Supplement of Nonlin. Processes Geophys., 24, 113–123, 2017 http://www.nonlin-processes-geophys.net/24/113/2017/doi:10.5194/npg-24-113-2017-supplement © Author(s) 2017. CC Attribution 3.0 License.

Supplement of

A matrix clustering method to explore patterns of land-cover transitions in satellite-derived maps of the Brazilian Amazon

Finn Müller-Hansen et al.

Correspondence to: Finn Müller-Hansen (mhansen@pik-potsdam.de)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1. Overview of land-cover classes in the TerraClass data set and assignment to simplified classes used in the paper.

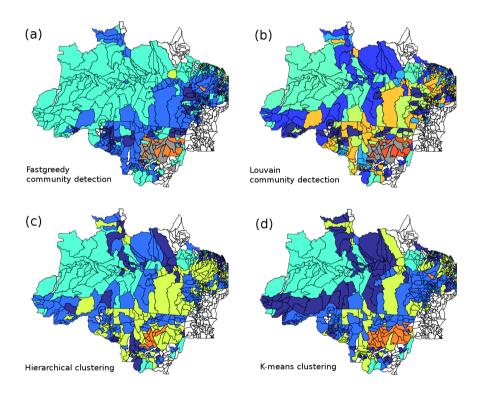

TerraClass no.	TerraClass category	Simplified classes	
01	Annual crops	Annual crops	
02	Mosaic of uses	Other	
03	Urban area	Other	
04	Mining	Other	
05	Herbaceous pasture	Clean Pasture	
06	Shrubby pasture	Dirty Pasture	
07	Regeneration with Pasture	Dirty Pasture	
08	Pasture with exposed soil	Dirty Pasture	
09	Secondary Vegetation	Secondary Vegetation	
10	Others	Other	
11	Non-observed area	(Discarded)	
12	Reforestation	Other	
13	No forest (cerrado biome)	(Discarded)	
14	Primary forest	Forest	
15	Hydrography (rivers/lakes)	(Discarded)	
16	Recently deforested areas	Forest	

Table S2. Markov transition matrix **p** as depicted in Fig. 3(a). If the rows do not sum up exactly to 1, this is due to rounding.

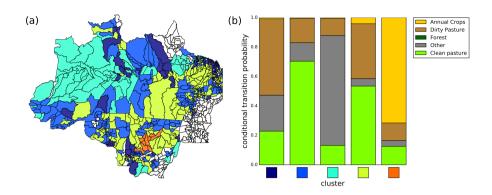

TC2012 TC2010	Secondary Vegetation	Clean Pasture	Dirty Pasture	Forest	Annual Crops	Other
Secondary Vegetation	0.87	0.07	0.037	0	0.0038	0.019
Clean Pasture	0.026	0.84	0.11	0	0.018	0.009
Dirty Pasture	0.16	0.42	0.39	0	0.0066	0.03
Forest	0.0008	0.00091	0.0012	0.9987	0.00006	0.00031
Annual Crops	0.016	0.098	0.025	0	0.85	0.011
Other	0.15	0.17	0.14	0	0	0.54

Table S3. Conditional transition matrix **q** as depicted in Fig. 3(b).

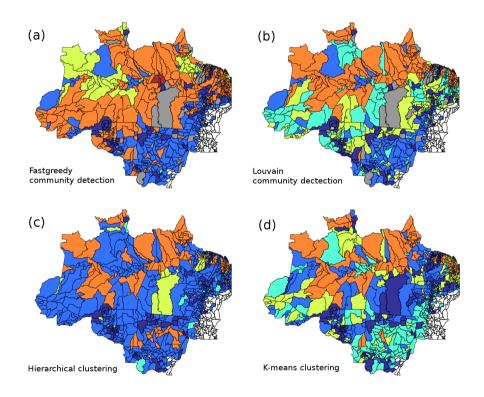

TC2012 TC2010	Secondary Vegetation	Clean Pasture	Dirty Pasture	Forest	Annual Crops	Other
Secondary Vegetation	-	0.54	0.28	0	0.029	0.15
Clean Pasture	0.16	-	0.67	0	0.11	0.056
Dirty Pasture	0.26	0.68	-	0	0.011	0.05
Forest	0.25	0.28	0.36	-	0.019	0.097
Annual Crops	0.1	0.66	0.17	0	-	0.071
Other	0.32	0.37	0.31	0	0	

Figure S1. Comparison of network (a, b) and classical (c, d) clustering algorithms for transitions from secondary vegetation to other landuse classes between 2010 and 2012. The (arbitrary) colors indicate municipalities belonging to the same cluster. White regions lack data to estimate the transition matrix, grey regions are not connected to the similarity network.

Figure S2. (a) Hierarchical clustering as in Fig. S1(c). (b) Corresponding cluster centroids showing the average conditional transition probabilities of the respective clusters.

Figure S3. Comparison of network (a, b) and classical (c, d) clustering algorithms for the whole Markov matrices **p** between 2010 and 2012. Each cluster is visualized by one color. White regions lack data to estimate the transition matrix, grey regions are not connected to the similarity network.

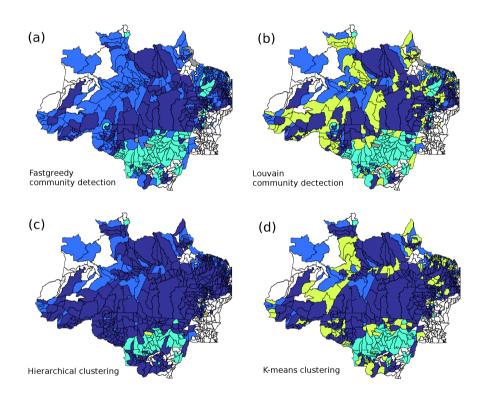
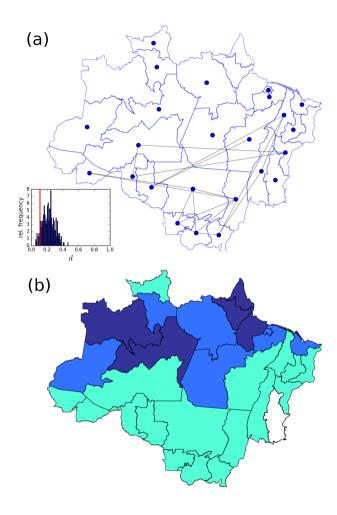



Figure S4. The same analysis as in Fig. 7 but with transitions between 2008 and 2010.

Figure S5. Illustration of the clustering with mesoregions as spatial partition for the whole Markov matrices **p** between 2010 and 2012. (a) Similarity network: Because there are only few significant links and only few nodes connected to the network, the community detection is not feasible. (b) Result of the hierarchical clustering with 3 clusters.