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Abstract. Due to the massive disparity between the largest

and smallest eddies in the atmosphere and ocean, it is not

possible to simulate these flows by explicitly resolving all

scales on a computational grid. Instead the large scales are

explicitly resolved, and the interactions between the unre-

solved subgrid turbulence and large resolved scales are pa-

rameterised. If these interactions are not properly represented

then an increase in resolution will not necessarily improve

the accuracy of the large scales. This has been a significant

and long-standing problem since the earliest climate simu-

lations. Historically subgrid models for the atmosphere and

ocean have been developed in isolation, with the structure

of each motivated by different physical phenomena. Here

we solve the turbulence closure problem by determining

the parameterisation coefficients (eddy viscosities) from the

subgrid statistics of high-resolution quasi-geostrophic atmo-

spheric and oceanic simulations. These subgrid coefficients

are characterised into a set of simple unifying scaling laws,

for truncations made within the enstrophy-cascading inertial

range. The ocean additionally has an inverse energy cascad-

ing range, within which the subgrid model coefficients have

different scaling properties. Simulations adopting these scal-

ing laws are shown to reproduce the statistics of the reference

benchmark simulations across resolved scales, with orders of

magnitude improvement in computational efficiency. This re-

duction in both resolution dependence and computational ef-

fort will improve the efficiency and accuracy of geophysical

research and operational activities that require data generated

by general circulation models, including weather, seasonal,

and climate prediction; transport studies; and understanding

natural variability and extreme events.

1 Introduction

Eddies in the atmosphere and ocean range in size from thou-

sands of kilometres down to the millimetre scale, with en-

ergy and enstrophy transferred over these scales via complex

non-linear inter-eddy interactions (Kraichnan, 1976). For the

numerical simulation of these flows, it is clearly not possible

to capture all of these interactions by explicitly resolving the

smallest eddies on a computational grid whilst spanning the

entire globe. One therefore resorts to large eddy simulation

(LES), where the large eddies are resolved on a computa-

tional grid, with the interactions between the resolved eddies

and the unresolved subgrid eddies represented by an appro-

priate subgrid turbulence model. If these inter-eddy interac-

tions are not properly represented, then an increase in grid

resolution will not necessarily improve the accuracy, which

leads to resolution-dependent results (Manabe et al., 1979).

This has been a significant problem since the earliest sim-

ulations of weather and climate (Smagorinsky, 1963), and

persists today in even the most sophisticated general circula-

tion models (GCMs) and research codes (Koshyk and Boer,

1995; Shutts, 2005, 2013; Tennant et al., 2011; Morrison and

Hogg, 2013). A reduction of the resolution dependence will

improve the efficiency and accuracy of research and opera-

tional activities that require data generated by GCMs.

The effect that the small unresolved subgrid scales have on

the large resolved scales is typically parameterised by defin-

ing a form of eddy viscosity. In most subgrid models, includ-

ing the most widely celebrated and adopted ones (Smagorin-

sky, 1963; Gent and McWilliams, 1990), physical arguments

are used to justify the form of an eddy viscosity, which is

then tuned to achieve numerical stability and realistic results
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(Griffies et al., 2005). In practice, however, there is a sig-

nificant range of small scales that are excessively damped

(dissipation range) due to the application of heuristic sub-

grid turbulence models, which in turn also affect the large

scales (Frederiksen et al., 2003). Ideally one would prefer

not to have an artificial dissipation range, and develop a sub-

grid model that renders all of the scales of motion accurate.

The subgrid scales also contribute to predictability limita-

tions by injecting noise into the system. It has been shown

that weather and climate models with deterministic subgrid

models have insufficient ensemble spread, a situation that is

improved with the injection of stochastic backscatter (Leith,

1990; Frederiksen and Davies, 1997; O’Kane and Frederik-

sen, 2008; Shutts, 2005; Grooms et al., 2015; Franzke et al.,

2007, 2015; Shutts, 2015).

As in general it is only possible to parameterise the sta-

tistical effects of the subgrid eddies (McComb et al., 2001),

statistical dynamical closure theory is the natural formula-

tion for developing self-consistent subgrid models. In this

approach one attempts to determine the statistical effect that

the unresolved scales of motion have on the resolved eddies.

The foundation studies in this area were the direct interac-

tion approximation (DIA) closure and its variants for ho-

mogeneous turbulence (Kraichnan, 1959; McComb, 1974;

Herring, 1965), and the quasi-diagonal DIA (QDIA) closure

(Frederiksen, 1999, 2012a; O’Kane and Frederiksen, 2004,

2008) for inhomogeneous turbulence. The general QDIA

closure theory accounts for cross-correlations between field

variables (e.g. fields at different vertical levels; or velocity

components) and between physical space fields, but has the

remarkable property that the eddy damping and stochastic

backscatter terms are diagonal in spectral space. The QDIA

subgrid closure terms were calculated for typical barotropic

atmospheric flows in O’Kane and Frederiksen (2008). Broad-

ening the applicability of the QDIA closure, a stochastic

subgrid modelling approach was developed to determine the

eddy viscosities from the statistics of high-resolution bench-

mark simulations (Frederiksen and Kepert, 2006), which is

the approach adopted here.

We use the method of Frederiksen and Kepert (2006) to

develop stochastic subgrid models for global atmospheric

and oceanic flows such that practically all of the resolved

scales of motion can be trusted. In contrast to the vast major-

ity of subgrid modelling studies, the approach adopted here

makes no heuristic assumptions, with the subgrid model co-

efficients calculated self-consistently from the statistics of

high-resolution benchmark simulations. This approach has

been successfully applied to quasi-geostrophic (QG) atmo-

spheric and oceanic simulations with horizontal and vertical

shears (Zidikheri and Frederiksen, 2009, 2010a, b), three-

dimensional wall bounded turbulence (Kitsios et al., 2015),

and global primitive equation simulations of the atmosphere

(Frederiksen et al., 2015). Subgrid models developed from

far simpler barotropic QG models (Frederiksen and Davies,

1997), have previously been shown to improve the simulated

dynamics in GCMs (Frederiksen et al., 2003). Here we adopt

more complex baroclinic QG benchmark simulations of the

atmosphere and ocean, which capture the essential dynam-

ics of barotropic (horizontal shear) and baroclinic (vertical

shear) instability.

Historically subgrid models for the atmosphere and ocean

have been developed in isolation, with the derivation of the

functional forms of the subgrid models often motivated by

very different physical phenomena. Here we provide evi-

dence that the effects of subgrid turbulence in the atmo-

sphere and ocean actually have much in common. When

non-dimensionalised appropriately, subgrid coefficients cal-

culated from atmospheric (Kitsios et al., 2012) and from

oceanic (Kitsios et al., 2013) simulations, show remark-

ably good agreement within the enstrophy cascading iner-

tial range. The justification of this approach stems from the

phenomenological view of turbulence in the atmosphere and

ocean. In both flows the Rossby radius (rR) is the domi-

nant scale at which baroclinic instability injects energy (ve-

locity variance) and enstrophy (vorticity variance) into the

system (Salmon, 1998), where the non-dimensional Rossby

wavenumber is kR ≡ a/rR, with a = 6371 km the radius of

the Earth. In the phenomenological view of QG turbulence,

enstrophy is transferred at a constant rate from wavenum-

ber kR to larger wavenumbers (smaller eddies), whilst en-

ergy is transferred from wavenumber kR back up to the

large-scale (low wavenumber) energy-containing eddies of

wavenumbers less than or equal to kE (Kraichnan, 1976;

Salmon, 1998). The wavenumbers, kR and kE, divide the

scales into three important wavenumber (n) regimes: the

non-self-similar energy-containing range (n≤ kE), the self-

similar inverse energy cascade (kE < n≤ kR), and the self-

similar forward enstrophy cascade (kR < n). In the ocean

kE� kR with all three regimes present. In the atmosphere,

however, kE ≈ kR, which means that the inverse energy cas-

cade is either very short or non-existent, due to the large-

scale forcing. Both wavenumbers, kR and kE, are important

for the scaling of the subgrid coefficients.

Here we present a first systematic comparison of subgrid

models of QG turbulence in the atmosphere and ocean, and

develop simple unifying scaling laws that represent both fluid

media within their enstrophy cascading inertial ranges. A

large set of simulations is analysed, which covers a broad

range of flow parameters, including an order of magnitude

change in the Rossby radius of deformation and the energy-

containing scale. By focussing on the enstrophy cascading

inertial range in both media, the large number of simula-

tions and wide parameter range has enabled the establish-

ment of robust scaling laws. In Sect. 2 we present the numer-

ical details of the benchmark simulations used to generate

the atmospheric and oceanic flows, with these flows char-

acterised in Sect. 3. The process by which subgrid models

are calculated from the reference benchmark simulations is

presented in Sect. 4, with the resulting subgrid coefficients

illustrated in Sect. 5. The coefficients calculated from the
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atmospheric and oceanic simulations are then characterised

into a set of unifying scaling laws representing both fluids in

Sect. 6. These unifying scaling laws govern how the subgrid

coefficients change with resolution and flow strength, thus re-

moving the need to generate the coefficients from benchmark

simulations in the future. The scaling laws presented here are

particularly simple, and are suggestive of robust fundamental

properties of QG turbulence. In Sect. 7, large eddy simula-

tions adopting these scaling laws are shown to reproduce the

statistics of the benchmark simulations across all scales, with

drastic improvements in computational efficiency.

2 Numerical details of the benchmark simulations

The atmospheric and oceanic flows are generated by solv-

ing the two-level QG potential vorticity equation (QGPVE).

The numerical integration of the QGPVE is a computation-

ally efficient means of simulating geophysical flows. It cap-

tures the essential dynamics of baroclinic and barotropic in-

stabilities, and the interaction of coherent structures with in-

homogeneous Rossby wave turbulence (Frederiksen, 1998).

In the present study the vorticity is represented on two dis-

crete vertical levels with j = 1 representing the upper level

and j = 2 the lower level. In the atmospheric simulations the

upper level is at 250 hPa (≈ 10 km), and the lower level at

750 hPa (≈ 2.5 km). For the oceanic simulations the upper

level is at an approximate depth of 200 m, and the lower level

at 600 m. The system is non-dimensionalised by using the ra-

dius of the Earth (a = 6371 km) as a length scale, and the in-

verse of the Earth’s angular velocity (�= 7.292×10−5 s−1)

as a timescale. By default all variables are assumed to be

non-dimensional unless units are specified.

The two-level QG, equations of motion in physical space

are

∂qj

∂t
=− J (ψj ,qj )−B

∂ψj

∂λ
−αj ζ j −D

j

0q
j

+ κj
(
q̃j − qj

)
. (1)

The field variables are functions of time (t), longitude (λ),

and µ= sin(φ), where φ is the latitude. The vorticity at level

j is ζ j , and ψj is the stream function. The reduced poten-

tial vorticity qj ≡ ζ j + (−1)jFL

(
ψ1
−ψ2

)
, where FL is the

layer coupling coefficient, which is inversely proportional to

the temperature difference between the two levels, and is re-

lated to the Rossby radius of deformation by rR = 1/
√

2FL.

In Eq. (1), the coefficient B represents the beta effect, and

J (ψj ,qj ) is the Jacobian. Using standard fluid mechanical

nomenclature, D
j

0 is the bare dissipation operator represent-

ing the unresolved eddy–eddy (or inter-eddy) interactions in

the benchmark simulation (McComb, 1990). The constant αj

parameterises the drag by dampening the large scales of mo-

tion. Simulations are nudged toward a climate q̃j by the con-

stant relaxation parameter κj .

In our study we solve Eq. (1) by spectrally discretising the

field variables in spherical harmonics (Frederiksen, 1998).

This spectral discretisation allows for a clear separation of

the resolved and subgrid scales of motion for the develop-

ment of the subgrid parameterisations. The system solves for

the spectral coefficients of the potential vorticity defined as

q
j
mn = ζ

j
mn− (−1)jFL

(
ζ 1
mn− ζ

2
mn

)
/ [n(n+ 1)] , (2)

for zonal (longitudinal) wavenumber, m, total wavenumber,

n, with latitudinal (meridional) wavenumber n−m. The spec-

tral coefficients of the vorticity are ζ
j
mn =−n(n+ 1)ψ

j
mn,

where ψ
j
mn are the spectral stream-function coefficients. The

evolution of q
j
mn is governed by

∂q
j
mn

∂t
= i

∑
pq

∑
rs

K
mpr
nqs ψ

j
−pqq

j
−rs − iωmnζ

j
mn−α

j (n)ζ
j
mn

−

2∑
l=1

D
j l

0 (m,n)q
l
mn+ κ

j
n

(
q̃
j
mn− q

j
mn

)
, (3)

where q
j
−mn is the complex conjugate of q

j
mn, and K

mpr
nqs are

the interaction coefficients defined in Frederiksen and Kepert

(2006). No topography is represented in the present simula-

tions. The summations immediately after the equals sign in

Eq. (3) are over the triangular wavenumber set

T=
[
p,q,r,s| − T ≤ p ≤ T , |p| ≤ q ≤ T ,

−T ≤ r ≤ T , |r| ≤ s ≤ T ] , (4)

with T the benchmark truncation wavenumber, which is re-

lated to the angular grid spacing in degrees (2) by T =

120/2. The highest resolution atmospheric and oceanic sim-

ulations run for the present study have maximum truncation

wavenumbers of T = 504 and T = 1008, respectively. The

Rossby wave frequency is ωmn =−Bm/[n(n+ 1)], where

B = 2 under the chosen non-dimensionalisation. In the at-

mospheric simulations FL = 2.5× 10−12 m−2, correspond-

ing to a Rossby radius of deformation of rR ≡ 1/
√

2FL =

447 km, and a non-dimensional Rossby wavenumber of kR ≡

rR/a ≈ 14. In the oceanic cases FL ranges from FL = 2.5×

10−10 m−2 (rR = 45 km, kR = 142) to FL = 10−9 m−2 (rR =

22 km, kR = 284).

In Eq. (3), αj (n) is the drag applied at level j . In the at-

mospheric simulations αj (n)= α
j
max for n≤ 15, and zero

otherwise, with α1
max = 2.3× 10−6 s−1 and α2

max = 5.8×

10−7 s−1. For the simulations of the ocean αj (n)= α
j
max[1−

erf(0.1(n− nc))]/2, where erf is the error function, and

nc = 50 is the point at which αj (nc)= α
j
max/2. This func-

tional form allows us to control the location of the energy-

containing wavenumber. We undertake additional oceanic

simulations with alternate values of nc to produce a series

of flows with different background states and with differ-

ing wavenumber ranges of the energy-containing (non-self-

similar) scales (kE).
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All simulations are driven toward a mean state q̃
j
mn that is

purely zonal (̃q
j
mn are zero unless m= 0). They are driven

toward this state by a relaxation parameter of κ
j
n = 10−6 s−1

for m= 0 and n≤ 15, and zero otherwise. For the simu-

lations of the atmosphere q̃
j
mn corresponds to a large-scale

westerly jets centred at 45◦ S and 45◦ N, representing large-

scale jets in the Northern and Southern hemispheres. In the

oceanic simulations q̃
j
mn corresponds to a large-scale west-

erly current centred at 60◦ S of the Southern Hemisphere,

broadly representative of the mean Antarctic Circumpolar

Current.

By definition the bare dissipation, D
j l

0 (m,n), represents

the unresolved eddy–eddy interactions in the benchmark

simulation. It is written in general anisotropic matrix form

(dependent on zonal, m, and total, n, wavenumbers) but in

our simulations it has the isotropic form (dependent only

on n) of D
j l

0 (m,n)= ν
j l

0 (n) n(n+ 1), where ν
j l

0 (n) is the

isotropic bare eddy viscosity given by

ν
j l

0 (n)= δlj ν
jj

0 (T )
( n
T

)ρj0−2

, (5)

and δlj is the Kronecker delta function, which ensures the

off-diagonal elements of ν
j l

0 (n) are zero. Here ν
jj

0 (T ) is the

value of the diagonal elements at truncation and the power

ρ
j

0 determines the steepness of ν
jj

0 (n). This means that the

corresponding bare viscosity and bare dissipation matrices

are diagonal and isotropic. Note in Eq. (5), the wavenumber

ratio n/T is raised to the power of ρ
j

0−2 to be consistent with

the definition of the subgrid eddy viscosities throughout the

document. The slope and magnitude of ν0 is determined by

the scaling laws presented in the paper. An initial study was

first undertaken determine the scaling laws with an estimate

of ν0. The study was then repeated with ν0 defined by the

scaling laws themselves. There was a negligible difference

between the new subgrid coefficients and those obtained in

the initial study.

3 Characterisation of the benchmark flows

In the benchmark atmospheric simulations, the Rossby

radius of deformation rR = 447 km, with an associated

wavenumber of kR = 14. This means 14 eddies of this size

could fit side by side along one line of latitude. The climate

state contains large-scale westerly winds in the mid-latitudes

of the Northern and Southern hemispheres (Kitsios et al.,

2012); see Fig. 1c. Large-scale eddies are produced in both

hemispheres as illustrated by the instantaneous eddy stream

function and wind field in Fig. 1a.

In the initial benchmark oceanic simulation the Rossby ra-

dius is 45 km corresponding to a wavenumber of kR = 142.

The Rossby radius is an order of magnitude smaller in the

ocean compared with the atmosphere. This renders oceanic

simulations computationally more expensive, as a finer grid

is required to explicitly resolve baroclinic instability. The cli-

mate state is illustrated in Fig. 1d, and is broadly represen-

tative of the Antarctic Circumpolar Current (Kitsios et al.,

2013). Figure 1b illustrates that the oceanic flow has eddies in

the mid-latitudes of the Southern Hemisphere that are smaller

in size than those in the atmospheric case, and is consistent

with the former having a smaller Rossby radius.

The strength of the flow field on each level is quantified by

the potential enstrophy flux, and is required for scaling the

magnitude of the eventual subgrid coefficients. The enstro-

phy flux, ηjk(n), is the rate of potential enstrophy transfer

from level k into level j at total wavenumber n. It is defined

as

ηjk(n)=

T∑
l=n

N jk(l), where (6)

N jk(n)= i
∑
m

∑
pq

∑
rs

K
mpr
nqs ψ

j
−pqq

j
−rsq

k
−mn, (7)

is the enstrophy transfer. The latter is calculated by post-

multiplying the non-linear term of the equations of motion

in Eq. (3) by qk−mn, and then summing over zonal wavenum-

ber m. The potential enstrophy flux for the atmospheric and

oceanic simulations are illustrated in Fig. 2a and b.

The wavenumber extent of the large energy-containing

scales is required for scaling the spectral slope of the sub-

grid coefficients. Within the inertial ranges the external forc-

ing and dissipation are negligible, and the transfer of en-

ergy is dominated by non-linear triadic interactions (Salmon,

1998). With no additional damping or excitation within the

self-similar wavenumber regimes, we find that the energy

transferred into the barotropic mode is in balance with that

transferred out of the baroclinic mode. We define kE to

be a wavenumber indicative of the non-self-similar energy-

containing scales. It is quantified by the smallest wavenum-

ber at which the energy transferred into the barotropic mode

is in balance with the energy transferred out of the baroclinic

mode (Kitsios et al., 2013). The kinetic energy transfers in

level space are given by T jk(n)=N jk(n)/[n(n+ 1)]. The

barotropic/baroclinic kinetic energy transfers are given by

T jkB (n), where in matrix form T B = CT CT , with

C=
1

2

 1 1
1

cn
−

1

cn

 , (8)

where cn = 1+2FL/[n(n+1)], and the superscript T denotes

the transpose operation. The index 1 refers to the barotropic

mode, and 2 the baroclinic mode. For example T 12
B (n) refers

to the kinetic energy transferred from the baroclinic mode

into the barotropic mode. The energy transferred into the

barotropic mode is T BT (n)= T 11
B (n)+T 12

B (n), and likewise

the energy transferred into the baroclinic mode is T BC(n)=
T 21
B (n)+ T 22

B (n). To be in balance, T BT (n) must be equal

to −T BC(n). For the atmospheric flow we find kE ≈ 11, and
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Figure 1. Instantaneous fields and climate states of the benchmark simulations. Contours of instantaneous eddy (non-zonal) stream function,

and vectors of instantaneous velocity (wind/current) on the upper level of the (a) atmosphere (Northern and Southern hemisphere), and

(b) ocean (Southern Hemisphere). Climate state illustrated by the time-averaged (c) atmospheric winds and (d) oceanic currents.
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Figure 2. Spectral properties of the benchmark simulations. Poten-

tial enstrophy flux spectra on the upper vertical level (level 1) and

lower level (level 2) for the (a) atmosphere and (b) ocean. Energy

transferred into the barotropic mode (T BT ) and out of the baro-

clinic mode (−T BC ) for the (c) atmosphere, with legend also ap-

plicable to panel (d); and (d) ocean. The energy-containing-scale

wavenumber kE, Rossby wavenumber kR, and benchmark simula-

tion truncation wavenumber T labelled on the n axis.

for the oceanic flow kE = 70, as illustrated in Fig. 2c and d,

respectively.

4 Stochastic subgrid modelling approach

Using a series of the above-discussed simulations, we study

the inter-eddy interactions by removing vortices smaller than

a certain cut-off size, or equivalently larger than a specified

truncation wavenumber (TR). The subgrid tendency is the

component of the rate of change of the resolved large-scale

vortices due to their interactions with the unresolved small

scale vortices. The subgrid parameterisation problem in its

most basic form is the representation of the subgrid tendency

in terms of the resolved field. Here we use the stochastic sub-

grid modelling approach of Frederiksen and Kepert (2006)

to determine such a representation for the subgrid processes.

This approach is outlined below.

The resolution of a LES is lower than the associated

benchmark simulation, and confined to the resolved scale

wavenumber set

R=
[
p,q,r,s| − TR ≤ p ≤ TR, |p| ≤ q ≤ TR,

−TR ≤ r ≤ TR, |r| ≤ s ≤ TR] , (9)

where TR is the LES truncation wavenumber such that TR <

T . The subgrid wavenumber set is defined as S= T−R.

www.nonlin-processes-geophys.net/23/95/2016/ Nonlin. Processes Geophys., 23, 95–105, 2016
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We define the resolved potential vorticity field at a given

wavenumber pair (m,n) by the two-element column vec-

tor q = (q1
mn,q

2
mn)

T . In this vector notation, q t (t)= q
R
t (t)+

qS
t (t), where q t is the tendency (time derivative) of q. The

tendency of the resolved scales is qR
t , where all triadic in-

teractions involve wavenumbers less than TR. The remain-

ing subgrid tendency qS
t has at least one wavenumber greater

than TR, which is involved in the triadic interactions. One can

further decompose qS
t such that qS

t (t)= f + q̂
S
t (t), where q̂S

t

is the fluctuating component representing the eddy–eddy in-

teractions, and f ≡ 〈qS
t 〉 is the ensemble-averaged subgrid

tendency representing the sum of the eddy–mean-field and

mean-field–mean-field interactions.

The QDIA closure provides the theoretical justification for

modelling the subgrid tendency for a particular wavenumber

pair as a function of the resolved fields at only that same

wavenumber pair (Frederiksen, 2012a). We can then model

the fluctuating subgrid tendency at each wavenumber pair,

q̂S
t , by the stochastic equation

q̂S
t (t)=−Dd q̂(t)+ f̂ (t), (10)

where Dd is the subgrid drain dissipation matrix, q̂ is the

fluctuating component of q, and f̂ is a random forcing vec-

tor. As the present simulations have two vertical levels, Dd is

a time-independent 2× 2 matrix, and f̂ is a time-dependent

two-element column vector. An estimate of Dd is then found

through the generalisation of the Gauss theorem (Frederiksen

and Kepert, 2006). Both sides of Eq. (10) are post-multiplied

by q̂†(t0), integrated over the turbulent decorrelation period

τ , ensemble averaged to minimise the contribution from f̂ ,

and then rearranged to produce

Dd =−

〈t0+τ∫
t0

q̂S
t (σ )̂q

†(t0)dσ

〉〈t0+τ∫
t0

q̂(σ )̂q†(t0)dσ

〉−1

, (11)

where † denotes the Hermitian conjugate for vectors and ma-

trices. The angled brackets denote ensemble averaging, with

each ensemble member determined by shifting t0 forward by

one time step. The decorrelation time τ , is chosen sufficiently

large to capture the memory effects of the turbulence (Kitsios

et al., 2012). The model for f̂ is then determined by calculat-

ing the matrix Fb = Fb+F
†
b, where Fb = 〈f̂ (t )̂q

†(t)〉. Post-

multiplying both sides of Eq. (10) by q̂†(t), and adding the

conjugate transpose of Eq. (10) pre-multiplied by q̂(t) yields

the Lyapunov equation〈̂
qS
t (t )̂q

†(t)
〉
+

〈̂
q(t )̂q

S†
t (t)

〉
=−Dd

〈̂
q(t )̂q†(t)

〉
−

〈̂
q(t )̂q†(t)

〉
D

†
d+Fb. (12)

Given that Dd has been determined, Fb can now be calcu-

lated. There is a balancing act between the linear (Dd) and

stochastic (Fb) components of the subgrid model. As Dd

is dependent upon τ , it is τ that defines this balance. For

the implementation of parameterisation, it is sufficient to as-

sume that f̂ can be represented as the white noise process

〈f̂ (t) f̂
†
(t ′)〉 =Fbδ(t − t

′), with an eigenvalue decompo-

sition of Fb used to produce a stochastic model for f̂ , as

detailed in Zidikheri and Frederiksen (2009).

Backscatter is the physical process by which kinetic en-

ergy is transferred from small to large scales. The subgrid

model in Eq. (10) represents this process in its fundamen-

tal stochastic form. One can also, however, represent the

subgrid interactions using the simplified deterministic form

q̂S
t (t)=−Dnetq̂(t), where Dnet is the net dissipation repre-

senting the net effect of the drain and backscatter (Frederik-

sen and Kepert, 2006). The backscatter and net linear opera-

tors are defined by

Db =−Fb

〈̂
q(t) q̂†(t)

〉−1

and (13)

Dnet = Dd+Db =−

〈̂
qS
t (t )̂q

†(t)
〉 〈̂
q(t )̂q†(t)

〉−1

, (14)

respectively (Frederiksen and Kepert, 2006). In the present

document the subgrid coefficients are presented in eddy vis-

cosity form, where the drain, backscatter, and net eddy vis-

cosities are related to their respective dissipations by νd ≡

Dd/[n(n+ 1)], νb ≡ Db/[n(n+ 1)], and νnet ≡ Dnet/[n(n+

1)], where n(n+ 1) is the discrete form of the Laplacian.

5 Structure of the eddy viscosities

For the atmosphere the subgrid model coefficients are pre-

sented at a truncation of TR = 126, capturing vortices down

to a radius of 50 km in the mid-latitudes. These eddies are

significantly smaller than the Rossby radius (447 km), which

means the energy injected into the system via baroclinic in-

stability is explicitly resolved. In Fig. 3a the upper diago-

nal element of the drain eddy viscosity is divided by the

kinematic viscosity of air (10−5 m2 s−1), and represented by

the height of the contour surface. The coloured surface de-

picts the kinetic energy of the fluctuating scales at the up-

per level. In this figure the eddy viscosity is 1010 times

greater than the molecular viscosity, indicating that the inter-

eddy interactions are far more important than the inter-

molecular ones. The drain also increases strongly with the

total wavenumber (n), has only a weak dependence upon the

zonal wavenumber (m) at a given n, and is hence approxi-

mately isotropic. The kinetic energy is also largely isotropic,

concentrated at the largest scales (lowest wavenumbers), and

decreases rapidly as the structures get smaller (wavenumbers

get larger). The form and magnitude of the lower diagonal

element of the drain eddy viscosity matrix are very similar

to those of the upper diagonal element, with the off-diagonal

elements negligible in comparison. Since the drain eddy vis-

cosity matrix is essentially diagonal, the positive coefficients

illustrated in Fig. 3a indicate that energy (and enstrophy)

is being sent from the resolved to the subgrid eddies. The
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Figure 3. Real component of the upper diagonal subgrid eddy viscosities. Anisotropic drain eddy viscosity at TR = 126 for the (a) atmo-

sphere, divided by the kinematic viscosity of air (10−5 m2 s−1); and (b) ocean, divided by the kinematic viscosity of sea water (10−6 m2 s−1).

Coloured surfaces depict kinetic energy of the fluctuations at the upper level, and the black lines are the isotropised (m-averaged) drain coef-

ficients. Isotropic drain, backscatter, and net eddy viscosities labelled by TR for the (c) atmosphere and (d) ocean; with Rossby wavenumber

(kR) and energy-containing wavenumber (kE) labelled on the horizontal axes.

backscatter has a similar form to the drain, but is negative

and approximately half the magnitude.

We now consider the drain eddy viscosity in the ocean at

the same resolution of TR = 126, again capturing vortices of

radius 50 km. Here, the energy injection via baroclinic insta-

bility is not explicitly resolved as the Rossby radius is 45 km.

The upper diagonal-drain eddy viscosity component is di-

vided by the kinematic viscosity of sea water (10−6 m2 s−1)

and plotted in Fig. 3b. It again illustrates that the influence

of the inter-eddy interactions is 1010 times greater than the

inter-molecular ones. The eddy viscosity is strongly depen-

dent upon both zonal (m) and total (n) wavenumbers, and

is hence anisotropic. For certain low wavenumbers (large

scales) the drain is negative, which is required to further

deterministically excite the flow as the injection of energy

via barotropic and baroclinic instabilities is not explicitly re-

solved. The coloured surface depicts the upper level kinetic

energy, illustrating that it is also highly anisotropic and dis-

tributed across all scales. The lower diagonal matrix element

has similar properties to the upper diagonal. The off-diagonal

elements are proportionally larger in this case, indicating that

the removal of the small scales modifies the interactions be-

tween the vertical levels – refer to Kitsios et al. (2013) for

illustrations of the off-diagonal elements. Jansen and Held

(2014) developed heuristic general purpose oceanic subgrid

models for this regime that also have negative viscosity. For

oceanic simulations at the higher resolution of TR = 252, in

which baroclinic instability is explicitly resolved, the eddy

viscosities have similar properties to the atmospheric case,

with matrices diagonally dominant and largely isotropic (Kit-

sios et al., 2013).

The self-similarity of the eddy viscosities is most clearly

illustrated by the isotropised (averaged over zonal wavenum-

ber m) profiles. For various truncations levels (TR), the up-

per diagonal element of the isotropised drain and backscatter

eddy viscosities is illustrated in Fig. 3c for the atmospheric

flow, and in Fig. 3d for the ocean. We also show the net

eddy viscosity, given by the sum of the drain and backscat-

ter. As the resolution increases the magnitude of all of the

eddy viscosities decrease. This means that as more eddies

are being explicitly resolved, the enstrophy (and energy) is

being transferred to fewer subgrid eddies. For cases that re-

solve baroclinic instability, the subgrid parameterisation rep-

resents the energy flow to the resolved scales as being com-

pletely stochastic with only the backscatter eddy viscosity

negative. The positive values of the net eddy viscosity in-

dicate that the net effect of the drain and backscatter pro-

cesses is such that energy is sent out of the system. When

baroclinic instability is not resolved the energy flow to the

resolved scales is modelled as having a deterministic com-
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ponent with the drain and net eddy viscosities negative for

certain low wavenumbers. The eddy viscosity coefficients

with significant magnitude are concentrated within the last

70 wavenumbers for the ocean and the last 11 wavenum-

bers for the atmosphere. These wavenumber ranges coincide

with kE – the wavenumber to which the large non-self-similar

energy-containing scales extend.

6 Unifying scaling laws

We have calculated the subgrid parameterisation coefficients

(eddy viscosities) for the atmosphere and ocean at various

resolutions (TR). We now develop scaling laws representing

how these eddy viscosities change with resolution and flow

strength, for truncations made within the enstrophy cascad-

ing inertial range (kR < TR). For the diagonal element of the

drain eddy viscosity associated with level j , the maximum

magnitude (ν
jj

d (TR)) and spectral slope (ρ
j

d ) are quantified

by least squares fitting the isotropised eddy viscosity profiles

(ν
jj

d (n)) to the function

ν
jj

d (n)= ν
jj

d (TR)

(
n

TR

)ρjd−2

. (15)

There is an analogous expression for the isotropised

backscatter eddy viscosity (ν
jj

b (n)). The scaling laws gov-

ern how the magnitudes and slopes change with truncation

wavenumber and flow strength. Oceanic benchmark simu-

lations were also undertaken, with the Rossby wavenumber

(kR) varying from 142 to 284, and the energy-containing

wavenumber (kE) varying from 40 to 70. This coupled with

the atmospheric results (kR = 14, kE = 11), means that we

have results spanning almost an order of magnitude in both

the Rossby and energy-containing wavenumbers.

First, we present the power exponents of the drain eddy

viscosities (ρ
j

d ), which represent how steeply the drain of en-

strophy out of the system increases with resolved wavenum-

ber (or equivalently as the size of the resolved eddies de-

crease). It is the extent of the energy-containing scales (kE)

that defines how far non-linear interactions can span in

wavenumber space (Kraichnan, 1976), which effectively sets

the size of the largest eddy that can interact with the sub-

grid scales. This wavenumber distance is inversely propor-

tional to the power exponents, and is represented by the span

of wavenumbers over which the eddy viscosity profiles are

non-zero in Fig. 3c and d. In Fig. 4a, we therefore plot the

drain power exponent against the truncation wavenumber

(TR) non-dimensionalised by kE. A strong relationship ex-

ists for all of the atmospheric and oceanic flows, with the

drain exponent increasing with TR. The spectral slope has to

increase with resolution to ensure that the range of signifi-

cant subgrid interactions (quantified by the eddy viscosity) is

confined to the last kE wavenumbers before truncation. The

scaling law for ρ
j

d is determined by the illustrated regres-
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Figure 4. Scaling of the isotropic eddy viscosities. Slope of the

(a) drain eddy viscosity ρ
j
d

, and (b) backscatter eddy viscosity ρ
j
b

.

Magnitude of the (c) drain eddy viscosity ν
jj
d
(TR), and (d) nega-

tive backscatter eddy viscosity −ν
jj
b
(TR). The dashed lines in pan-

els (b) and (d) represent the drain scaling laws to serve as a di-

rect comparison to the backscatter scaling laws represented by the

solid lines. The symbols correspond to the various cases as follows:

red diamond, kR = 142, kE = 70; blue circle, kR = 284, kE = 70;

green square, kR = 142, kE ∈ (40,50,60); magenta upward point-

ing triangle, kR ∈ (201,246), kE = 70; orange downward pointing

triangle, kR = 14, kE = 11 (atmosphere). Filled symbols represent

j = 1 and hollow symbols j = 2.

sion line. A similar relationship is observed for the power

exponents of the backscatter eddy viscosities (ρ
j

b ) in Fig. 4b,

with the dashed line illustrating the scaling law for the drain

to serve as a direct comparison. Note the backscatter power

exponents are larger and also increase with resolution more

quickly than the drain exponents. To put these results into

context, a power exponent of 2 represents a Laplacian dissi-

pation, or equivalently an eddy viscosity that does not depend

on wavenumber.

Scaling laws for the maximum values are again non-

dimensionalised using the energy-containing wavenumber,

and additionally a timescale based on the potential enstrophy

flux (Leith, 1971). The potential enstrophy flux is the rate at

which potential enstrophy is transferred from one wavenum-

ber to the next (Salmon, 1998). We calculate the flux and find

that for both flow cases it is constant for eddies smaller than

the energy-containing scale, as illustrated in Fig. 2c and d.

The constant flux value at level j is denoted by η
jj
I . To span

all cases of different kR and kE, we find that the eddy viscosi-

ties need also to be scaled by
√
kR/kE. With this normalisa-

tion, the magnitude of the drain and backscatter are plotted

in Fig. 4c and d, respectively. The magnitude of all eddy vis-
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Table 1. Equivalent powers of the Laplacian for the subgrid net eddy viscosity of atmospheric and oceanic simulations at various angular

grid spacings (2). The equivalent truncation wavenumber is TR = 120/2. The energy-containing scale for the atmospheric and oceanic

simulations are kE = 11 and kE = 70, respectively. The drain profiles (νd(n)) are calculated from TR/kE using Eq. (15) and the scaling laws

in Fig. 4, and likewise for the backscatter (νb(n)), with the net νnet(n)= νd(n)+ νb(n). The spectral slope of νnet(n) is determined, divided

by 2, and rounded to the nearest integer to approximate the effective power of the Laplacian operator.

2 1◦ 1
2
◦ 1

4
◦ 1

6
◦ 1

8
◦

TR = 120/2 120 240 480 720 960

Atmosphere kE = 11

TR/kE 10.9 21.8 43.6 65.5 87.3

Power of Laplacian 13 22 38 52 65

Ocean kE = 70

TR/kE 1.7 3.4 6.9 10.3 13.7

Power of Laplacian 0 (constant) 1 (Laplacian) 2 (biharmonic) 3 4

cosities is inversely proportional to TR, which means that if

the resolution doubles the eddy viscosity halves.

These scaling laws allow us to determine the drain and

backscatter terms at the desired resolution (TR), given that

we have estimates of the Rossby wavenumber, energy-

containing wavenumber, and enstrophy fluxes. These terms

can then be used to model the subgrid interactions in sim-

ulations of the climate. Whilst the scaling laws were de-

veloped from baroclinic QG simulations, they agree with

the subgrid coefficients determined from the truncation of

barotropic (Frederiksen and Kepert, 2006) and more com-

plex atmospheric multi-level primitive equation simulations

(Frederiksen et al., 2015). This indicates that the scaling laws

can be applied more broadly. As previously mentioned, sub-

grid models developed from simpler barotropic QG mod-

els (Frederiksen and Davies, 1997), have been shown to im-

prove the simulated dynamics in GCMs (Frederiksen et al.,

2003). As most GCMs run with deterministic subgrid mod-

els, in Table 1 we list the effective spectral slope of the

net eddy viscosity at various resolutions (TR) for typical

atmospheric (kE = 11) and oceanic (kE = 70) flows. For a

given TR/kE, the drain profile (νd(n)) is calculated using

Eq. (15) and the scaling laws in Fig. 4, and likewise for

the backscatter (νb(n)), with the net eddy viscosity given by

νnet(n)= νd(n)+νb(n). The spectral slope of νnet(n) is then

calculated, divided by 2, and rounded to the nearest integer

to approximate the effective power of the Laplacian. For a

given resolution, atmospheric simulations are far more scale

selective than oceanic ones, because the extent of the energy-

containing scales (kE) is significantly less in the atmosphere

than in the ocean.

7 Large eddy simulation

We now determine if LES with subgrid models defined by the

eddy viscosities presented above, can replicate the statistics

of the higher-resolution benchmark simulations. The equa-

tion governing the LES is equivalent to that of the benchmark

simulation in Eq. (3), with the addition of the term(
qS
t

)j
mn
=−n(n+ 1)

2∑
l=1

ν
j l

d (m,n)q̂
l
mn+ f̂

j
mn+ f

j

mn (16)

added to the right-hand side, and solved over the wavenum-

ber set R instead of T. A stochastic model for f̂ is built from

an eigenvalue decomposition of Fb (Zidikheri and Frederik-

sen, 2009). In the deterministic form, the stochastic force

f̂ is removed and νd is replaced with νnet. In the isotropic

cases, the matrices νd, νnet, and νb are averaged over the

zonal wavenumbers m so that they are only functions of the

total wavenumbers n.

We compare the benchmark simulation results to LES

comprising of both stochastic and deterministic subgrid mod-

els, with the model coefficients in their original anisotropic

form (as in Fig. 3a), in their isotropised form (as in Fig. 3c),

and also defined by the associated scaling laws. Compar-

isons are made across all scales of motion on the basis of the

time-averaged zonal (m) wavenumber-summed kinetic en-

ergy spectra. The upper level spectra of the benchmark sim-

ulations (black dashed line) are compared to that of the LES

(red solid line) labelled by the associated subgrid parame-

terisation variant in Fig. 5. The top pair of spectra represent

the true energy level, with the other pairs of spectra shifted

down for clarity. Findings pertaining to the upper level are

consistent with those for the lower level.

The atmospheric benchmark simulation of maximum

wavenumber T = 504 is compared to LES with TR = 63

in Fig. 5a. The stochastic and deterministic variants with

anisotropic-, isotropic-, and scaling-law-defined coefficients

all reproduce the kinetic energy of the benchmark simulation

across all scales of motion. As the resolution is reduced in

both horizontal directions, the number of degrees of freedom

is reduced by (T 2
− T 2

R )/T
2
= (5122

− 632)/5122
= 98 %.

This reduced resolution also allows us to decrease the time

step proportionally, which means the computational cost of

the simulation is reduced by a factor T 3/T 3
R = 5123/633

=

537. The oceanic benchmark simulation of T = 504 is com-
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Figure 5. Scale by scale comparison of the benchmark simulation (dashed line) to the LES variants (red solid line). Kinetic energy spectra

at the upper level of the (a) atmosphere and (b) ocean. The top pair of spectra exhibit the true energy, with subsequent pairs shifted down

for clarity. Spectra are labelled with the associated subgrid parameterisation of anisotropic stochastic (AS), anisotropic deterministic (AD),

isotropic stochastic (IS), isotropic deterministic (ID), scaling law stochastic (LS), or scaling law deterministic (LD). The truncation (TR),

Rossby (kR) and energy-containing (kE) wavenumbers are labelled on the horizontal axis.

pared to LES with TR = 252 in Fig. 5b. Again all LES vari-

ants replicate the statistics of the benchmark simulation. This

represents a 75 % reduction in the degrees of freedom, a

decrease in computational cost by a factor of 67. In sum-

mary for both the atmosphere and ocean, the idealised scal-

ing law form of the eddy viscosities is an excellent represen-

tation of the subgrid interactions within the enstrophy cas-

cade. We have also developed scaling laws applicable to the

ocean within the inverse energy cascade (kE < n < kR), as

discussed in Kitsios et al. (2013).

8 Conclusions

A general stochastic modelling approach (Frederiksen and

Kepert, 2006) has been used to determine eddy viscosity

matrices that parameterise the interactions between fields at

different vertical levels and horizontal scales in the atmo-

sphere and ocean. Additionally when truncations are made

within the enstrophy cascading inertial range the subgrid pa-

rameterisation coefficients are represented by a set of unify-

ing scaling laws. The laws govern how the form and mag-

nitude of both the atmospheric and oceanic eddy viscosi-

ties change with flow strength and grid resolution. We have

demonstrated that simulations adopting these scaling laws

produce resolution-independent statistics across all scales of

motion. This means no additional resolution need be wasted

in order to account for the presence of an artificial dissipa-

tion range, which drastically improves the computational ef-

ficiency of the simulations.

The scaling laws developed here can be implemented di-

rectly into spectral simulations, and are expected to improve

the efficiency and accuracy of numerical weather and cli-

mate simulations (Frederiksen et al., 2003, 2015). There are

also two possible approaches to implement these scaling laws

into grid point codes. The simplest approach is to apply the

subgrid model directly in grid-point space via a Laplacian

operator of the appropriate power, as outlined in Table 1.

More generally it is also possible to employ grid to spectral

transforms, where the subgrid model is calculated in spectral

space, and then applied in physical space.

Finally, the stochastic modelling approach adopted here

is not confined to fluid mechanics but can also be used to

represent non-linear interactions in any classical multi-scale

dynamical system (Frederiksen, 2012b).
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