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Abstract. Due to the massive disparity between the largest
and smallest eddies in the atmosphere and ocean, it is not
possible to simulate these flows by explicitly resolving all
scales on a computational grid. Instead the large scales are
explicitly resolved, and the interactions between the unre-
solved subgrid turbulence and large resolved scales are pa-
rameterised. If these interactions are not properly represented
then an increase in resolution will not necessarily improve
the accuracy of the large scales. This has been a significant
and long-standing problem since the earliest climate simu-
lations. Historically subgrid models for the atmosphere and
ocean have been developed in isolation, with the structure
of each motivated by different physical phenomena. Here
we solve the turbulence closure problem by determining
the parameterisation coefficients (eddy viscosities) from the
subgrid statistics of high-resolution quasi-geostrophic atmo-
spheric and oceanic simulations. These subgrid coefficients
are characterised into a set of simple unifying scaling laws,
for truncations made within the enstrophy-cascading inertial
range. The ocean additionally has an inverse energy cascad-
ing range, within which the subgrid model coefficients have
different scaling properties. Simulations adopting these scal-
ing laws are shown to reproduce the statistics of the reference
benchmark simulations across resolved scales, with orders of
magnitude improvement in computational efficiency. This re-
duction in both resolution dependence and computational ef-
fort will improve the efficiency and accuracy of geophysical
research and operational activities that require data generated
by general circulation models, including weather, seasonal,
and climate prediction; transport studies; and understanding
natural variability and extreme events.

1 Introduction

Eddies in the atmosphere and ocean range in size from thou-
sands of kilometres down to the millimetre scale, with en-
ergy and enstrophy transferred over these scales via complex
non-linear inter-eddy interactions (Kraichnan, 1976). For the
numerical simulation of these flows, it is clearly not possible
to capture all of these interactions by explicitly resolving the
smallest eddies on a computational grid whilst spanning the
entire globe. One therefore resorts to large eddy simulation
(LES), where the large eddies are resolved on a computa-
tional grid, with the interactions between the resolved eddies
and the unresolved subgrid eddies represented by an appro-
priate subgrid turbulence model. If these inter-eddy interac-
tions are not properly represented, then an increase in grid
resolution will not necessarily improve the accuracy, which
leads to resolution-dependent results (Manabe et al., 1979).
This has been a significant problem since the earliest sim-
ulations of weather and climate (Smagorinsky, 1963), and
persists today in even the most sophisticated general circula-
tion models (GCMs) and research codes (Koshyk and Boer,
1995; Shutts, 2005, 2013; Tennant et al., 2011; Morrison and
Hogg, 2013). A reduction of the resolution dependence will
improve the efficiency and accuracy of research and opera-
tional activities that require data generated by GCMs.

The effect that the small unresolved subgrid scales have on
the large resolved scales is typically parameterised by defin-
ing a form of eddy viscosity. In most subgrid models, includ-
ing the most widely celebrated and adopted ones (Smagorin-
sky, 1963; Gent and McWilliams, 1990), physical arguments
are used to justify the form of an eddy viscosity, which is
then tuned to achieve numerical stability and realistic results
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(Griffies et al., 2005). In practice, however, there is a sig-
nificant range of small scales that are excessively damped
(dissipation range) due to the application of heuristic sub-
grid turbulence models, which in turn also affect the large
scales (Frederiksen et al., 2003). Ideally one would prefer
not to have an artificial dissipation range, and develop a sub-
grid model that renders all of the scales of motion accurate.
The subgrid scales also contribute to predictability limita-
tions by injecting noise into the system. It has been shown
that weather and climate models with deterministic subgrid
models have insufficient ensemble spread, a situation that is
improved with the injection of stochastic backscatter (Leith,
1990; Frederiksen and Davies, 1997; O’Kane and Frederik-
sen, 2008; Shutts, 2005; Grooms et al., 2015; Franzke et al.,
2007, 2015; Shutts, 2015).

As in general it is only possible to parameterise the sta-
tistical effects of the subgrid eddies (McComb et al., 2001),
statistical dynamical closure theory is the natural formula-
tion for developing self-consistent subgrid models. In this
approach one attempts to determine the statistical effect that
the unresolved scales of motion have on the resolved eddies.
The foundation studies in this area were the direct interac-
tion approximation (DIA) closure and its variants for ho-
mogeneous turbulence (Kraichnan, 1959; McComb, 1974;
Herring, 1965), and the quasi-diagonal DIA (QDIA) closure
(Frederiksen, 1999, 2012a; O’Kane and Frederiksen, 2004,
2008) for inhomogeneous turbulence. The general QDIA
closure theory accounts for cross-correlations between field
variables (e.g. fields at different vertical levels; or velocity
components) and between physical space fields, but has the
remarkable property that the eddy damping and stochastic
backscatter terms are diagonal in spectral space. The QDIA
subgrid closure terms were calculated for typical barotropic
atmospheric flows in O’Kane and Frederiksen (2008). Broad-
ening the applicability of the QDIA closure, a stochastic
subgrid modelling approach was developed to determine the
eddy viscosities from the statistics of high-resolution bench-
mark simulations (Frederiksen and Kepert, 2006), which is
the approach adopted here.

We use the method of Frederiksen and Kepert (2006) to
develop stochastic subgrid models for global atmospheric
and oceanic flows such that practically all of the resolved
scales of motion can be trusted. In contrast to the vast major-
ity of subgrid modelling studies, the approach adopted here
makes no heuristic assumptions, with the subgrid model co-
efficients calculated self-consistently from the statistics of
high-resolution benchmark simulations. This approach has
been successfully applied to quasi-geostrophic (QG) atmo-
spheric and oceanic simulations with horizontal and vertical
shears (Zidikheri and Frederiksen, 2009, 2010a, b), three-
dimensional wall bounded turbulence (Kitsios et al., 2015),
and global primitive equation simulations of the atmosphere
(Frederiksen et al., 2015). Subgrid models developed from
far simpler barotropic QG models (Frederiksen and Davies,
1997), have previously been shown to improve the simulated
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dynamics in GCMs (Frederiksen et al., 2003). Here we adopt
more complex baroclinic QG benchmark simulations of the
atmosphere and ocean, which capture the essential dynam-
ics of barotropic (horizontal shear) and baroclinic (vertical
shear) instability.

Historically subgrid models for the atmosphere and ocean
have been developed in isolation, with the derivation of the
functional forms of the subgrid models often motivated by
very different physical phenomena. Here we provide evi-
dence that the effects of subgrid turbulence in the atmo-
sphere and ocean actually have much in common. When
non-dimensionalised appropriately, subgrid coefficients cal-
culated from atmospheric (Kitsios et al., 2012) and from
oceanic (Kitsios et al., 2013) simulations, show remark-
ably good agreement within the enstrophy cascading iner-
tial range. The justification of this approach stems from the
phenomenological view of turbulence in the atmosphere and
ocean. In both flows the Rossby radius (rr) is the domi-
nant scale at which baroclinic instability injects energy (ve-
locity variance) and enstrophy (vorticity variance) into the
system (Salmon, 1998), where the non-dimensional Rossby
wavenumber is kr = a/rr, with a = 6371 km the radius of
the Earth. In the phenomenological view of QG turbulence,
enstrophy is transferred at a constant rate from wavenum-
ber kr to larger wavenumbers (smaller eddies), whilst en-
ergy is transferred from wavenumber kg back up to the
large-scale (low wavenumber) energy-containing eddies of
wavenumbers less than or equal to kg (Kraichnan, 1976;
Salmon, 1998). The wavenumbers, kr and kg, divide the
scales into three important wavenumber (n) regimes: the
non-self-similar energy-containing range (n < kg), the self-
similar inverse energy cascade (kg < n < kR), and the self-
similar forward enstrophy cascade (kr < n). In the ocean
ke <« kgr with all three regimes present. In the atmosphere,
however, kg ~ kr, which means that the inverse energy cas-
cade is either very short or non-existent, due to the large-
scale forcing. Both wavenumbers, kgr and kg, are important
for the scaling of the subgrid coefficients.

Here we present a first systematic comparison of subgrid
models of QG turbulence in the atmosphere and ocean, and
develop simple unifying scaling laws that represent both fluid
media within their enstrophy cascading inertial ranges. A
large set of simulations is analysed, which covers a broad
range of flow parameters, including an order of magnitude
change in the Rossby radius of deformation and the energy-
containing scale. By focussing on the enstrophy cascading
inertial range in both media, the large number of simula-
tions and wide parameter range has enabled the establish-
ment of robust scaling laws. In Sect. 2 we present the numer-
ical details of the benchmark simulations used to generate
the atmospheric and oceanic flows, with these flows char-
acterised in Sect. 3. The process by which subgrid models
are calculated from the reference benchmark simulations is
presented in Sect. 4, with the resulting subgrid coefficients
illustrated in Sect. 5. The coefficients calculated from the
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atmospheric and oceanic simulations are then characterised
into a set of unifying scaling laws representing both fluids in
Sect. 6. These unifying scaling laws govern how the subgrid
coefficients change with resolution and flow strength, thus re-
moving the need to generate the coefficients from benchmark
simulations in the future. The scaling laws presented here are
particularly simple, and are suggestive of robust fundamental
properties of QG turbulence. In Sect. 7, large eddy simula-
tions adopting these scaling laws are shown to reproduce the
statistics of the benchmark simulations across all scales, with
drastic improvements in computational efficiency.

2 Numerical details of the benchmark simulations

The atmospheric and oceanic flows are generated by solv-
ing the two-level QG potential vorticity equation (QGPVE).
The numerical integration of the QGPVE is a computation-
ally efficient means of simulating geophysical flows. It cap-
tures the essential dynamics of baroclinic and barotropic in-
stabilities, and the interaction of coherent structures with in-
homogeneous Rossby wave turbulence (Frederiksen, 1998).
In the present study the vorticity is represented on two dis-
crete vertical levels with j =1 representing the upper level
and j = 2 the lower level. In the atmospheric simulations the
upper level is at 250 hPa (= 10 km), and the lower level at
750 hPa (= 2.5km). For the oceanic simulations the upper
level is at an approximate depth of 200 m, and the lower level
at 600 m. The system is non-dimensionalised by using the ra-
dius of the Earth (¢ = 6371 km) as a length scale, and the in-
verse of the Earth’s angular velocity (€ = 7.292 x 107°s~1)
as a timescale. By default all variables are assumed to be
non-dimensional unless units are specified.

The two-level QG, equations of motion in physical space
are
0a _ _ owi giy— Y _ici _pigi
ryal J(W'.q7) B —ai¢! = Dygq

ey (qf —qf). )

The field variables are functions of time (¢), longitude (1),
and u = sin(¢), where ¢ is the latitude. The vorticity at level
jis ¢/, and ¥/ is the stream function. The reduced poten-
tial vorticity ¢/ = ¢/ + (—1)/ F_ (y'* — ¢2), where F_is the
layer coupling coefficient, which is inversely proportional to
the temperature difference between the two levels, and is re-
lated to the Rossby radius of deformation by rr = 1//2F.
In Eq. (1), the coefficient B represents the beta effect, and
J(!, q7) is the Jacobian. Using standard fluid mechanical
nomenclature, Dé is the bare dissipation operator represent-
ing the unresolved eddy—eddy (or inter-eddy) interactions in
the benchmark simulation (McComb, 1990). The constant c/
parameterises the drag by dampening the large scales of mo-
tion. Simulations are nudged toward a climate g/ by the con-
stant relaxation parameter /.
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In our study we solve Eq. (1) by spectrally discretising the
field variables in spherical harmonics (Frederiksen, 1998).
This spectral discretisation allows for a clear separation of
the resolved and subgrid scales of motion for the develop-
ment of the subgrid parameterisations. The system solves for
the spectral coefficients of the potential vorticity defined as

QV{In = Cr{m - (_l)jFL (C}ilm - anm) /[n(n + l)] ’ (2)

for zonal (longitudinal) wavenumber, m, total wavenumber,
n, with latitudinal (meridional) wavenumber n—m. The spec-
tral coefficients of the vorticity are dﬁ = —n(n+1)1p,{m,
where 1//,{;,1 are the spectral stream-function coefficients. The
evolution of q,{m is governed by

84]151}1 . mpr , j j . j i j
T = lzanqI:' llfipqqim - la)mné‘njm —a’ (n)é‘njm
pq TS

2
i - .
- Z Dé (m, n)‘blnn + KI{ (Q;ﬁm - qlgm) s (3)
=1

mpr

where g7, is the complex conjugate of g;,,, and K5 are
the interaction coefficients defined in Frederiksen and Kepert
(2006). No topography is represented in the present simula-
tions. The summations immediately after the equals sign in
Eq. (3) are over the triangular wavenumber set

T=[p.q.rs|-T<p<T, Ipl<q<T,
—T<r<T,|r|<s<T], 4)

with 7 the benchmark truncation wavenumber, which is re-
lated to the angular grid spacing in degrees (®) by T =
120/®. The highest resolution atmospheric and oceanic sim-
ulations run for the present study have maximum truncation
wavenumbers of 7 =504 and T = 1008, respectively. The
Rossby wave frequency is w,, = —Bm/[n(n + 1)], where
B =2 under the chosen non-dimensionalisation. In the at-
mospheric simulations Fi = 2.5 x 107> m~2, correspond-
ing to a Rossby radius of deformation of rr =1/+/2F =
447 km, and a non-dimensional Rossby wavenumber of kg =
rr/a ~ 14. In the oceanic cases F ranges from F =2.5 x
107m=2 (rg = 45km, kr = 142) to FL. =10 °m 2 (g =
22km, kg = 284).

In Eq. (3), o/ (n) is the drag applied at level j. In the at-
mospheric simulations o/ (n) = ahax for n < 15, and zero
otherwise, with at,, =2.3x107%s™! and o2, =5.8 x
10~ s~1. For the simulations of the ocean o/ (n) = afhax[1—
erf(0.1(n — n.))]/2, where erf is the error function, and
n. = 50 is the point at which o/ (n.) = ahax/2. This func-
tional form allows us to control the location of the energy-
containing wavenumber. We undertake additional oceanic
simulations with alternate values of n. to produce a series
of flows with different background states and with differ-
ing wavenumber ranges of the energy-containing (non-self-
similar) scales (kg).
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All simulations are driven toward a mean state g3,,, that is
purely zonal (g7, are zero unless m = 0). They are driven
toward this state by a relaxation parameter of «;; = 107651
for m =0 and n <15, and zero otherwise. For the simu-
lations of the atmosphere g, corresponds to a large-scale
westerly jets centred at 45° S and 45° N, representing large-
scale jets in the Northern and Southern hemispheres. In the
oceanic simulations g, corresponds to a large-scale west-
erly current centred at 60° S of the Southern Hemisphere,
broadly representative of the mean Antarctic Circumpolar
Current. .

By definition the bare dissipation, Dél(m,n), represents
the unresolved eddy-eddy interactions in the benchmark
simulation. It is written in general anisotropic matrix form
(dependent on zonal, m, and total, n, wavenumbers) but in
our simulations it has the isotropic form (dependent only
on n) of Dél(m,n) = vél(n) n(n—+1), where vél(n) is the
isotropic bare eddy viscosity given by

J
vl (n) = 8, vgfm(;)p‘) g 5)
and §;; is the Kronecker delta function, which ensures the
off-diagonal elements of ugl(m are zero. Here v/ (T) is the
value of the diagonal elements at truncation and the power
pg determines the steepness of v}/ (n). This means that the
corresponding bare viscosity and bare dissipation matrices
are diagonal and isotropic. Note in Eq. (5), the wavenumber
ration/ T is raised to the power of pé —2 to be consistent with
the definition of the subgrid eddy viscosities throughout the
document. The slope and magnitude of vq is determined by
the scaling laws presented in the paper. An initial study was
first undertaken determine the scaling laws with an estimate
of vg. The study was then repeated with vg defined by the
scaling laws themselves. There was a negligible difference
between the new subgrid coefficients and those obtained in
the initial study.

3 Characterisation of the benchmark flows

In the benchmark atmospheric simulations, the Rossby
radius of deformation rgr =447 km, with an associated
wavenumber of kr = 14. This means 14 eddies of this size
could fit side by side along one line of latitude. The climate
state contains large-scale westerly winds in the mid-Ilatitudes
of the Northern and Southern hemispheres (Kitsios et al.,
2012); see Fig. 1c. Large-scale eddies are produced in both
hemispheres as illustrated by the instantaneous eddy stream
function and wind field in Fig. 1a.

In the initial benchmark oceanic simulation the Rossby ra-
dius is 45km corresponding to a wavenumber of kg = 142.
The Rossby radius is an order of magnitude smaller in the
ocean compared with the atmosphere. This renders oceanic
simulations computationally more expensive, as a finer grid
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is required to explicitly resolve baroclinic instability. The cli-
mate state is illustrated in Fig. 1d, and is broadly represen-
tative of the Antarctic Circumpolar Current (Kitsios et al.,
2013). Figure 1b illustrates that the oceanic flow has eddies in
the mid-latitudes of the Southern Hemisphere that are smaller
in size than those in the atmospheric case, and is consistent
with the former having a smaller Rossby radius.

The strength of the flow field on each level is quantified by
the potential enstrophy flux, and is required for scaling the
magnitude of the eventual subgrid coefficients. The enstro-
phy flux, n/¥(n), is the rate of potential enstrophy transfer
from level k into level j at total wavenumber n. It is defined
as

T
n/ (n) =" NI*(1), where (6)
I=n
N*@y =i >SS Knb v ad? o0 e )
m pq rs

is the enstrophy transfer. The latter is calculated by post-
multiplying the non-linear term of the equations of motion
in Eq. (3) by ¢*,,,,, and then summing over zonal wavenum-
ber m. The potential enstrophy flux for the atmospheric and
oceanic simulations are illustrated in Fig. 2a and b.

The wavenumber extent of the large energy-containing
scales is required for scaling the spectral slope of the sub-
grid coefficients. Within the inertial ranges the external forc-
ing and dissipation are negligible, and the transfer of en-
ergy is dominated by non-linear triadic interactions (Salmon,
1998). With no additional damping or excitation within the
self-similar wavenumber regimes, we find that the energy
transferred into the barotropic mode is in balance with that
transferred out of the baroclinic mode. We define kg to
be a wavenumber indicative of the non-self-similar energy-
containing scales. It is quantified by the smallest wavenum-
ber at which the energy transferred into the barotropic mode
is in balance with the energy transferred out of the baroclinic
mode (Kitsios et al., 2013). The kinetic energy transfers in
level space are given by 77%(n) = N7k (n)/[n(n +1)]. The
barotropic/baroclinic kinetic energy transfers are given by
Tgk(n), where in matrix form 75 = CTCT, with

1 1 1
c=5] 1 1 ®
Cn Cn

where ¢, = 14+2F /[n(n+1)], and the superscript T denotes
the transpose operation. The index 1 refers to the barotropic
mode, and 2 the baroclinic mode. For example ng(n) refers
to the kinetic energy transferred from the baroclinic mode
into the barotropic mode. The energy transferred into the
barotropic mode is 727 (n) = T} (n)+732(n), and likewise
the energy transferred into the baroclinic mode is 7 2€ (n) =
72Y(n) +T722(n). To be in balance, 727 (n) must be equal
to —7 B€ (n). For the atmospheric flow we find kg ~ 11, and
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Figure 1. Instantaneous fields and climate states of the benchmark simulations. Contours of instantaneous eddy (non-zonal) stream function,
and vectors of instantaneous velocity (wind/current) on the upper level of the (a) atmosphere (Northern and Southern hemisphere), and
(b) ocean (Southern Hemisphere). Climate state illustrated by the time-averaged (c) atmospheric winds and (d) oceanic currents.
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Figure 2. Spectral properties of the benchmark simulations. Poten-
tial enstrophy flux spectra on the upper vertical level (level 1) and
lower level (level 2) for the (a) atmosphere and (b) ocean. Energy
transferred into the barotropic mode (737) and out of the baro-
clinic mode (=7 B€) for the (c) atmosphere, with legend also ap-
plicable to panel (d); and (d) ocean. The energy-containing-scale
wavenumber kg, Rossby wavenumber kR, and benchmark simula-
tion truncation wavenumber 7 labelled on the » axis.

www.nonlin-processes-geophys.net/23/95/2016/

for the oceanic flow kg = 70, as illustrated in Fig. 2c and d,
respectively.

4 Stochastic subgrid modelling approach

Using a series of the above-discussed simulations, we study
the inter-eddy interactions by removing vortices smaller than
a certain cut-off size, or equivalently larger than a specified
truncation wavenumber (7R). The subgrid tendency is the
component of the rate of change of the resolved large-scale
vortices due to their interactions with the unresolved small
scale vortices. The subgrid parameterisation problem in its
most basic form is the representation of the subgrid tendency
in terms of the resolved field. Here we use the stochastic sub-
grid modelling approach of Frederiksen and Kepert (2006)
to determine such a representation for the subgrid processes.
This approach is outlined below.

The resolution of a LES is lower than the associated
benchmark simulation, and confined to the resolved scale
wavenumber set

R=[p.q.r.s|-TR<p <Tr.Ip| <q < T,
—Tr<r <Tr,|r| <s <TRr], 9)

where TR is the LES truncation wavenumber such that 7Tr <
T. The subgrid wavenumber set is defined as S=T —R.

Nonlin. Processes Geophys., 23, 95-105, 2016
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We define the resolved potential vorticity field at a given
wavenumber pair (m,n) by the two-element column vec-
torg = (¢2,.q2,)" . Inthis vector notation, g, (t) = qR(r) +
q,s(t), where ¢, is the tendency (time derivative) of g. The
tendency of the resolved scales is q?, where all triadic in-
teractions involve wavenumbers less than 7g. The remain-
ing subgrid tendency q? has at least one wavenumber greater
than Tg, which is involved in the triadic interactions. One can
further decompose g5 such that ¢ (r) = f +¢°>(t), where g°
is the fluctuating component representing the eddy—eddy in-
teractions, and f = (q?) is the ensemble-averaged subgrid
tendency representing the sum of the eddy—mean-field and
mean-field-mean-field interactions.

The QDIA closure provides the theoretical justification for
modelling the subgrid tendency for a particular wavenumber
pair as a function of the resolved fields at only that same
wavenumber pair (Frederiksen, 2012a). We can then model
the fluctuating subgrid tendency at each wavenumber pair,
@S, by the stochastic equation

G(t)=—Dg G(t) + f (1), (10)

where Dy is the subgrid drain dissipation matrix, g is the
fluctuating component of ¢, and f is a random forcing vec-
tor. As the present simulations have two vertical levels, Dq is
a time-independent 2 x 2 matrix, and f is a time-dependent
two-element column vector. An estimate of Dy is then found
through the generalisation of the Gauss theorem (Frederiksen
and Kepert, 2006). Both sides of Eq. (10) are post-multiplied
by §' (o), integrated over the turbulent decorrelation period
7, ensemble averaged to minimise the contribution from f,
and then rearranged to produce

to+‘r o+t
Dd=—< / a,s(a)f(ro)da>< / a<a)a*<to)da> RNCEN

fo fo

where 1 denotes the Hermitian conjugate for vectors and ma-
trices. The angled brackets denote ensemble averaging, with
each ensemble member determined by shifting 7o forward by
one time step. The decorrelation time t, is chosen sufficiently
large to capture the memory effects of the turbulence (Kitsios
etal., 2012). The model for f is then determined by calculat-
ing the matrix Fp = Fp+ Fg, where Fp = (?(t)ifr(t)). Post-
multiplying both sides of Eq. (10) by ' (), and adding the
conjugate transpose of Eq. (10) pre-multiplied by g(¢) yields
the Lyapunov equation

(@ 07" o)+ @0z )= -4 707" o)
~{@wa' )} + 7. (12)

Given that Dy has been determined, F}, can now be calcu-
lated. There is a balancing act between the linear (Dq) and
stochastic (Fp) components of the subgrid model. As Dy
is dependent upon t, it is t that defines this balance. For

Nonlin. Processes Geophys., 23, 95-105, 2016

the implementation of parameterisation, it is sufficient to as-
sume that f can be represented as the white noise process
(?(t) ?T(t/)> = Fpd(t —1'), with an eigenvalue decompo-
sition of F}, used to produce a stochastic model for f, as
detailed in Zidikheri and Frederiksen (2009).

Backscatter is the physical process by which kinetic en-
ergy is transferred from small to large scales. The subgrid
model in Eq. (10) represents this process in its fundamen-
tal stochastic form. One can also, however, represent the
subgrid interactions using the simplified deterministic form
lits(t) = —Dnetq (¢), Where Dpg is the net dissipation repre-
senting the net effect of the drain and backscatter (Frederik-
sen and Kepert, 2006). The backscatter and net linear opera-
tors are defined by

oot T
Dy = —Fo(g() §'(0)  and (13)
-1
Dnee =Dy +Dp =~ (303" 0) (d0d' ) . 4

respectively (Frederiksen and Kepert, 2006). In the present
document the subgrid coefficients are presented in eddy vis-
cosity form, where the drain, backscatter, and net eddy vis-
cosities are related to their respective dissipations by vq =
Dg/[n(n+ 1], vo =Dyp/[n(n+1)], and vnet = Dnet/[n(n +
1)], where n(n + 1) is the discrete form of the Laplacian.

5 Structure of the eddy viscosities

For the atmosphere the subgrid model coefficients are pre-
sented at a truncation of Tr = 126, capturing vortices down
to a radius of 50 km in the mid-latitudes. These eddies are
significantly smaller than the Rossby radius (447 km), which
means the energy injected into the system via baroclinic in-
stability is explicitly resolved. In Fig. 3a the upper diago-
nal element of the drain eddy viscosity is divided by the
kinematic viscosity of air (10~°>m2s~1), and represented by
the height of the contour surface. The coloured surface de-
picts the kinetic energy of the fluctuating scales at the up-
per level. In this figure the eddy viscosity is 10 times
greater than the molecular viscosity, indicating that the inter-
eddy interactions are far more important than the inter-
molecular ones. The drain also increases strongly with the
total wavenumber (r), has only a weak dependence upon the
zonal wavenumber () at a given n, and is hence approxi-
mately isotropic. The Kinetic energy is also largely isotropic,
concentrated at the largest scales (lowest wavenumbers), and
decreases rapidly as the structures get smaller (wavenumbers
get larger). The form and magnitude of the lower diagonal
element of the drain eddy viscosity matrix are very similar
to those of the upper diagonal element, with the off-diagonal
elements negligible in comparison. Since the drain eddy vis-
cosity matrix is essentially diagonal, the positive coefficients
illustrated in Fig. 3a indicate that energy (and enstrophy)
is being sent from the resolved to the subgrid eddies. The
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Figure 3. Real component of the upper diagonal subgrid eddy viscosities. Anisotropic drain eddy viscosity at 7r = 126 for the (a) atmo-
sphere, divided by the kinematic viscosity of air (10~° m?2 s~1): and (b) ocean, divided by the kinematic viscosity of sea water (10*6 m? s—1y.
Coloured surfaces depict kinetic energy of the fluctuations at the upper level, and the black lines are the isotropised (m-averaged) drain coef-
ficients. Isotropic drain, backscatter, and net eddy viscosities labelled by Tr for the (c) atmosphere and (d) ocean; with Rossby wavenumber
(kr) and energy-containing wavenumber (kg) labelled on the horizontal axes.

backscatter has a similar form to the drain, but is negative
and approximately half the magnitude.

We now consider the drain eddy viscosity in the ocean at
the same resolution of Tr = 126, again capturing vortices of
radius 50 km. Here, the energy injection via baroclinic insta-
bility is not explicitly resolved as the Rossby radius is 45 km.
The upper diagonal-drain eddy viscosity component is di-
vided by the kinematic viscosity of sea water (10~® m2s—1)
and plotted in Fig. 3b. It again illustrates that the influence
of the inter-eddy interactions is 10%° times greater than the
inter-molecular ones. The eddy viscosity is strongly depen-
dent upon both zonal (m) and total (n) wavenumbers, and
is hence anisotropic. For certain low wavenumbers (large
scales) the drain is negative, which is required to further
deterministically excite the flow as the injection of energy
via barotropic and baroclinic instabilities is not explicitly re-
solved. The coloured surface depicts the upper level kinetic
energy, illustrating that it is also highly anisotropic and dis-
tributed across all scales. The lower diagonal matrix element
has similar properties to the upper diagonal. The off-diagonal
elements are proportionally larger in this case, indicating that
the removal of the small scales modifies the interactions be-
tween the vertical levels — refer to Kitsios et al. (2013) for
illustrations of the off-diagonal elements. Jansen and Held
(2014) developed heuristic general purpose oceanic subgrid
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models for this regime that also have negative viscosity. For
oceanic simulations at the higher resolution of Tr = 252, in
which baroclinic instability is explicitly resolved, the eddy
viscosities have similar properties to the atmospheric case,
with matrices diagonally dominant and largely isotropic (Kit-
sios et al., 2013).

The self-similarity of the eddy viscosities is most clearly
illustrated by the isotropised (averaged over zonal wavenum-
ber m) profiles. For various truncations levels (7r), the up-
per diagonal element of the isotropised drain and backscatter
eddy viscosities is illustrated in Fig. 3c for the atmospheric
flow, and in Fig. 3d for the ocean. We also show the net
eddy viscosity, given by the sum of the drain and backscat-
ter. As the resolution increases the magnitude of all of the
eddy viscosities decrease. This means that as more eddies
are being explicitly resolved, the enstrophy (and energy) is
being transferred to fewer subgrid eddies. For cases that re-
solve baroclinic instability, the subgrid parameterisation rep-
resents the energy flow to the resolved scales as being com-
pletely stochastic with only the backscatter eddy viscosity
negative. The positive values of the net eddy viscosity in-
dicate that the net effect of the drain and backscatter pro-
cesses is such that energy is sent out of the system. When
baroclinic instability is not resolved the energy flow to the
resolved scales is modelled as having a deterministic com-
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ponent with the drain and net eddy viscosities negative for
certain low wavenumbers. The eddy viscosity coefficients
with significant magnitude are concentrated within the last
70 wavenumbers for the ocean and the last 11 wavenum-
bers for the atmosphere. These wavenumber ranges coincide
with kg — the wavenumber to which the large non-self-similar
energy-containing scales extend.

6 Unifying scaling laws

We have calculated the subgrid parameterisation coefficients
(eddy viscosities) for the atmosphere and ocean at various
resolutions (7r). We now develop scaling laws representing
how these eddy viscosities change with resolution and flow
strength, for truncations made within the enstrophy cascad-
ing inertial range (kr < 7Rr). For the diagonal element of the
drain eddy viscosity associated with level j, the maximum
magnitude (v}’ (7r)) and spectral slope (p;) are quantified
by least squares fitting the isotropised eddy viscosity profiles
(v4’ (n)) to the function

y N NV
u{,f(n)=vg~’(TR)(T—R) . (15)

There is an analogous expression for the isotropised
backscatter eddy viscosity (v7’(n)). The scaling laws gov-
ern how the magnitudes and slopes change with truncation
wavenumber and flow strength. Oceanic benchmark simu-
lations were also undertaken, with the Rossby wavenumber
(kr) varying from 142 to 284, and the energy-containing
wavenumber (kg) varying from 40 to 70. This coupled with
the atmospheric results (kr = 14, kg = 11), means that we
have results spanning almost an order of magnitude in both
the Rossby and energy-containing wavenumbers.

First, we present the power exponents of the drain eddy
viscosities (pé), which represent how steeply the drain of en-
strophy out of the system increases with resolved wavenum-
ber (or equivalently as the size of the resolved eddies de-
crease). It is the extent of the energy-containing scales (kg)
that defines how far non-linear interactions can span in
wavenumber space (Kraichnan, 1976), which effectively sets
the size of the largest eddy that can interact with the sub-
grid scales. This wavenumber distance is inversely propor-
tional to the power exponents, and is represented by the span
of wavenumbers over which the eddy viscosity profiles are
non-zero in Fig. 3c and d. In Fig. 4a, we therefore plot the
drain power exponent against the truncation wavenumber
(Tr) non-dimensionalised by kg. A strong relationship ex-
ists for all of the atmospheric and oceanic flows, with the
drain exponent increasing with Tr. The spectral slope has to
increase with resolution to ensure that the range of signifi-
cant subgrid interactions (quantified by the eddy viscosity) is
confined to the last kg wavenumbers before truncation. The
scaling law for pé is determined by the illustrated regres-
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Figure 4. Scaling of the isotropic eddy viscosities. Slope of the
(a) drain eddy viscosity pé, and (b) backscatter eddy viscosity pé.
Magnitude of the (c) drain eddy viscosity vé’ (TR), and (d) nega-
tive backscatter eddy viscosity —véj (TR). The dashed lines in pan-
els (b) and (d) represent the drain scaling laws to serve as a di-
rect comparison to the backscatter scaling laws represented by the
solid lines. The symbols correspond to the various cases as follows:
red diamond, kg = 142, kg = 70; blue circle, kgr = 284, kg = 70;
green square, kr = 142, kg € (40,50, 60); magenta upward point-
ing triangle, kg € (201, 246), kg = 70; orange downward pointing
triangle, kgr = 14, kg = 11 (atmosphere). Filled symbols represent
Jj =1 and hollow symbols j = 2.

sion line. A similar relationship is observed for the power
exponents of the backscatter eddy viscosities (,og ) in Fig. 4b,
with the dashed line illustrating the scaling law for the drain
to serve as a direct comparison. Note the backscatter power
exponents are larger and also increase with resolution more
quickly than the drain exponents. To put these results into
context, a power exponent of 2 represents a Laplacian dissi-
pation, or equivalently an eddy viscosity that does not depend
on wavenumber.

Scaling laws for the maximum values are again non-
dimensionalised using the energy-containing wavenumber,
and additionally a timescale based on the potential enstrophy
flux (Leith, 1971). The potential enstrophy flux is the rate at
which potential enstrophy is transferred from one wavenum-
ber to the next (Salmon, 1998). We calculate the flux and find
that for both flow cases it is constant for eddies smaller than
the energy-containing scale, as illustrated in Fig. 2¢ and d.
The constant flux value at level j is denoted by m]/- To span
all cases of different kg and kg, we find that the eddy viscosi-
ties need also to be scaled by +/kr/ke. With this normalisa-
tion, the magnitude of the drain and backscatter are plotted
in Fig. 4c and d, respectively. The magnitude of all eddy vis-
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Table 1. Equivalent powers of the Laplacian for the subgrid net eddy viscosity of atmospheric and oceanic simulations at various angular
grid spacings (®). The equivalent truncation wavenumber is Tr = 120/®. The energy-containing scale for the atmospheric and oceanic
simulations are kg = 11 and kg = 70, respectively. The drain profiles (vq4(n)) are calculated from Tr /kg using Eq. (15) and the scaling laws
in Fig. 4, and likewise for the backscatter (vy (1)), with the net vpet(n) = vq(n) + vp(n). The spectral slope of vnet(n) is determined, divided
by 2, and rounded to the nearest integer to approximate the effective power of the Laplacian operator.

® 1° ; o l o ; o l o
P ! 6 8

TR =120/0 120 240 480 720 960

Atmosphere kg = 11

TR/ ke 10.9 21.8 43.6 65.5 87.3

Power of Laplacian 13 22 38 52 65

Ocean kg =70

TR/kE 1.7 34 6.9 10.3 137

Power of Laplacian 0 (constant)

1 (Laplacian)

2 (biharmonic) 3 4

cosities is inversely proportional to 7gr, which means that if
the resolution doubles the eddy viscosity halves.

These scaling laws allow us to determine the drain and
backscatter terms at the desired resolution (7R), given that
we have estimates of the Rossby wavenumber, energy-
containing wavenumber, and enstrophy fluxes. These terms
can then be used to model the subgrid interactions in sim-
ulations of the climate. Whilst the scaling laws were de-
veloped from baroclinic QG simulations, they agree with
the subgrid coefficients determined from the truncation of
barotropic (Frederiksen and Kepert, 2006) and more com-
plex atmospheric multi-level primitive equation simulations
(Frederiksen et al., 2015). This indicates that the scaling laws
can be applied more broadly. As previously mentioned, sub-
grid models developed from simpler barotropic QG mod-
els (Frederiksen and Davies, 1997), have been shown to im-
prove the simulated dynamics in GCMs (Frederiksen et al.,
2003). As most GCMs run with deterministic subgrid mod-
els, in Table 1 we list the effective spectral slope of the
net eddy viscosity at various resolutions (7g) for typical
atmospheric (kg = 11) and oceanic (ke = 70) flows. For a
given Tr/kg, the drain profile (vq(n)) is calculated using
Eg. (15) and the scaling laws in Fig. 4, and likewise for
the backscatter (vp(n)), with the net eddy viscosity given by
vnet(n) = vq(n) + vp(n). The spectral slope of vpet(n) is then
calculated, divided by 2, and rounded to the nearest integer
to approximate the effective power of the Laplacian. For a
given resolution, atmospheric simulations are far more scale
selective than oceanic ones, because the extent of the energy-
containing scales (kg) is significantly less in the atmosphere
than in the ocean.

7 Large eddy simulation

We now determine if LES with subgrid models defined by the
eddy viscosities presented above, can replicate the statistics
of the higher-resolution benchmark simulations. The equa-
tion governing the LES is equivalent to that of the benchmark
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simulation in Eqg. (3), with the addition of the term

, 2
J il ~ —j
(47) ==n+D> vl 0.+ i+ T (16)

added to the right-hand side, and solved over the wavenum-
ber set R instead of T. A stochastic model for f is built from
an eigenvalue decomposition of Fy (Zidikheri and Frederik-
sen, 2009). In the deterministic form, the stochastic force
f is removed and vy is replaced with vnet. In the isotropic
cases, the matrices vy, vnet, and vy are averaged over the
zonal wavenumbers m so that they are only functions of the
total wavenumbers n.

We compare the benchmark simulation results to LES
comprising of both stochastic and deterministic subgrid mod-
els, with the model coefficients in their original anisotropic
form (as in Fig. 3a), in their isotropised form (as in Fig. 3c),
and also defined by the associated scaling laws. Compar-
isons are made across all scales of motion on the basis of the
time-averaged zonal (m) wavenumber-summed Kinetic en-
ergy spectra. The upper level spectra of the benchmark sim-
ulations (black dashed line) are compared to that of the LES
(red solid line) labelled by the associated subgrid parame-
terisation variant in Fig. 5. The top pair of spectra represent
the true energy level, with the other pairs of spectra shifted
down for clarity. Findings pertaining to the upper level are
consistent with those for the lower level.

The atmospheric benchmark simulation of maximum
wavenumber T =504 is compared to LES with Tg =63
in Fig. 5a. The stochastic and deterministic variants with
anisotropic-, isotropic-, and scaling-law-defined coefficients
all reproduce the kinetic energy of the benchmark simulation
across all scales of motion. As the resolution is reduced in
both horizontal directions, the number of degrees of freedom
is reduced by (T2 — T;2)/T? = (5122 — 63%) /5122 = 98 %.
This reduced resolution also allows us to decrease the time
step proportionally, which means the computational cost of
the simulation is reduced by a factor 73/73 =5123/63% =
537. The oceanic benchmark simulation of 7 =504 is com-
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Figure 5. Scale by scale comparison of the benchmark simulation (dashed line) to the LES variants (red solid line). Kinetic energy spectra
at the upper level of the (a) atmosphere and (b) ocean. The top pair of spectra exhibit the true energy, with subsequent pairs shifted down
for clarity. Spectra are labelled with the associated subgrid parameterisation of anisotropic stochastic (AS), anisotropic deterministic (AD),
isotropic stochastic (IS), isotropic deterministic (ID), scaling law stochastic (LS), or scaling law deterministic (LD). The truncation (7R),
Rossby (kRr) and energy-containing (kg) wavenumbers are labelled on the horizontal axis.

pared to LES with Tg = 252 in Fig. 5b. Again all LES vari-
ants replicate the statistics of the benchmark simulation. This
represents a 75% reduction in the degrees of freedom, a
decrease in computational cost by a factor of 67. In sum-
mary for both the atmosphere and ocean, the idealised scal-
ing law form of the eddy viscosities is an excellent represen-
tation of the subgrid interactions within the enstrophy cas-
cade. We have also developed scaling laws applicable to the
ocean within the inverse energy cascade (kg <n < kRr), as
discussed in Kitsios et al. (2013).

8 Conclusions

A general stochastic modelling approach (Frederiksen and
Kepert, 2006) has been used to determine eddy viscosity
matrices that parameterise the interactions between fields at
different vertical levels and horizontal scales in the atmo-
sphere and ocean. Additionally when truncations are made
within the enstrophy cascading inertial range the subgrid pa-
rameterisation coefficients are represented by a set of unify-
ing scaling laws. The laws govern how the form and mag-
nitude of both the atmospheric and oceanic eddy viscosi-
ties change with flow strength and grid resolution. We have
demonstrated that simulations adopting these scaling laws
produce resolution-independent statistics across all scales of
motion. This means no additional resolution need be wasted
in order to account for the presence of an artificial dissipa-
tion range, which drastically improves the computational ef-
ficiency of the simulations.

The scaling laws developed here can be implemented di-
rectly into spectral simulations, and are expected to improve
the efficiency and accuracy of numerical weather and cli-
mate simulations (Frederiksen et al., 2003, 2015). There are
also two possible approaches to implement these scaling laws
into grid point codes. The simplest approach is to apply the
subgrid model directly in grid-point space via a Laplacian
operator of the appropriate power, as outlined in Table 1.

Nonlin. Processes Geophys., 23, 95-105, 2016

More generally it is also possible to employ grid to spectral
transforms, where the subgrid model is calculated in spectral
space, and then applied in physical space.

Finally, the stochastic modelling approach adopted here
is not confined to fluid mechanics but can also be used to
represent non-linear interactions in any classical multi-scale
dynamical system (Frederiksen, 2012b).
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