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Abstract. The model of an elliptic vortex evolving in a peri-
odically strained background flow is studied in order to estab-
lish the possible unbounded regimes. Depending on the pa-
rameters of the exterior flow, there are three classical regimes
of the elliptic vortex motion under constant linear deforma-
tion: (i) rotation, (ii) nutation, and (iii) infinite elongation.
The phase portrait for the vortex dynamics features critical
points which correspond to the stationary vortex not chang-
ing its form and orientation. We demonstrate that, given su-
perimposed periodic oscillations to the exterior deformation,
the phase space region corresponding to the elliptic critical
point experiences parametric instability leading to locally un-
bounded dynamics of the vortex. This dynamics manifests
itself as the vortex nutates along the strain axis while con-
tinuously elongating. This motion continues until nonlinear
effects intervene near the region associated with the steady-
state separatrix. Next, we show that, for specific values of
the perturbation parameters, the parametric instability is ef-
fectively suppressed by nonlinearity in the primal parametric
instability zone. The secondary zone of the parametric insta-
bility, on the contrary, produces an effective growth of the
vortex’s aspect ratio.

1 Introduction

Simplified vortex models have been extremely useful in help-
ing us understand the intricate behaviour of real coherent
structures in the ocean and atmosphere. Such models are
usually highly nonlinear, making it possible to gain insight
into many phenomena that are difficult to predict within a

geophysical setting (Provenzale, 1999; Balasuriya and Jones,
2001; Koshel and Prants, 2006; Samelson, 2013; Ryzhov and
Koshel, 2013; Kostrykin et al., 2006; Koshel et al., 2008,
2013, 2014; Haller, 2015). For instance, such vortex models
can shed some light on the dynamics of interacting coher-
ent mesoscale vortices (Reznik and Dewar, 1994; Gryanik
et al., 2000; Reznik and Kizner, 2010; Carton et al., 2010,
2013; Reinaud and Carton, 2015), sustainability of such vor-
tices against external flows (McKiver and Dritschel, 2003;
Liu and Roebber, 2008; Perrot and Carton, 2010), or topo-
graphic influence (Kozlov et al., 2005; Johnson and McDon-
ald, 2005; Ryzhov et al., 2010; Sutyrin et al., 2011; Nilawar
et al., 2012), and so on.

One of the most renowned vortex models is the model of
an elliptic vortex subjected to linear deformation consisting
of shear and rotational components (Kida, 1981). In the case
of a stationary deformation, the elliptic vortex is able to per-
form three types of motion (Kida, 1981) depending on the
parameters of the deformation flow and the initial alignment
of the ellipse against the exterior strain. There are two pe-
riodic states involving the vortex changing its eccentricity;
these are (i) rotation and (ii) nutation. Moreover, there is one
aperiodic state – infinite elongation. In this case, the vortex
elongates continuously tending to be collinear with the strain
axis. Moreover, for a specific initial alignment, the vortex can
be stationary.

The model of an elliptic vortex embedded in a linear de-
formation field is the base model to assess the stability of el-
liptic vortex shapes occurring in nature. A large body of liter-
ature is devoted to the problem. Most of the papers consider
spatial perturbations to the elliptic form in the case of con-
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stant linear deformation (Neu, 1984; Melander et al., 1986;
Neu, 1990; Dritschel, 1990; Meacham et al., 1990; Legras
and Dritschel, 1991; Kida and Takaoka, 1994; Miyazaki and
Hanazaki, 1994; Bayly et al., 1996; Meacham et al., 1997;
Mitchell and Rossi, 2008). A prominent result of this stabil-
ity analysis is that an elliptic vortex is stable to linear pertur-
bations of its form until its geometrical shape complies with
the relation a/b ≤ 3, where a and b are the major and minor
semi-axes of the ellipse.

Another interesting aspect of the dynamics of an elliptic
vortex is its response to time-dependent external deforma-
tion. In this case, the form of the vortex endures no changes
but the vortex’s aspect ratio and orientation can alter un-
predictably demonstrating chaotic behavior. This problem
has been addressed for small-amplitude strain oscillations
by means of the Melnikov’s integral technique in several
works (Bertozzi, 1988; Dhanak and Marshall, 1993; Ide and
Wiggins, 1995; Goldman and McCann, 2008). The evolu-
tion of the vortex embedded in a time-dependent strain with a
slowly varying frequency was addressed in Friedland (1999).
Dhanak and Marshall (1993) also assess the stability of the
stationary configuration of the elliptic vortex; i.e., the vor-
tex’s aspect ratio and orientation do not change in time un-
der a constant exterior deformation, given a time-dependent
external perturbation. They show that such a stationary con-
figuration of the vortex can be easily destabilized into the
nutation or even rotation regimes because of a linear reso-
nance effect. In this paper, we demonstrate that, in the case
of relatively small amplitudes of the perturbation, the vortex
loses its stationarity by means of parametric instability. In the
case of finite amplitudes and optimal frequencies of the per-
turbation, the dynamics of the vortex is governed strictly by
nonlinear effects.

It is also worth noting that fluid particle advection near an
oscillating elliptic vortex embedded in a constant deforma-
tion flow manifests chaotic dynamics (Polvani and Wisdom,
1990; Polvani et al., 1990; Dahleh, 1992). This is because the
oscillating elliptic vortex generates a time-periodic perturba-
tion to the fluid particle motion. This results in the appear-
ance of exponentially diverging trajectories in the unsteady
velocity field governing the fluid particle advection. Similar
chaotic dynamics is present in the case of the ellipsoid vortex
model (Zhmur et al., 2011; Koshel et al., 2013, 2015), which
is a generalization of the elliptic vortex model taking into
account a linear vertical stratification (Zhmur and Pankra-
tov, 1989; Meacham et al., 1994; Dritschel, 2011; McKiver,
2015; McKiver and Dritschel, 2016).

Let us consider an inviscid, incompressible, two-
dimensional flow. In this flow, an elliptic patch of constant
vorticity g, experiencing deformation from time-dependent
strain e(t) and background rotation γ (t), is embedded. The
patch conserves its elliptic form with a and b being the el-
lipse’s semi-axes, ε = a/b being the aspect ratio, and ϕ being
the angle between the ellipse’s major semi-axis and the x axis
of the Cartesian coordinate frame. The governing equations

(Kida, 1981) are

ε̇ = 2eε cos2ϕ, ϕ̇ = γ +
gε

(ε+ 1)2
− e

ε2
+ 1

ε2− 1
sin2ϕ. (1)

It is worth noticing that the motion of the ellipse’s center
(x0, y0) is governed by advection equations in the form

dx0

dt
= u0+ e (x0− xd)− γ (y0− yd) ,

dy0

dt
= v0− e (y0− yd)+ γ (x0− xd) , (2)

where u0, v0 are the velocity’s components of an arbitrary
uniform flow; xd, yd are the coordinates of the constant de-
formation center. Equation (2) exactly coincides with the
equations governing the motion of the vorticity center of an
arbitrary number of point vortices embedded in such a defor-
mation flow (Koshel and Ryzhov, 2012; Ryzhov and Koshel,
2016). Given periodic unequal dependencies of the strain and
rotation components, these equations allow for parametric in-
stability. This, in turn, may result in unbounded motion of
the vorticity center depending on the strain and rotation os-
cillation parameters. However, the relative vortex motion is
independent of the vortex’s center motion. We further con-
sider the evolution of the elliptic vortex when the vortex’s
center and the exterior deformation’s center coincide at the
coordinate’s origin.

Without loss of generality, the ellipse’s vorticity in Eq. (1)
is further set to be g = 1. Equation (1) represent a dynami-
cal system with “one and a half” degrees of freedom (Licht-
enberg and Lieberman, 1983; Zaslavsky, 1998) given time-
dependent strain and rotation rates e(t) and γ (t). This sug-
gests that the dynamics of the phase variables may be chaotic
for certain initial conditions. To start, it is informative to look
into the stationary system given constant values of e(t)≡
e0 = const, γ (t)≡ γ0 = const. The critical points (ϕ0, ε0)

corresponding to the stationary elliptic vortex ensue from the
following relations (Kida, 1981; Bayly et al., 1996):

ϕ0 =±
π

4
,

ε0
3
+ ε0

2 (γ0− e0 sin2ϕ0+ 1)
(γ0− e0 sin2ϕ0)

− ε0
(γ0+ e0 sin2ϕ0+ 1)
(γ0− e0 sin2ϕ0)

−
(γ0+ e0 sin2ϕ0)

(γ0− e0 sin2ϕ0)
= 0. (3)

There are four qualitatively different phase portraits de-
pending on the number and type of the critical points (Bayly
et al., 1996). Each phase portrait has at least one elliptic crit-
ical point. The corresponding phase portrait for the values
e0 = 0.15, γ0 = 0.02 is shown in Fig. 1. The homoclinic sep-
aratrix delineates the regions of the initial conditions cor-
responding to the ellipse nutation (near the elliptic critical
point) and infinite elongation (all the rest).

The elliptical critical point illustrated in Fig. 1 corresponds
to the elliptic vortex, without performing any motion. Once
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Figure 1. The phase portrait of the stationary system (1) in the case
of one elliptic and one hyperbolic critical point for e0 = 0.15, γ0 =
0.02.

slightly shifted from this stance, the vortex starts nutating,
slightly changing the lengths of its semi-axes and the orien-
tation angle. If an initial condition is taken outside of the nu-
tation region near the elliptic critical point, the vortex starts
elongating infinitely.

2 The dynamics of the perturbed system near the
stationary position

Now, let us examine the dynamics of the system near the el-
liptic critical point, given small time-dependent perturbations
of the deformation flow

e(t)= e0+ e
′(t)= e0+ e0δ cosνt,

γ (t)= γ0+ γ
′(t)= γ0+ γ0δ cosνt. (4)

One can expand Eq. (1) into a Taylor series up to the first
term over a small deviation from the elliptic critical point

ε (t)≈ ε0+ ε
′ (t) , ϕ (t)≈ ϕ0+ϕ

′ (t)=±
π

4
+ϕ′ (t) , (5)

where ε0, ϕ0 result from Eq. (3); ε′ (t) ,ϕ′ (t) are small time-
dependent deviations. One then obtains the following for the
deviations:

dε′

dt
=−4e (t)ε0ϕ

′ sin2ϕ0,

dϕ′

dt
=

[
γ (t)− e (t)

ε0
2
+ 1

ε02− 1
sin2ϕ0

]
− ε′

[
(ε0− 1)

(ε0+ 1)3
− 4e (t)

ε0(
ε02− 1

)2 sin2ϕ0

]
. (6)

The linear system of Eq. (6) is an inhomogeneous one. How-
ever, in terms of determining whether the system has un-
bounded solutions, one can take advantage of the associated

homogeneous system:

dε′

dt
=−4e (t)ε0ϕ

′ sin2ϕ0,

dϕ′

dt
=−ε′

[
(ε0− 1)

(ε0+ 1)3
− 4e (t)

ε0(
ε02− 1

)2 sin2ϕ0

]
. (7)

It is worth noting that the term with the background ro-
tation γ has vanished from the homogeneous system. This
readily means that the existence of unbounded solutions
about the stationary position is independent of the exterior
rotation.

One can see that, if reduced to a second-order equation,
the system of Eq. (7) represents a Hill equation (Magnus and
Winkler, 1966). This, in turn, signifies that there is a pos-
sible manifestation of parametric instability near the vortex
stationary position. In other words, given specific values of
the perturbation’s parameters, the phase trajectories become
unbounded near the steady-state elliptic critical point. The
values of the perturbation parameters resulting in parametric
instability can be readily figured out using the Floquet anal-
ysis. An analytical estimate can be derived by means of av-
eraging techniques (Klyatskin and Koshel, 1983; Koshel and
Ryzhov, 2012, 2016; Ryzhov and Koshel, 2016). To do this,
it is convenient to rewrite the system of Eq. (7) in the form

dε′

dt
=−4e (t)ε0ϕ

′ sin2ϕ0,

dϕ′

dt
=

(
k2

4e0ε0 sin2ϕ0
+ 4e0

ε0 sin2ϕ0(
ε2

0 − 1
)2 δ cosνt

)
ε′, (8)

where k2
=−

4e0ε0 sin2ϕ0
(ε0+1)2

[
(ε0−1)
(ε0+1) − 4 e0ε0

(ε0−1)2
sin2ϕ0

]
.

Let us introduce a new variable, ρ =

−

(
1+ i 4e0ε0 sin2ϕ0

k
ϕ′

ε′

)
e−iνt . Then, instead of Eq. (8),

one obtains

dρ
dt
= i

(
2k

[
1+

δ
(
eiνt + e−iνt

)
2e0

]
− ν

)
ρ

− ik

[
16
k2

e0
2ε0

2(
ε2

0 − 1
)2 − 1

]
δ
(
1+ e−2iνt)

2e0

+ ik

[
eiνt +

δ
(
e2iνt
+ 1

)
2e0

]
ρ2. (9)

Then, taking into account that the fast-oscillating terms av-
erage to zero, one gets the following for the averaged value
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Figure 2. The regions of parametric instability in the parametric
plane (ν, δ) for e0 = 0.15, γ0 = 0.02. The dark regions correspond
to locally unbounded dynamics of the ellipse obtained with the use
of the linear approximation (Eq. 7). The dashed lines mark the re-
gion incurred from the analytical estimate (Eq. 12).

ρ:

dρ
dt
= ik

δ

2e0
ρ2
+ i (2k− ν)ρ

− ik

[
16
k2

e0
2ε0

2(
ε2

0 − 1
)2 − 1

]
δ

2e0
, ρ (0)= 0. (10)

The solution of Eq. (10) is(
ρ+

e0
δk
(2k− ν)−D

)(
ρ+

e0
δk
(2k− ν)+D

) = exp
{
ik
Dδ

e0

}
, (11)

where D2
=
(
e0
δk
(2k− ν)

)2
−

[
16
k2

e0
2ε0

2

(ε0+1)2(ε0−1)2
− 1

]
.

The solution Eq. (11) grows unboundedly if the argument
in the right-hand term exponential function is real. Therefore,
a rough analytical estimate for the location of the primary
parametric instability zone in the parametric space ensues

(2k− ν)=±2δ

√
sin2ϕ0

e0

ε0 (ε0− 1)

(ε0+ 1)3
. (12)

Figure 2 depicts the precise parametric instability zones
obtained by the Floquet analysis (the dark regions) and the
analytically estimated values (the dashed line) in the (δ, ν)
parametric space. Every parameter set from the dark regions
leads to spiral-like unbounded trajectories of the linear sys-
tem of Eq. (7), while the parameters taken from the light
areas result in periodic trajectories in bounded regions. The
primary zone of the parametric instability is the widest zone
located near ν = 0.6. The secondary zone is the one located
near ν = 0.3.

3 Nonlinear suppression of the solution growth
attributed to the linear parametric instability

Now, let us discuss possible implications of the paramet-
ric instability reported for the linear system of Eq. (7) that
governs the dynamics of the elliptic vortex in the immediate

vicinity of the elliptical critical point shown in Fig. 1. Since
the original system of Eq. (1) is nonlinear, it is clear that the
applicability range of the linear system of Eq. (7) is relatively
limited.

First of all, in the case of parametric instability, the tra-
jectories that originated near the steady-state elliptic critical
point move unboundedly only up to the steady-state separa-
trix region where nonlinear effects prevail against the linear
unbounded motion. This scenario occurs only if the nonlin-
ear effects do not already drastically influence the dynamics
in the immediate vicinity of the steady-state critical elliptic
point. This is the case, for instance, for the primary paramet-
ric instability zone shown in Fig. 2. Given the correspond-
ing perturbation values, the phase space near the steady-state
critical elliptical point differs crucially from the unperturbed
phase space.

To corroborate this effect, a Poincaré section shown in
Fig. 3a is presented. To construct this and all the following
Poincaré sections, we plot the position of a phase trajectory
exactly in a perturbation period 2π/ν. Thus, a chaotic trajec-
tory appears as a set of disorder points and a regular trajec-
tory appears as a smooth, closed, linked orbit in the sections.
Figure 3a illustrates that the dynamics near the steady-state
elliptic critical point is dominated by a nonlinear resonance
with winding number 1 : 2. Because of this effect, the phase
trajectories that originated near the steady-state elliptic criti-
cal point do not demonstrate parametric instability. Figure 3b
shows a trajectory starting at the steady-state elliptic critical
point ϕ0 = π/4, ε0 ≈ 2.09244 is clearly bounded to the re-
gion of the nonlinear resonance influence. Therefore, the lin-
ear system (Eq. 7) cannot account for the dynamics in this
case.

Nevertheless, the linear system is a good approximation
for certain values of the perturbation’s parameters. For in-
stance, when one considers the second parametric instability
zone, the perturbed phase space near the steady-state ellip-
tic critical point features no nonlinear resonances (see the
Poincaré section shown in Fig. 4a). Therefore, the dynam-
ics near the steady-state critical elliptic point can be de-
rived from the linear system (Eq. 7). When this happens, the
phase trajectory that starts near the steady-state critical el-
liptic point moves in a spiral-like divergent trajectory (see
Fig. 4b). The trajectory spirals only until it reaches the re-
gion of high nonlinearity (a chaotic region in the place of
the Poincaré section in Fig. 4a); then it spirals back. How-
ever, the parametric resonance results in a significant change
of the ellipse characteristics contrary to the case shown in
Fig. 3b.

4 Conclusions

In this work, we have considered a model of an isolated
elliptic vortex embedded in a time-dependent deformation
flow, consisting of strain and rotational components. The
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Figure 3. The dynamics of the perturbed system in the case of the primary parametric instability zone of the corresponding linearized system
(Eq. 7) for e0 = 0.15, γ0 = 0.02 and perturbation parameters δ = 0.01, ν = 0.6. The solid blue lines show the steady-state separatrix. The
blue dot shows the steady-state elliptic critical point ϕ0 = π/4, ε0 ≈ 2.09244. Panel (a) shows a Poincaré section illustrating the appearance
of a highly nonlinear zone (the green orbits) near the steady-state elliptic critical point that prohibits the divergent motion due to the linear
parametric resonance; (b) a phase trajectory starting at the steady-state elliptic critical point bounded to the region of the nonlinear resonance,
illustrating a vanishing effect of the linear parametric resonance.

Figure 4. The same as in Fig. 3, except ν = 0.3. Panel (a) shows a Poincaré section illustrating that the perturbed system remains largely
linear near the steady-state elliptic critical point; (b) a divergent spiralling phase trajectory starting at the steady-state elliptic critical point
experiencing linear parametric instability.

main focus is on the dynamics of the vortex near its steady-
state stable position. In the linear approximation, the vortex
dynamics is established to experience parametric instabil-
ity. This instability entails the following motion of the vor-
tex. The vortex starts nutating about the strain axis, continu-
ously increasing the aspect ratio of its semi-axes. This evolu-
tion continues until the phase trajectory reaches the region
of high nonlinearity near the steady-state separatrix. This
regime proceeds, provided the nonlinear system governing
the dynamics of the vortex remains relatively linear near the
steady-state elliptic point under perturbation. We have shown

that this, in fact, is possible for certain values of the perturba-
tion parameters. Thus, our results suggest that the parametric
instability, which is intrinsic to linear systems, can also be an
important factor in the nonlinear system in question.

However, the influence of linear effects on the nonlinear
systems should be generally interpreted with great care. In-
deed, the primary parametric resonance zone produces the
most effective unbounded motion of the phase trajectories in
the linearized system, but the same driving parameters ap-
plied to the nonlinear system lead only to a bounded mo-
tion in a very small vicinity of the steady-state elliptic critical
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point. This is because a region of high nonlinearity appears
near the steady-state elliptic critical point that completely
suppresses the linear unbounded motion in the nonlinear sys-
tem.

Considering the evolution of the elliptic vortex, the ellip-
tic vortex nutates along the shear axis, becoming more ob-
long in time. This dynamics is regular (not chaotic), mean-
ing that the vortex form returns to its initial shape after the
locally unbounded motion is suppressed by the nonlinear ef-
fects near the steady-state separatrix. However, during this
temporal elongation, the aspect ratio of the vortex may easily
exceed the critical value of the vortex stability. Thus, in terms
of the linear stability of the vortex to the perturbations of its
elliptic form, the vortex turns unstable. Therefore, our results
may suggest the following scenario of the evolution of an el-
liptic vortex in a time-dependent natural environment. First,
it starts becoming more and more oblate due to the linear
parametric instability. After attaining the critical aspect ratio,
small-scale disturbances start transpiring on the boundary of
the vortex. Finally, it may break into a number of smaller el-
liptic vortices (Carton et al., 1989; Polvani and Carton, 1990;
Carton and Legras, 1994).

5 Data availability

No specific data are used. All the figures are obtained by
numerically integrated equations (Eq. 1) using a standard
Bulirsch–Stoer procedure, which uses the Richardson extrap-
olation and modified midpoint method.
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