2 (G) bands were significantly
different, with the blue band showing the highest difference.
Meanwhile, red and NIR bands are not significantly different.
This shows that a more spatially uniform distribution for the
bands of Ikonos-2 8 bits than in 11 bits. The same behaviour
is observed in the α (2).

The amplitudes calculated (1+ and 1−) in Ikonos-2 11-
bit bands present opposite trends (Table 1). Note that ampli-
tude 1+ decreases as band wavelength grows, whereas the
other amplitude 1− diminishes. Observing these parameters
in Ikonos-2 8-bit bands (Table 2) a different trend and be-
haviour are found. In this case both 1+ and 1− increase as
the wavelength increases for the three visible bands, but de-
crease for the near-infrared band (IK#4).

The AI estimated on these MFS amplitudes on each radio-
metric resolution are shown in the last column of Table 1 and
Table 2. Comparing the bands in 8 bits to the same ones in
11 bits, the behaviour is similar: there is a decreasing trend
from IK#1 to IK#4, although the range of values is different.
At a resolution of 11 bits from a positive AI= 0.240 at blue
band goes to a negative AI=−0.237 at NIR band. On the
other hand, at a resolution of 8 bits, an AI= 0.092 goes to a
negative AI=−0.347. The more symmetric MFS are found
in green and red bands at a resolution of 11 bits and in blue
and green bands at a resolution of 8 bits.

Doing the same study for the vegetation indexes we
found the following. The bi-log plot of the partition func-
tion (χ(q,δ)) versus δ is plotted in Fig. 5 for both vegetation
indexes at both radiometric resolutions. Each graph contains
11 points as the bands from where they were estimated. The
linear fit was done with the same methodology as that for the
four bands. In this case only the EVI at 8 bits shows a bet-
ter linear trend in a wider range of scales. However, to better
compare both vegetation indexes, from both radiometric res-
olutions, a range achieving 32 pixels (128 m) was selected as
shown by arrows in Fig. 5.

The MF spectra f (α) of EVI and NDVI estimated for both
radiometric resolutions of Ikonos images are shown in Fig. 4.
Both vegetation indexes show differences due to the trans-
formation from 11 to 8 bits. However, NDVI shows higher
differences in the MFS, mainly in the part corresponding to
q negative values (right side). Even EVI presents changes;
its MFS is closer at both radiometric resolutions. Compar-
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Figure 2. Histograms of the four bands of the Ikonos-2 image for the original radiometric resolution, 11 bits (right), and the minimum–
maximum rescaled 8-bit radiometric resolution (left).

ing the range of f (α) values in the vegetation indexes to the
range obtained in the four bands (left column in Fig. 4), there
is a remarkable contrast. Meanwhile the NIR band of 8 bits
achieves a f (α) value close to 0.5; EVI and NDVI achieve
values closer to 0.2. These differences are higher in the 11-bit
image; the red band achieves a f (α) value close to 0.9 and
vegetation indexes again achieve values of ∼0.2. The same
characteristic parameters obtained from the band MF spectra

were calculated for the vegetation indexes and are shown in
Table 1 and Table 2.

With respect to the α (1) values, certain differences are
found between the vegetation indexes. Comparing the NDVI
in 8 bits to the same ones in 11 bits, the entropy dimension
was always higher than it was found to be in the bands. How-
ever, EVI shows the contrary: entropy values of the 11-bit im-
age are higher than the 8-bit image, although the differences
are not significant. Therefore, the radiometric resolution af-
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Table 1. Parameters obtained from the multi-fractal spectrum from each band of the Ikonos-2 image, and the vegetation indexes (VIs)
estimated, with a pixel size of 4 m and a radiometric resolution of 11 bits. The amplitudes of α values are presented as 1+ and 1−

corresponding to α(0)−α(5) and α(−5)−α(0) respectively. The asymmetry index (AI) corresponds to 1+−1−

1++1−
.

Band q α(q) 1+ 1− AI

Ikonos-2 (11 bits)

IK#1
0 2.001± 0.001

0.418 0.256 0.2401 1.938± 0.005
2 1.865± 0.009

IK#2
0 2.001± 0.001

0.377 0.313 0.0931 1.936± 0.005
2 1.871± 0.007

IK#3
0 2.001± 0.001

0.348 0.382 −0.0471 1.937± 0.005
2 1.878± 0.006

IK#4
0 2.001± 0.001

0.290 0.470 −0.2371 1.959± 0.005
2 1.908± 0.009

VI q α(q) 1+ 1− AI

Ikonos-2 (11 bits)

NDVI
0 2.000± 0.001

0.516 1.166 −0.3861 1.886± 0.008
2 1.779± 0.010

EVI
0 2.000± 0.001

0.270 0.877 −0.5331 1.948± 0.002
2 1.897± 0.004

Table 2. Parameters obtained from the multi-fractal spectrum from each band of the Ikonos-2 image, and the vegetation indexes (VIs) esti-
mated, with a pixel size of 4 m and a radiometric resolution of 8 bits. The amplitudes of α values are presented as1+ and1− corresponding
to α(0)−α(5) and α(−5)−α(0) respectively. The asymmetry index (AI) corresponds to 1+−1−

1++1−
.

Band q α(q) 1+ 1− AI

Ikonos-2 (8 bits)

IK#1
0 2.000± 0.001

0.231 0.192 0.0921 1.971± 0.003
2 1.930± 0.006

IK#2
0 2.000± 0.001

0.270 0.287 −0.0311 1.963± 0.004
2 1.914± 0.006

IK#3
0 2.000± 0.001

0.323 0.614 −0.3111 1.945± 0.005
2 1.887± 0.006

IK#4
0 2.000± 0.001

0.248 0.512 −0.3471 1.966± 0.004
2 1.923± 0.008

VI q α(q) 1+ 1− AI

Ikonos-2 (8 bits)

NDVI
0 2.000± 0.002

0.337 0.984 −0.4901 1.932± 0.005
2 1.855± 0.008

EVI
0 2.000± 0.002

0.300 0.874 −0.4881 1.940± 0.004
2 1.873± 0.006
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Figure 3. Bi-log plots of the partition function χ(q,δ) versus δ for the first four bands of the Ikonos-2 satellite and for q < 0 values. From
top to bottom we show the results for IK#1, IK#2, IK#3 and IK#4. The left column correspond to the 8-bit image and the right column to the
11-bit image. The arrows marked the range of scales used for the fit and to calculate the slope for different values of q (7 points in the left
column and 10 points in the right column).

fects NDVI more than EVI. The former presents a more uni-
form space distribution in 8 bits than in the 11-bit image. The
same behaviour is observed in α (2).

The amplitudes calculated (1+ and 1−) in Ikonos-2 11-
bit vegetation indexes present a similar situation (Table 1).
The amplitude1+ is lower than amplitude1− and therefore
the AI estimated is negative. This is visually perceived in
Fig. 4 (right column). Observing these parameters in Ikonos-
2 8 bits vegetation indexes (Table 2), similar situations are
found but the values are lower. In both images (11 and 8 bits)
NDVI shows higher values for both amplitudes,1+ and1−.

All the AI estimated for both vegetation indexes on each
radiometric resolution are negative (Table 1 and Table 2), in-

dicating a high asymmetry on the right part of the MFS, as
shown in Fig. 4. Comparing the AI values in 8 bits to the
same ones in 11 bits, they are similar which shows that the
shape of the MFS is similar as this index is a normalized in-
dex. However, the values of the amplitudes mark a higher
change in NDVI than in EVI.

3.2 Spatial resolution influence in the multi-fractal
spectrum

A comparison is made between Landsat, with an original
pixel code of 8 bits, and the rescaled histograms from Ikonos,
with an original pixel code of 11 bits. In this section, we dis-
cuss the results obtained in the MF analysis on the 512×512
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Figure 4. Multi-fractal spectrum of Ikonos-2 images for the original pixel values coded in 11 bits (lower) and the minimum–maximum
rescaled to 8 bits (upper). Left column corresponds to each band analysed: IK#1 in blue colour, IK#2 in green colour, IK#3 in red colour and
IK#4 in black. Right column corresponds to vegetation indexes: NDVI in green colour and EVI in brown.

Figure 5. Bi-log plots of the partition function χ(q,δ) versus δ for the vegetation indexes estimated from blue, red and NIR bands of the
Ikonos-2 satellite and for q < 0 values. From top to bottom we show the results for NDVI and EVI respectively. The left column corresponds
to the 8-bit image and the right column to the 11-bit image. The arrows marked the range of scales used for the fit and to calculate the slope
for different values of q (7 points).
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Figure 6. The Landsat-7 image and the histograms for the first four bands: blue (ETM+#1), green (ETM+#2), red (ETM+#3) and near
infrared (ETM+#4). The image has a size of 512× 512 pixels, each area unit corresponds to 30× 30 m. The coordinates UTM (zone 30) of
the upper-left and lower-right pixel in the image are ULX = 442 185 m, ULY = 4 445 568 m, LRX = 457 545 m and LRY = 4 430 208 m.

pixel Landsat-7 image shown in Fig. 6, in bands combina-
tion of false colour (ETM+#3, ETM+#2 and ETM+#1 band
combination in RGB visualization).

In the right column of Fig. 6, the histograms of the
Landsat-7 image for the first four bands are shown. The his-
tograms present a bimodal structure, except for ETM+#4
(NIR), in which there is only one peak. Comparing these
histograms with those obtained for Ikonos-2 8-bit image
(Fig. 2), the peaks are not so abrupt and narrow. At the same
time, ETM+#1, ETM+#2 and ETM+#3 bands show the ab-
solute maximum peak at high-value pixels (light grey) and a
second one at lower-value pixels (dark grey). These bands are
more centred and do not show a shift to the left as the Ikonos-
2 8-bit bands (IK#1, IK#2 and IK#3. In the case of the NIR
band, Landsat-7 and Ikonos-2 8 bits are quite similar except
for the absence of a second peak.

In the calculations, box sizes range from 512 to 2 pixels,
that is, δ = 512/2n with n= 0, 1, . . . , 8. For each value of
the parameters q, from −5 to +5 with increments of 0.5, we

compute the partition function, and the bi-log χ(q,δ) versus
δ is plotted in Fig. 7. In this case each linear fits contains only
9 points as the size of the image is 512×512 pixels. The same
method was applied to select the range of scales used in the
linear fit, achieving a scale of 4 pixels. Changing from pixels
to metres, the scale achieved, used in Landsat-7 in the MF
analysis, was ∼120 m. In the case of the Ikonos-2 8 bits the
scale was 32 pixels or 128 m, very close to Landsat-7.

The MF spectra, f (α), corresponding to the first four
bands of multi-spectral Landsat-7 images are shown in Fig. 8.
From a comparison of Figs. 4 and 8 we see that Landsat-7
image MF spectra are always located inside the correspond-
ing Ikonos-2 MF spectra. For a given value of Hölder ex-
ponent α, the relation fLandsat(α)≤ fIkonos(α) is always sat-
isfied. This result means that Landsat-7 images show lower
complexity than Ikonos-2 8-bit images. As stated in Sect. 2.1
Ikonos-2 satellite data are coded in 11 bits in contrast with
Landsat-7 8-bit-coded data. To compare both sensors, with
different spatial resolution, we pass Ikonos-2 from 11 to
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Table 3. Parameters obtained from the multi-fractal spectrum from each band of the Landsat-7 image, and the vegetation indexes (VIs) esti-
mated, with a pixel size of 4 m and a radiometric resolution of 8 bits. The amplitudes of α values are presented as1+ and1− corresponding
to α(0)−α(5) and α(−5)−α(0) respectively. The asymmetry index (AI) corresponds to 1+−1−

1++1−
.

Band q α(q) 1+ 1− AI

Landsat-7

ETM+#1
0 2.001± 0.001

0.160 0.119 0.1471 1.985± 0.005
2 1.960± 0.010

ETM+#2
0 2.003± 0.001

0.119 0.119 0.0001 1.988± 0.004
2 1.970± 0.008

ETM+#3
0 2.001± 0.001

0.095 0.110 −0.0731 1.989± 0.004
2 1.974± 0.007

ETM+#4
0 2.017± 0.001

0.106 0.104 0.0101 1.989± 0.004
2 1.973± 0.008

VI q α(q) 1+ 1− AI

Landsat-7

NDVI
0 2.001± 0.001

0.028 0.353 −0.8521 1.996± 0.001
2 1.992± 0.001

EVI
0 2.001± 0.001

0.022 0.288 −0.8591 1.997± 0.001
2 1.994± 0.001

8 bits, observing that the latter shows more complexity than
Landsat.

The MF-spectra parameters from Landsat-7 are shown in
Table 3. In this section we will compare the MF spectra and
the vegetation indexes of the Ikonos-2 8 bits (Table 2). The
α (1) values from the four bands of Landsat-7 are higher than
the ones presented by Ikonos-2 8 bits, indicating a more uni-
form space distribution. Comparing between the bands, there
are not significant differences, contrary to the trend we ob-
served among them in Ikonos-2 8 bits. The α (2) shows the
same behaviour.

The amplitudes calculated (1+ and 1−) in Landsat-7
bands present few variations (Table 3). The amplitude 1+

decreases from ETM+#1 to ETM+#3 and then presents an
increase in ETM+#4 (NIR) whereas the other amplitude1−

remains practically constant. Observing these parameters in
Ikonos-2 8-bit bands (Table 2), there are variations in value
and behaviour for the four bands. In this case, both 1+ and
1− increase as the wavelength increases for the three visible
bands, but decrease for the NIR band (IK#4).

The AIs estimated on these MFS amplitudes on each
Landsat-7 bands are positive, except for ETM+#3 (red
band). For the green band (ETM+#3) the symmetry of the
MFS is complete. The band that shows certain asymmetry is
the blue band (ETM+#1).

Regarding the vegetation indexes, estimated on Landsat-7
bands, we found the following. The bi-log plot of the parti-
tion function (χ(q,δ)) versus δ is plotted in Fig. 9 for both
vegetation indexes. Each graph contains 9 points correspond-
ing to the bands from which they were estimated. The lin-
ear fit was done with the same methodology as that for the
four bands. EVI and NDVI show the same behaviour, and
the same range of scale was selected achieving 8 pixels, as
shown by arrows in Fig. 9.

The MF spectra f (α) of EVI and NDVI, estimated based
on the Landsat-7 image, are shown in Fig. 8. Both vegetation
indexes show differences mainly in the right side of the MFS
(for q negative values). Comparing the range of f (α) values
in the vegetation indexes to the range obtained in the four
bands (left column in Fig. 8), there is a remarkable contrast.
Meanwhile the NIR band of 8 bits achieves f (α) value close
to 1.6, EVI and NDVI achieve values closer to 1. A similar
situation was found with both images of Ikonos-2.

We are going to study the parameters obtained from the
MF spectra for the vegetation indexes (Table 3). The results
are quite similar to those found for the Landsat-7 bands,
showing even higher values: 1.996 in NDVI and 1.997 in
EVI.

The amplitude 1+ is quite low compared with the bands
and to the vegetation indexes of Ikonos-2 8 bits. On the other
hand, the amplitude 1− is higher than Landsat-7 bands but
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Figure 7. Bi-log plots of the partition function χ(q,δ) versus δ for
the first four bands of the Landsat-7 satellite and for q < 0 values.
From top to bottom we show the results for ETM+#1, ETM+#2,
ETM+#3 and ETM+#4. The arrows marked the range of scales
used for the fit and to calculate the slope for different values of q (8
points).

by only a third of the values shown by Ikonos-2 8-bit veg-
etation indexes (Table 2). The AI estimated for both vege-
tation indexes are negative, indicating a high asymmetry on
the right part of the MFS, as shown in Fig. 8. Comparing the
AI values of Landsat-7 vegetation indexes with the ones of

both Ikonos-2 images, these are the highest, indicating that
the most unbalanced MFS shifted totally on the right side of
the spectrum.

4 Conclusions

In this work, we have used MF spectra as a successful tech-
nique for analysing common information contained in multi-
spectral images of the site of the Earth surface acquired by
two satellites, Landsat-7 and Ikonos, in four common bands
in the visible (blue, green and red) and near-infrared wave-
length regions used in several vegetation indexes.

The radiometric resolution has been studied by compar-
ing MF spectra of the images acquired by Ikonos-2 coded
in 11 bits and transformed into 8-bit code. The results ob-
tained after the histogram transformation in the blue and
green bands were those one would expect after the simpli-
fication applied from 11 to 8 bits, i.e. higher frequency in
all the histogram bin values (see Fig. 2). In contrast, red and
infrared bands showed no sensitivity at all to this transfor-
mation, keeping similar MF spectra. To our knowledge, this
is the first time these differences among bands have been re-
ported.

In order to analyse the effect of spatial resolution in each
band at 4 m (Ikonos-2 with 8 bits) pixel size and 30 m
(Landsat-7 with 8 bits) pixel size are compared. Obviously,
the higher the spatial resolution, the higher the Hölder spec-
trum amplitudes in the green and blue bands are. In fact,
observing the graphics of the three cases studied (Ikonos-
2 11 bits, Ikonos-2 8 bits and Landsat-7 8 bits) both bands
gradually reduce their α(q) amplitude in the negative as well
as in the positive q values. However, this is not the case for
red and NIR bands that present a much higher difference be-
tween Ikonos-2 8 bits and Landsat-7 curves of the MF spectra
than between Ikonos-2 11 and 8 bits.

In the q>0 MFS region for blue and green bands the sensi-
tivity to both factors is very similar, the blue band ratio being
slightly higher. The other two bands, red and NIR, for the
same region, mainly present sensitivity to spatial resolution,
showing a similar rate to blue and green bands. Observing
the q<0 region for blue and green, the behaviour is similar
to the positive one but with a lower ratio (between 1 and 2)
and, once more, the red and infrared bands show slight sen-
sitivity to radiometric resolution. Nevertheless, in the spatial
resolution the red band has a ratio similar to blue and green,
and NIR shows the highest ratio (∼8), showing the extreme
influence of the lowest values contained; see histograms in
Fig. 2 (Ikonos-2 8 and 11 bits) and Fig. 6 (Landsat-7).

The implications of these variations in the blue, red and
NIR in the multi-scaling behaviour of two vegetation in-
dexes, NDVI and EVI, have been also studied. The radio-
metric resolution showed a higher influence in the MFS of
the NDVI than in EVI. This implies that the use of the blue
band in the latter has a steady effect on the scaling behaviour.
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Figure 8. Multi-fractal spectrum of the Landsat-7 image for the original pixel values coded in 8 bits. Left plot corresponds to each band
analysed: ETM+#1 in blue colour, ETM+#2 in green colour, ETM+#3 in red colour and ETM+#4 in black. Right plot corresponds to
vegetation indexes: NDVI in green colour and EVI in brown.

Figure 9. Bi-log plots of the partition function χ(q,δ) versus δ for
the vegetation indexes estimated from blue, red and NIR bands of
the Landsat-7 satellite and for q < 0 values. From top to bottom we
show the results for NDVI and EVI. The arrows marked the range of
scales used for the fit and to calculate the slope for different values
of q (7 points).

As was noted for the bands, the spatial resolution had a major
impact in both vegetation indexes.

Further research will be conducted to establish a qualita-
tive and quantitative comparison of these conclusions among
several multi-fractal methodologies applied on these images.
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