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Abstract. Studies using climate models and observed trends
indicate that extreme weather has changed and may con-
tinue to change in the future. The potential impact of extreme
events such as heat waves or droughts depends not only on
their number of occurrences but also on “how these extremes
occur”, i.e., the interplay and succession of the events. These
quantities are quite unexplored, for past changes as well as
for future changes and call for sophisticated methods of anal-
ysis. To address this issue, we use Markov chains for the
analysis of the dynamics and succession of multivariate or
compound extreme events. We apply the method to observa-
tional data (1951–2010) and an ensemble of regional climate
simulations for central Europe (1971–2000, 2021–2050) for
two types of compound extremes, heavy precipitation and
cold in winter and hot and dry days in summer. We identify
three regions in Europe, which turned out to be likely sus-
ceptible to a future change in the succession of heavy precip-
itation and cold in winter, including a region in southwestern
France, northern Germany and in Russia around Moscow. A
change in the succession of hot and dry days in summer can
be expected for regions in Spain and Bulgaria. The suscep-
tibility to a dynamic change of hot and dry extremes in the
Russian region will probably decrease.

1 Introduction

Multivariate extreme events (in this paper used in the sense
of extremes of two or more climate variables occurring si-
multaneously) are likely to impact society greater than their

univariate counterparts. For agriculture for example, the im-
pact of a heat wave and a drought occurring at the same time
is higher than for a univariate extreme where the other vari-
able is in a normal state. These multivariate or so-called com-
pound events (IPCC, 2012) have received more and more
attention in the scientific literature over the past years al-
though still not to the extent of extremes of only one vari-
able. Methods to analyze them include simple threshold
analysis, multivariate distribution functions using copulas
(e.g., Schölzel and Friederichs, 2008; Durante and Salvadori,
2010), Bayesian approaches (e.g., Tebaldi and Sansó, 2009)
or indices that are derived from multiple variables (e.g., the
wildfire index KBDI, e.g., Keetch and Byram, 1968, or the
revised CEI, Gallant et al., 2014). Furthermore, methods of
multivariate extreme models have been used for the geo-
statistical analysis of spatially distributed extremes (Neves,
2015). All these methods focus mostly on the linear climate
change signal – the absolute change in the number of oc-
currences or the calculation of return periods. The succes-
sion, i.e., the temporal ordering of the compound events, is
in most cases not the main objective. For instance, the IPCC
(IPCC, 2012) states: “A changing climate leads to changes
in the frequency, intensity, spatial extent, duration, and tim-
ing of extreme weather and climate events, and can result in
unprecedented extreme weather and climate events”. What is
implicitly addressed with “duration and timing”, but not ex-
plicitly stated is the succession of extreme events, which is
quite unknown for past as well as future extremes.

The method proposed here, which is based on Markov
chains, concentrates on the dynamical behavior or succes-
sion of these compound extreme events and studies an aspect
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of climate change, which has not received much attention up
to now, but is nevertheless important. We investigate a be-
havior of extremes, which cannot be determined by simply
analyzing the changes in the number of extremes. We can,
for example, reveal changes in the entropy of the succession
of compound extremes, which are connected to the chaotic
behavior of the climate variable. Thus, an observed increase
of this measure could be connected with an increase in the
chaotic, intermittent or irregular nature of the system. On the
other hand, a decrease of entropy corresponds to a slowdown
of these dynamics. Knowledge about such developments for
future climate, which rarely exists, could be important for
many sectors, e.g., agriculture, economy and society.

Previous studies on model dynamics have concentrated
more on overall dynamical behavior, such as (Steinhaeuser
and Tsonis, 2014), who conducted a model intercomparison
study focusing on dynamical aspects based on a climate net-
works framework. The method introduced in this paper is
inspired by the work of (Mieruch et al., 2010). The idea is
to understand climate time series as trajectories on a com-
plex, possibly strange attractor (Lorenz, 1963). We partition
the time series or state space into a finite number of states.
This yields a coarse-grained description of the system, which
can then be analyzed in the framework of symbolic dynam-
ics (Ebeling et al., 1998; Daw et al., 2003). We apply a
Markov chain analysis on these symbolic sequences repre-
senting compound extremes, and characterize their dynami-
cal or successional behavior using a small set of descriptors.

In this paper we study two different kinds of compound
extreme events that are likely to have an impact on society,
namely, cold and heavy precipitation in winter, and heat and
drought in summer. The Markov method is applied to E-OBS
observational data (1951–2010) (Haylock et al., 2008), and
an ensemble of regional climate simulations with the regional
climate model COSMO-CLM (COnsortium for Small scale
MOdelling model – in CLimate Mode) driven by different
global climate model data and ERA-40 reanalysis (Uppala
et al., 2005). The time periods considered are the recent past
(1971–2000) and the near future (2021–2050).

We identify regions in Europe, where the dynamical be-
havior of the analyzed compound extremes is prone to
change. These findings highlight that it is not only the (sim-
ple) linear increase of the occurrence of extremes (due to an
increase in mean and variability), which is a challenge for
adaption and mitigation. In addition to these changes, the re-
gions also have to struggle with changes in the succession
of compound extremes (defined as relative to a new normal
state with changed mean and variability).

The strategy of this study is first to show that the Markov
method is able to extract different dynamics of compound
extremes for different regions in Europe, based on observa-
tional data and model data. Thus, on the one hand we see that
the method yields meaningful information and on the other
hand we show that the climate models are able to reproduce
these dynamics in the frame of acceptable uncertainties. Ad-

ditionally, we extract temporal change signals of the dynam-
ics of compound extremes based on observations between the
periods 1951–1980 and 1981–2010. This information is new
and if used as supplementary information to other analyses,
could lead to a better understanding of changes of extremes
in Europe. For this paper, the magnitude of the observed past
changes have been assessed, because it is important for a bet-
ter interpretation and classification of future changes, which
are calculated by using the simulated regional climate model
data. A comparison of the change signals between 1971–
2000 and 2021–2050 to the observed past changes shows that
they are of the same order of magnitude.

The paper is divided into the following sections. In Sect. 2,
data and method will be introduced, followed by a sensitiv-
ity analysis of the method with respect to spatial and tem-
poral variability as well as the error of estimation using FT
(Fourier transform) surrogates in Sect. 3. A validation of the
model ensemble is shown in Sect. 4. The change signal is
analyzed in Sect. 5. A summary and outlook will be given
in Sect. 6 and some areas discussed where the application of
this method might be of value.

2 Data and methods

2.1 Regional climate ensemble

For our analysis, we use a 12-member ensemble of regional
climate simulations for central Europe at a resolution of
50 km. The ensemble has been generated by downscaling
different global climate model outputs with the regional cli-
mate model COSMO-CLM (hereafter referred to as CCLM;
Doms and Schättler, 2002; Rockel et al., 2008). The CCLM
is a non-hydrostatic climate model coupled to the soil veg-
etation model TERRA (Schrodin and Heise, 2002) and is
the climate version of the numerical weather model of the
German weather service. Data from six different global cli-
mate models (GCMs) have been used as initial and bound-
ary data. Two of the GCMs have used the emission sce-
nario A1B (Nakicenovic and Swart, 2000) as external forc-
ing: CCCma3 (Scinocca et al., 2008) and three realizations of
ECHAM5 (Roeckner et al., 2003). The other four, ECHAM6
(Stevens et al., 2013), CNRM-CM5 (Voldoire et al., 2013),
HadGM3 (Collins et al., 2011) and EC-EARTH (Hazeleger
et al., 2010) have used the emission scenario RCP8.5 (Riahi
et al., 2011; Van Vuuren et al., 2011). Additionally the Atmo-
spheric Forcing Shifting method (Sasse and Schädler, 2014)
was applied to the ECHAM6 data. For this method the global
climate data interpolated to the 50 km grid are shifted by two
grid points in all cardinal directions before being used as
boundary data. This accounts for the uncertainty in position-
ing of synoptic systems when interpolating the GCM data
to the required resolution for forcing the RCM (regional cli-
mate model) simulations. As all five ECHAM6-driven simu-
lations obtained this way exhibit a high correlation, they are
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all weighed with a factor of one-fifth when calculating the
mean. All other models receive a factor of 1, which leads to
an effective ensemble size of eight. Additionally we use a
COSMO-CLM run driven by ERA-40 (Uppala et al., 2005)
boundary conditions. The ERA-40 reanalysis boundary con-
ditions are assumed to be close to the “true” observed state.
Nevertheless, they depend on, inter alia, the model, obser-
vational data and assimilation technique, and are not free
from biases (see e.g., Hagemann et al., 2005; Simmons et al.,
2004).

The simulation time periods are the recent past (1971–
2000) and the near future (2021–2050). An analysis of the
temperature trends of different ensemble members showed
that the distribution of trend depends more strongly on the
chosen global climate model than on the emission scenario.
We therefore combine simulations with boundary data from
GCMs with different emission scenarios to set up our ensem-
ble.

We choose six regions, each comprising 6× 6 grid points
for our analysis. The regions are chosen based on the PRU-
DENCE regions (Christensen and Christensen, 2007), which
could not be used because of the necessity of the same
amount of grid points for each area, and due to test results
that show a different behavior for these regions. We inves-
tigate 30-year periods of daily data; thus, each time series
consists of ≈ 11 000 data points, yielding ≈ 36× 11 000≈
400 000 points in time for each region and ensemble mem-
ber. The model domain and the six investigation areas, which
are located in Spain, France, Germany, Scandinavia, Bulgaria
and Russia, are shown in Fig. 1. These roughly match the
PRUDENCE regions, which are not applicable for the analy-
sis since equal sized areas are a requirement for comparison
among regions.

2.2 Observational data

For the comparison of our regional climate ensemble with
observations, we use temperature and precipitation data from
the gridded E-OBS data set (Haylock et al., 2008). This data
set was produced as part of the ENSEMBLES project by
interpolating station data from the ECA&D station data set
(European Climate Assessment; Klok and Klein Tank, 2009)
to a 25 km grid. The station density is highest in Switzer-
land, the Netherlands and Ireland and rather low in Spain
and the Balkans, which leads to an over-smoothing in these
areas. This especially affects extremes and has to be taken
into account when validating our ensemble against E-OBS
data. Furthermore it should be noted that a comparison of
E-OBS and another gridded data set, namely, Hyras (Rauthe
et al., 2013) (only central Europe), with respect to the dynam-
ical behavior that we analyze in this paper, revealed differ-
ences between the two data sets (Sedlmeier, 2015). A com-
parison of dynamical aspects of different observational data
sets yields an interesting application of the method, which,
however, will not be addressed within this paper. We addi-

Figure 1. E-OBS descriptors for the reference period (1971–2000).
Left side: descriptors for cold and wet extremes in winter (DJF)
(Ta< 10th percentile and Pa> 75th percentile). Right side: descrip-
tors for hot and dry extremes in summer (JJA) (Ta> 90th per-
centile and EDI< 25th percentile). Descriptors were calculated for
a moving window over nine grid points and values assigned to the
center grid point (see text). Boxes show the PRUDENCE regions
(http://ensemblesrt3.dmi.dk/quicklook/regions.html).

Table 1. ECA&D station data.

Station (station number)

1 Bamberg (40)
2 Hamburg Fuhlsbütte (47)
3 Hohenpeißenberg (48)
4 Potsdam (54)
5 Hamburg Botanischer Garten (4180)
6 Hamburg St. Pauli (4184)
7 Hamburg Wandsbek (4186)
8 Quickborn Kurzer Kamp (4536)

tionally use blended temperature and precipitation time se-
ries starting from 1900 of eight stations (all in Germany) of
the ECA&D data set for a sensitivity analysis described in
Sect. 3. The eight stations are listed in Table 1.

2.3 Compound extremes with Markov chain
descriptors

The method used in this paper consists of describing tem-
perature and precipitation time series by a Markov chain and
subsequently calculating descriptors, which characterize the
dynamical (successional) behavior of the compound extreme
states. The method has been used in biology (Hill et al., 2004)
to describe dynamics of succession of species in a rocky sub-
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tidal community. It has been introduced to atmospheric sci-
ence by (Mieruch et al., 2010), who used it for climate clas-
sification and a comparative study of two regions. In this sec-
tion, a short introduction to Markov chains is given, followed
by a step by step description of the method.

A first-order, m state (m is the number of discrete states
of the Markov chain), homogeneous Markov chain is a time
discrete, state discrete stochastic process, which fulfills the
Markov property:

P (xt |xt−1,xt−2, . . .,xt−n)= P (xt |xt−1) , (1)

meaning that the present state xt is only dependent on
the preceding state xt−1. From the Markov chain, a transi-
tion probability matrix P of the order m×m can be calcu-
lated, which consists of all possible conditional probabili-
ties P (xt |xt−1) between them different states of the Markov
chain. For a homogeneous (≡ stationary) Markov chain, the
transition probability matrix is time independent. A station-
ary distribution π is a vector that fulfills the following equa-
tion

π = Pπ . (2)

To test for homogeneity one must solve the eigenvalue prob-
lem of Eq. (2) to calculate the stationary distribution π . If
this is identical to the empirical distribution

π̂j =
nj∑
jnj

(3)

the time series is considered stationary. The entries (transi-
tion probabilities) of the transition matrix P are estimated by

p̂ij =
nij∑
inij

. (4)

In the following, the main steps of the Markov analysis are
explained:

a. Partitioning and combining of univariate time series to
a multivariate symbolic sequence
To represent the univariate time series (here daily mean
temperature anomalies and daily precipitation anoma-
lies) by a Markov chain, each time series is partitioned
into a symbolic sequence of extreme and non-extreme
regimes. These univariate symbolic sequences are then
combined into a multivariate symbolic sequence ofm=
2v different states (v number of variables). In this paper,
v = 2; thus, there are four possible states.

b. Calculation of the transition probability matrix
From the 2v-state Markov chain, a transition probability
matrix P of dimension 2v × 2v can be calculated. Two
conditions have to be met when calculating the descrip-
tors. No entry of the transition probability matrix should
be equal to zero and the time series needs to be station-
ary for the transition probability matrix to be time inde-
pendent (see Eqs. 2, 3).

c. Calculation of the descriptors
Following Mieruch et al. (2010), we focus on only three
of the descriptors mentioned in Hill et al. (2004): per-
sistence, recurrence time and entropy. These descriptors
can be estimated for single states of the symbolic se-
quence or for the whole system. As the focus of this
work lies on the compound extreme state, only the
single-state definition of the descriptors is considered.

- Persistence:

Pj = p̂jj . (5)

The persistence gives the probability that the sys-
tem will stay in an extreme state in the following
time step if it resides in an extreme state at the cur-
rent time step. The limits are 0 (the system will
never stay in the extreme state) and 1 (the system
will always stay in the extreme state). Regarding
the succession of the compound extremes, the per-
sistence tells us how long the extremes last.

- Recurrence time:

Rj =
1− π̂j(

1− p̂jj
)
π̂j
. (6)

The recurrence time describes the number of days
the system needs to get back to the extreme state.
The limits are 0 (the system never leaves the state,
corresponding to a persistence of 1) and∞ (the sys-
tem never comes back to the extreme state). The re-
currence time is connected to the persistence. If the
persistence increases, the recurrence time will also
increase and vice versa, except if a change in the
number of states π̂j occurs. Thus, it is important
to include the absolute number of the states for the
interpretation of the results.

- Entropy:

H
(
pj
)
=−

∑
i

p̂ij log p̂ij/ log
(

1
m

)
. (7)

According to Shannon (1948), the entropy is an in-
verse measure of the predictability of the Markov
chain. Its limits are 0 (deterministic system) and 1
(random system). The dynamics of complex chaotic
systems lie in between these limits; thus, the en-
tropy can give a hint to underlying complex dy-
namics like deterministic chaos, which is not possi-
ble with standard linear methods. To really test for
deterministic chaos other methods, based on state
space reconstruction (estimating the correlation di-
mension, Lyapunov exponents, etc.) to find strange
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attractors, are more suitable. Thus, in the sense of
successive compound extremes a change in entropy
tells us if the succession of extreme states gets more
chaotic or more regular.

d. Data pre-processing
In order to extract the information on successive com-
pound extremes, we have to remove linearities (e.g.,
trends) and cycles, which would bias the results. Thus,
we remove the external solar forcing by subtracting the
mean annual cycle. A long-term trend is removed by a
linear regression. Although, e.g., the temperature trend
due to the anthropogenic CO2 emissions is removed
from the data, we hypothesize that all changes in the
succession of extremes are linked to the CO2 increase.
The reason for this is that the CO2 forcing is the only
difference between the model runs for the periods 1971–
2001 and 2021–2050.

We use percentiles to partition our data sets, and keep
the number of univariate extreme events the same for
different time periods and regions as well as for all en-
semble members. By this, the results can be compared
among each other, differences are only due to different
dynamical behavior. For partitioning dry days, we did
not use precipitation anomalies but the effective drought
index (EDI). The EDI (see Sect. 2.4) is related to soil
moisture and is therefore a much better measure for de-
scribing dry extremes than precipitation itself, since all
percentiles below the percentage of dry days will lead
to the same partitions.

In order to get a better feeling for the descriptors and un-
derstand how they relate with each other, we will do a small
thought experiment. We take a Markov chain consisting of a
time series of 1000 symbols of which 10 % are extreme, the
rest are normal. In this case a persistence of 0.5 would mean
that in half of the 100 extreme cases, the next case is also
extreme, there are 50 transitions from the extreme state to
the extreme state. The maximum episode length in this case
is thus 51 extreme states in a row (with all others randomly
distributed). The recurrence time and entropy are inversely
related to how these 50 extreme transitions are ordered. Re-
currence time depends on the number of episodes (fewer
episodes lead to a larger recurrence time, more episodes to
a shorter recurrence time) and entropy additionally on the
mean episode length. In this paper, we also look at changes
in the descriptors. A change in persistence of 0.05 in the
above case would mean five more extreme–extreme transi-
tions per 1000 days, and an increase from 50/100 to 55/100
(extreme–extreme transitions/extreme–normal transitions) is
surely a noticeable change. The range of actually probable
values of the descriptors is smaller than the whole possible
range. A persistence of 0.99 for example, would mean that
there is only one extreme episode in the whole time period,
all 100 extreme states occur after each other. In a climate

system, this is unlikely to happen. Thus, for climate one can-
not expect to observe a change of the daily persistence from,
e.g., 0.5 to 0.8, because such a change would be catastrophic.

2.4 Effective drought index: EDI

The EDI is an index for detecting drought conditions by cal-
culating daily deviations of precipitation from a climatologi-
cal mean state. It was proposed by Byun and Wilhite (1999).
An important concept of the EDI is the use of effective pre-
cipitation (EP), rather than precipitation (P ) itself. EP de-
scribes the depletion of water sources by a weighted summa-
tion over the 365 days preceding a given day (d):

EPd =
365∑
n=1

(∑n
m=1Pd−m

n

)
. (8)

By this, the memory effect of the soil is taken into account.
Therefore, EP strongly correlates with soil moisture and the
EDI is thus a good measure when considering droughts. Us-
ing the EP, the EDI is calculated by the following formula for
a given d:

EDId =
EPd −EPd,rm
σ
(
EP−EP

)
d

, (9)

where EPd,rm is the climatological mean corresponding to
a given d calculated as the 30-year average over a 5-day-
running mean (rm= 5). By subtracting this climatological
mean of EP from the daily value, the yearly cycle is removed
from the EDI time series.

2.5 The Markov descriptors for two compound
extremes

To calculated the Markov descriptors, we first calculated
temperature and precipitation anomalies using the mean an-
nual cycle of the respective time period and ensemble mem-
ber/observation. We calculate the Markovian descriptors for
two types of extremes:

– cold and heavy precipitation (temperature anomaly
(T )< 10th percentile and precipitation anomaly
(P )> 75th percentile) in winter (DJF)

– heat and drought (P > 90th percentile and EDI< 25th
percentile) in summer (JJA)

and for the six regions shown in Fig. 1. As an example,
we show how we constructed the Markov chain for the
cold/heavy precipitation extreme at a single grid point. First
we identify temperature values below the 10th percentile Tl,t
and above Th,t (t is the time index). Similarly we identify
low and high precipitation values Pl,t and Ph,t . Subsequently,
we combine these symbols and find the following possible
states: (Tl,t , Pl,t ), (Tl,t , Ph,t ), (Th,t , Pl,t ) and (Th,t , Ph,t ). Now
we can rename these states to, e.g., Sl,l,t , Sl,h,t , Sh,l,t and
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Sh,h,t and then a Markov chain could look like Sl,h,1, Sl,l,2,
Sl,l,3, Sh,h,4, Sh,h,5, Sh,h,6, Sh,l,7, . . .,Sh,h,N , where N is the
total number of data points. From such a sequence we cal-
culate the transition probability matrix and from this, the de-
scriptors.

3 Sensitivity analysis

Before applying the method to the observational data and the
model ensemble, we tested the applicability of the method by
several sensitivity tests using the above-defined descriptors.
Therefore, we consider the gridded E-OBS data and addi-
tionally ECA&D station data.

3.1 Spatial variability

In order to test the spatial variability of the descriptors, we
calculated them for the entire E-OBS data set for the time
period 1971–2000 for the two types of extremes mentioned
above.

The descriptors were calculated for each grid point, taking
into account not only this grid point but also the eight neigh-
boring grid points thus using a moving window if nine grid
points. The time series for each grid point were detrended
and partitioned separately before the nine partitioned time
series were merged to calculate the descriptors. The reason
for using this moving window of nine grid points is the ful-
fillment of the criteria of the Markov method (see Sect. 2.3),
which is not given for the entire area when using only sin-
gle grid points. Using this moving window does not alter the
general spatial pattern and smoothness of the results.

For both type of extremes, the descriptors show smooth
spatial patterns (see Fig. 2); nevertheless, variations between
different regions can be identified.

The persistence for the winter extremes (left side of Fig. 2)
is lower than for summer extremes; specifically, in northern
and central Europe compound cold and wet events are most
likely events of a short duration and rather rare (with recur-
rence times of up to 400 days). Along the Mediterranean
coast and southeastern Europe, the values are higher and
probabilities of residing in a compound extreme state of over
50 % are observed. The recurrence time for these events is
also comparatively low (around 100 days). Interpreting the
results, one has to keep in mind that we are always referring
to relative compound extremes. The entropy is around 0.9 for
most of the area with small regions showing lower entropies
down to 0.5. These high values can be explained by the low
persistence – as compound winter extremes are grouped in
very short episodes (low persistence), they are very hard to
predict. The highest persistence for summer events (right side
of Fig. 2) are observed in Scandinavia and the eastern part
of the E-OBS domain and lowest in central Europe and the
northern coast of Spain. The persistence is above 50 % for
the whole domain, which means that the probability of the

Figure 2. Elevation of the CCLM 50 km model domain [m]. Boxes
mark the six investigation areas – 1: Spain (black), 2: France (red),
3: Germany (green), 4: Scandinavia (blue), 5: Russia (cyan) and
6: Bulgaria (magenta).

system residing in a compound extreme state is high and
these events are grouped in episodes of long duration. The
recurrence time lies between 40 and 100 days and is as such
also lower than that for compound winter events. The lowest
values are observed in the Balkan region. The entropy lies
between 0.4 and 0.65, which means that the extreme events
are not so easy to predict, especially for parts of central Eu-
rope where the entropy is the highest. However, according
to our definitions, summer extremes can better be predicted
than winter extremes.

For the main analysis in this paper we apply the method
to six regions, which we chose in rough agreement with the
PRUDENCE regions. The crucial point for being able to
compare the descriptors of different regions is that each re-
gion contains the same amount of grid/data points. Since the
descriptors do not vary strongly within the PRUDENCE re-
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gions, we chose regions consisting of 6× 6 grid points from
within these widely used regions. The regions that will be
analyzed in the further sections of this paper are shown in
Fig. 1.

Note that the results shown in Fig. 2 can only be qualita-
tively compared to those of the regions considered later or the
station data in the next section as the number of grid points
(or stations) contributing to the analysis differs.

3.2 Temporal variability

To assess the temporal variability of the descriptors, we cal-
culated the descriptors for 30-year moving windows of ob-
servational station data from the ECA&D station data set
(Klein Tank et al., 2002). Since we are interested in the daily
values of temperature and precipitation, only stations were
chosen with a continuous daily record (with an allowance
of 50 missing values at most). Using these criteria there are
eight stations with temperature and precipitation time series
from 1900 to 2015 of which all are in Germany (see Table 1).
One station has 15 missing values for temperature. These
days were excluded from the analysis, considering the 30-
year time windows consisting of 10 950 days, this amounts
to roughly 0.1 % of the values and does not alter the value of
the descriptors. Of these eight stations, five are in the vicin-
ity of Hamburg and have the same values for the first 17–
22 years. The records of two stations in Hamburg are identi-
cal throughout the whole time period; therefore, only one of
them is included in the analysis, which leaves a total of seven
stations.

The descriptors were again calculated for both types of
compound events. Linear temperature trends were removed
separately for each of the 30-year time windows and in or-
der to fulfill the criteria of the Markov method (stationarity
and non-zero entries of the transition probability matrix; see
Sect. 2.3), the partitioned data of these seven stations were
combined to one time series to calculate the descriptors.

The results are shown in Fig. 3 for both winter (black)
and summer (gray) extremes. Especially for the persistence
and recurrence time, a clear shift is visible between 1930
and 1950. This time range is not preindustrial, but the cru-
cial point is that the observed shift coincides with an ob-
served shift in the global increase in CO2 around 1950 (see,
e.g., IPCC, 2014, Fig. SPM.1d). From this finding we ob-
serve two main points:

1. The descriptors (especially persistence and recurrence
time) seem to be sensitive to changes of the CO2
increase. That means a stronger increase of CO2
(e.g., from 1950 on) yields a lower level of persis-
tence and to a higher level of recurrence time. Al-
though CO2 is still increasing after 1950, the recurrence
time, e.g., remains constant. Hence, the recurrence time
seems not to be dependent on the absolute CO2 concen-
tration, but on the increase of latter.

Figure 3. Descriptors for ECA&D station data for running windows
over 30 years (values are assigned to the first year of the 30-year
time period) from 1900 to 2015. Black curve: cold and wet extremes
in winter (DJF) (Ta< 10th percentile and Pa> 75th percentile).
Gray lines: hot and dry extremes in summer (JJA) (Ta> 90th per-
centile and EDI< 25th percentile).

2. Thus, we can conclude that the natural variability of the
descriptors can be approximated by the variability ob-
served before and after the shift. This natural variability
is smaller than the shift of the mean.

Concluding, due to the non-availability of preindustrial data
we could not really test the natural variability of the descrip-
tors in preindustrial times. But we could show that the ap-
proximate natural variability (before and after the shift in
1950) is smaller than the shift, which is probably due to
the change in CO2 increase. Just for a rough estimation: the
mean level shift of the persistence for winter extremes is
about 50 % (from 0.2 to 0.1) and for the recurrence time it is
about 20 % (from 180 to 140 days). Regarding our results of
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Table 2. Estimation of the error of the descriptors by using MIAAFT surrogates for winter and summer extremes. The values were calculated
using the E-OBS data set for the reference period (1971–2000). In parentheses the percentage of the error with respect to the value of the
E-OBS descriptors for the same time period and region are given.

DJF JJA

P R E P R E

Reg1 0.010 (7.9 %) 1.701 (2.1 %) 0.004 (0.5 %) 0.007 (1.2 %) 1.183 (1.8 %) 0.009 (1.6 %)
Reg2 0.011 (8.2 %) 2.182 (1.5 %) 0.010 (1.0 %) 0.010 (1.7 %) 2.055 (3.5 %) 0.010 (1.7 %)
Reg3 0.010 (7.9 %) 2.563 (1.5 %) 0.005 (0.6 %) 0.009 (1.6 %) 0.923 (1.4 %) 0.007 (1.1 %)
Reg4 0.008 (12.3 %) 1.150 (1.0 %) 0.005 (0.6 %) 0.008 (1.3 %) 0.990 (1.8 %) 0.011 (1.9 %)
Reg5 0.010 (3.9 %) 2.450 (1.0 %) 0.010 (2.2 %) 0.008 (1.3 %) 1.103 (1.7 %) 0.009 (1.5 %)
Reg6 0.007 (1.8 %) 0.797 (1.4 %) 0.004 (0.4 %) 0.009 (1.6 %) 1.150 (2.0 %) 0.009 (1.7 %)

P : persistence, R: recurrence time, E: entropy.

changes of the descriptors (1971–2000 vs. 2021–2050) pre-
sented below (see Sect. 6), we find changes of the persistence
larger than 50 % and changes of the recurrence time larger
than 20 %. We additionally perform significance tests on our
results, which show that these changes are indeed significant,
excluding natural variability as the source for the observed
changes.

3.3 Error of estimation using Fourier transform (FT)
surrogates

To assess the estimation error of the descriptors we used the
Multivariate Iterated Amplitude Adjusted Fourier Transform
(MIAAFT) algorithm as described by Venema et al. (2006)
and Schreiber and Schmitz (2000). With this algorithm, the
data are shuffled and thus the original distribution is pre-
served. In addition, the auto- and cross-correlation of the
temperature and precipitation time series are approximately
preserved. We constructed 100 MIAAFT surrogates for the
temperature and precipitation anomalies (or the EDI time se-
ries for summer events, respectively) for the E-OBS data set
for the reference period (1971–2000). We then estimated the
standard deviation of the descriptors calculated from these
surrogate time series. It is important to note that this stan-
dard deviation, under the framework of such a bootstrap test,
already represents the standard error of the mean, which cor-
responds to the normal standard deviation divided by

√
N .

The errors for both types of extremes and the six regions are
listed in Table 2. The errors do not vary much between the
different extremes and regions, the error of the persistence
is on the order of 0.01 or lower, for the recurrence time be-
tween 1 and 2.6 and the error of the entropy on the order of
0.005. Adopting these errors to the values of the E-OBS de-
scriptors for the reference period (shown in Figs. 4 and 5 in
Sect. 4), the error of the persistence is about 2–10 %, for the
recurrence time about 2 % and for the entropy about 1–2 %
(cf. Table 2).

This estimation error is much smaller than the ensemble
uncertainty and can approximately be neglected. This shows

that the estimation of the descriptors is robust. Further, we
will consider the E-OBS data approximately as truth and we
will use the ensemble uncertainty as the error for our main
analysis.

4 Markovian descriptors for the reference period
1971–2000

Figure 4 shows the descriptors for cold extremes and heavy
precipitation in winter from 1971 to 2000. As for all box
plots in this chapter, the boxes show the 25th and 75th quan-
tile of the ensemble (interquartile range) and the whiskers
the minimum and maximum value of the ensemble. The col-
ored line marks the ensemble median and the gray line the
ensemble mean. Crosses mark the descriptors of the obser-
vations. The observed persistence for the different regions
lies between 0.06 and 0.37. This means that the system does
not stay in this extreme state for a very long time, the low-
est observed persistence is in region 4 (Scandinavia), where
extreme–extreme transitions are very rare. The recurrence
times vary strongly between the regions, the values are be-
tween 64 and 314 days. Regions 1 and 6 (Spain and Bulgaria)
show the lowest recurrence times. In region 6 (Bulgaria) the
compound cold and wet episodes have the longest duration
and occur with the highest frequency. The entropy of the ob-
servations lies between 0.86 in region 3 (Germany) and 0.96
in region 1 (Spain), and between 0.74 in region 3 (Germany)
and 0.98 in region 1 (Spain) for the CCLM ensemble. Thus,
the deduced entropy (both, observations and model) covers a
rather small portion of the range of theoretically possible val-
ues from 0 to 1. As mentioned in Sect. 2.3 the range in which
we actually expect the values of the descriptors is smaller.
Therefore, when comparing the descriptors, the values have
to be interpreted relative to the regions. One must be careful,
however, because the descriptors do not permit to draw any
conclusions about the absolute predictability of the states as
long as the total numbers of states are not considered.
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Figure 4. Descriptors for cold and wet extremes in winter (DJF) (Ta< 10th percentile and Pa> 75th percentile) in the reference period 1971–
2000 for the six investigation areas. Box plots of the CCLM ensemble: box is the ensemble median and interquartile range and whiskers
are ensemble minimum/maximum; gray bars: ensemble mean; triangles: reanalysis-driven CCLM runs; crosses: E-OBS observations. The
coloring corresponds to the regions in Fig. 1.

Figure 5. Descriptors for hot and dry extremes in summer (JJA) (Ta> 90th percentile and EDI< 25th percentile) in the reference period
1971–2000 for the six investigation areas. Box plots of the CCLM ensemble: box is the ensemble median and interquartile range and whiskers
are ensemble minimum/maximum; gray bars: ensemble mean; triangles: reanalysis-driven CCLM runs; crosses: E-OBS observations. The
coloring corresponds to the regions in Fig. 1.

Focusing on the descriptors for the CCLM ensemble (box
plots and gray bars in Fig. 4), we can see that with this
method we are able to detect significant differences in dy-
namical behavior between some of the regions. In compari-
son to the descriptors of the observations (crosses in Fig. 4),
the ensemble is able to capture the differences between the
regions fairly well except for the persistence in region 5,
where the ensemble shows a much lower persistence and the
recurrence time of region 4 (Scandinavia), which is lower for
the observations. However, these are regions where the den-
sity of station data underlying the E-OBS data set is not very
high and the E-OBS results may not be as reliable. The high-
est persistence is again in region 6 (Bulgaria), which also
shows the lowest recurrence time and therefore has compar-
atively long events that occur more frequently than in other
areas. The triangles mark the descriptors of the reanalysis-
driven simulations. They fit well for some regions, for others
they are farther away from the observations than the CCLM-
ensemble.

Figure 5 shows the descriptors for hot and dry extremes
in summer. Crosses again mark the descriptors of the obser-
vations. Persistence and recurrence time are higher, entropy
is lower for hot and dry summer extremes than for cold and
wet extremes in winter. A direct comparison can be made be-
cause the extreme were partitioned such that the number of
univariate extremes is the same for hot and dry extremes and
cold and wet extremes. This might partly be due to the lower
variability of EDI compared to precipitation anomalies but
one would also expect the dynamical behavior of these ex-
tremes to be different. By our definition, hot and dry episodes
in summer are longer and not as frequent as cold and wet ex-
tremes in winter. The highest persistence is in regions 4 and 5
(Scandinavia and Russia), the lowest in region 3 (Germany).
The entropy lies between 0.53 and 0.60 and is the highest in
region 2 (France) and the lowest in region 6 (Bulgaria). The
values are lower than for the cold and wet extremes, the win-
ter compound extreme state exhibits more complex dynam-
ics and is harder to predict (caution: this is also influenced
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Figure 6. Change signal of descriptors for E-OBS observations: cold and wet extremes in winter (DJF) (Ta< 10th percentile and Pa> 75th
percentile). Changes between the time periods 1951–1980 and 1981–2010. Percentages denote the relative change. The coloring corresponds
to the regions in Fig. 1.

by the total number of extremes). The CCLM ensemble (box
plots) again captures the tendencies of the observed descrip-
tors fairly well but shows a large spread and differences be-
tween the regions are mostly not significant for persistence
and recurrence time. The ERA-40-driven CCLM simulations
(triangles in Fig. 5) again fit well to the observations for some
regions and show very different behavior for others.

For both types of compound extremes the ensemble mean
and median seem to be able to capture the differences be-
tween regions shown by observations although not always
in absolute numbers. An interesting result is that reanalysis-
driven CCLM data are sometimes farther away from the ob-
servational descriptors than the model data, especially for
the cold and wet extremes in winter. This leads to the ques-
tion whether the dynamical behavior of the driving GCM is
greatly altered by the RCM downscaling or errors in both
models compensate during the downscaling process. A fur-
ther cause of this deviation of the ERA-40-driven simula-
tions could be a misrepresentation of the dynamics by the
reanalysis data set. A follow up study comparing dynamical
behavior of both RCM and GCMs is planned for the future.
Additionally, it would be interesting to also compare differ-
ent reanalysis data sets using this method as there have been
studies showing differences in their variability (e.g., Hage-
mann et al., 2005).

5 Climate change signal of the Markovian descriptors

5.1 Change signal within the reference period

In order to get an idea about the order of magnitude of the
change signal, the observational E-OBS data set was split
into two equal parts of 30 years, 1951–1980 and 1981–2010.
The descriptors were calculated for both time periods and a
change signal derived.

For cold and wet extremes (see Fig. 6) all regions ex-
cept France show a decrease in persistence, regions 5 and 6
(Russia and Balkan) show the strongest absolute decrease
(≈ 0.15) and Germany the highest relative decrease of−72 %
(relative changes are shown above the respective bars). The
recurrence time does not change much for all regions except
region 5 (Russia) where it decreases by 150 days. In this re-
gion, compound cold and wet extremes occurred more fre-
quently but were of shorter duration in 1981–2010. The en-
tropy shows a decrease of more than 5 % in Spain and Ger-
many where the system becomes more regular. In Spain an
increase of entropy is observed and the compound extremes
are harder to predict in 1981–2010 with respect to 1951–
1980. The change signal for all descriptors and seasons (ex-
cept for the entropy of France and Russia) are greater than
the estimated error by FT-surrogates (see Table 2); thus, these
changes are robust.

Changes for hot and dry extremes in summer (see Fig. 7)
are below 10 % for most regions. Nevertheless for most re-
gions these changes are still greater than the estimated errors
by FT surrogates (see Table 2). In Scandinavia, both per-
sistence and recurrence time show a decrease, the extreme
episodes are of shorter duration but occur more often. In
Spain and Germany, both descriptors show an increase – es-
pecially in recurrence time; thus, episodes of compound ex-
tremes occur less frequently. An increase in recurrence time
can also be seen in Russia. The entropy increases in regions
3–6 (Germany, Scandinavia, Russia and Balkan), in these re-
gions the system becomes less regular with respect to com-
pound hot and dry events and harder to predict, whereas in
Spain the Entropy shows a decrease – these compound events
are easier to predict.
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Figure 7. Change signal of descriptors for E-OBS observations: hot and dry extremes in summer (JJA) (Ta> 90th percentile and EDI< 25th
percentile). Changes between the time periods 1951–1980 and 1981–2010. Percentages denote the relative change. The coloring corresponds
to the regions in Fig. 1.

Figure 8. Number of compound cold and wet extremes in winter
(DJF) (Ta< 10th percentile and Pa> 75th percentile), 1971–2000
(light colors) and 2021–2050 (dark colors), ensemble mean. The
coloring corresponds to the regions in Fig. 1.

5.2 Projected changes in the near future

In a second step we calculate the change signal between
1971–2000 and 2021–2050 for all members of the CCLM-
ensemble. An additional information of interest for the inter-
pretation of the results is the change in the number of com-
pound extreme days. The number of univariate extreme days
are kept constant when partitioning the data (see Sect. 2.3)
but the combination can change. The climate change signal
is calculated separately for each ensemble member and then
the mean climate change signal (bar in the following plots)
as well as the interquartile range (marked by the whiskers)
of the individual change signals are calculated and pictured.
The number of compound cold and wet extreme days in-
creases in all regions except region 5 (Russia) between the
two time periods 1971–2000 and 2021–2050 and the num-
ber of compound extreme days differs between the regions.

Regions 1 and 6 (Spain and Bulgaria) show the highest num-
ber of compound extreme events (see Fig. 8). The ensem-
ble mean values of the descriptors for cold and wet extremes
in winter are shown in Fig. 9, whiskers give the interquar-
tile range. The significance of the change signal was cal-
culated using the nonparametric Mann–Whitney–Wilcoxon
test, which tests for a difference in location of the values of
the ensemble for the two different time periods. The p val-
ues are shown below the bars in the respective figures. About
one-third of these p values are smaller than 0.5, thus sig-
nificant at the 5 % significance level; e.g., region 5 (Rus-
sia) shows a significant change signal for the persistence and
some changes are significant at the 10 or 20 % significance
level (p value ≤ 0.1 or ≤ 0.2). Nevertheless, we follow (von
Storch and Zwiers, 2013), who question hypotheses testing
on future climate ensembles and instead propose to better use
“a simple descriptive approach for characterizing the infor-
mation in an ensemble of scenarios”. Being conscious about
the difficulties, which may arise during hypotheses testing,
we look at the ensemble spread in the form of the interquar-
tile range to assess the robustness of the results, and consult
the significance test to support our findings. In many cases,
the majority of ensemble members show a change signal in
the same direction and the change signal is of a similar order
of magnitude as the observed past changes in the preceding
section (Figs. 6, 7). In addition, a comparison to the results
of the error estimation using FT-surrogate time series (Ta-
ble 2) yields that the changes are higher than the estimated
error. Therefore, we conclude that future changes of the suc-
cession of cold and wet extremes in winter in some regions
in Europe can be expected. These changes are, for the signif-
icant cases, larger than 50 % for the persistence, larger than
20 % for the recurrence time and larger than 5 % for the en-
tropy. Regarding the findings from our sensitivity analysis
(Sect. 3.2) such changes are larger than the natural variability
of the descriptors, which hence can be ruled out as the cause.
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Figure 9. Climate change signal of descriptors for cold and wet extremes in winter (DJF) (Ta< 10th percentile and Pa> 75th percentile).
Changes between the time periods 1971–2000 and 2021–2050. Bars show the ensemble mean (of the individual change signals) and whiskers
the 75th and 25th quantile, respectively. Percentages above the bars denote the relative change of the ensemble mean, the numbers below the
p value. The coloring corresponds to the regions in Fig. 1.

Figure 10. Number of compound hot and dry extremes in summer
(JJA) (Ta< 90th percentile and EDI< 25th percentile), 1971–2000
(light colors) and 2021–2050 (dark colors), ensemble mean. The
coloring corresponds to the regions in Fig. 1.

Further, the sensitivity study has shown that such changes in
the past occurred concurrently with a strong increase in CO2
emissions. As explained in Sect. 2.3, the only difference be-
tween the model runs for the periods 1971–2001 and 2021–
2050 is the CO2 forcing; thus, the most probable reason for
these changes in the future is the increase in CO2 emissions.

Figure 9 reveals three regions that seem to be particularly
susceptible to changes of the dynamics/succession, namely,
regions 2 (France), 3 (Germany) and 5 (Russia). The per-
sistence changes for all regions and cold and wet episodes
are likely to be of longer duration in the future. In regions 2
and 3 (France and Germany) the recurrence time decreases.
The consequences of these changes are that these regions will
probably experience more and longer cold and wet events
in winter. Furthermore, these are less predictable (increase
of entropy). The situation is different for region 5 (Russia),

here the duration of cold and wet periods probably increases
as well, but the number of events stays constant. Thus, the
system resides for longer times in the non-extreme states (in-
crease in recurrence time).

The change in the number of compound hot and dry ex-
treme days is depicted in Fig. 10. Here, the number of com-
pound extreme days varies with the region (although the
number of univariate extremes are kept the same). Region 1
(Spain) shows a relatively low number of compound hot and
dry days (note: all extremes in this paper are relative), re-
gions 5 and 6 (Russia and Bulgaria) have a high number and
also the highest decrease between the two time periods. Ex-
cept for region 3 (Germany), which shows a slight increase,
the number of compound extremes decreases in all regions.
However, the change is generally small, < 10 %. Thus, the
observed changes of the descriptors can mostly be attributed
to the change in the dynamics and not to a change in the
numbers of events, except maybe for regions 4 and 5 (Rus-
sia and Bulgaria). The change signal of the descriptors is
pictured in Fig. 11. Two regions are most probably suscep-
tible to changes in the dynamics of the hot and dry state,
namely, regions 1 (Spain) and 6 (Bulgaria). Region 1 shows
a small increase in persistence and a quite strong increase
in recurrence time (on the order of 20 %) of the hot and dry
state, the entropy does not change. The hot and dry periods
get longer but less frequent. Regarding again the sensitivity
study (Sect. 3.2) it can be seen that a change of 20 % of the
recurrence time in summer (JJA) is at least twice as large as
the variability of the recurrence time (about 10 %) from 1900
to 2015 and constitutes a fairly large jump. The situation for
region 6 is similar to that of region 1, with an increase in per-
sistence and recurrence time and only a very small change in
entropy. In addition, region 3 (Germany) shows an increase
in persistence and a decrease in entropy. This means the
episodes will be longer and more regular, whereas in region 5
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Figure 11. Climate change signal of descriptors for hot and dry extremes in summer (JJA) (Ta> 90th percentile and EDI< 25th percentile).
Changes between the time periods 1971–2000 and 2021–2050. Bars show the ensemble mean (of the individual change signals) and whiskers
the 75th and 25th quantile, respectively. Percentages above the bars denote the relative change of the ensemble mean, the numbers below the
p value. The coloring corresponds to the regions in Fig. 1.

(Russia) the persistence slightly decreases and the recurrence
time increases. This implies changes towards shorter and less
frequent events.

6 Conclusions and outlook

The changing climate leads to a change in extreme weather,
which comprises several aspects such as frequency, duration
or intensity. On top of these rather linear changes, modifica-
tions of the complex succession of extremes can be expected.
However, information on the succession or dynamical behav-
ior of climate extremes is rare. Therefore, to extract such
information from climate time series we applied a Markov
chain analysis on compound extremes, namely, cold and wet
in winter and hot and dry in summer. We have shown that our
climate model ensemble is able to reproduce past dynamics
of compound extremes fairly well within acceptable uncer-
tainties. Thus, we have reasonable confidence in the future
simulations of this model ensemble. We identified three re-
gions in Europe, which are probably susceptible to a future
change in the succession and dynamical behavior of cold and
wet extremes in winter. In region 5 (Russia) we detected an
increase of the persistence and recurrence time, which means
that the probability of staying in the cold and wet state from
one day to the next will increase, but the system will take
longer to approach this state again. In regions 2 (France) and
3 (Germany), cold and wet episodes become both longer and
more frequent. The entropy in these regions also increases in
the future, which is counterintuitive, because one would ex-
pect that an increase in persistence is related to a decrease
in entropy (cf. Eqs. 5 and 7). However, since the entropy
(Eq. 7) does not only consider the compound extreme state
but also transitions from this state to the normal state and uni-
variate extreme states, complex interactions can be extracted
with the entropy. The impacts of these calculated changes

are beyond the scope of this study, and it can only be spec-
ulated about possible effects. One could imagine that longer
and less predictable cold and wet periods could lead to larger
snow chaos regarding traffic and other human life, especially
in regions that already experience extreme cold temperatures
in winter. Again, these findings suggest that a reordering of
the succession of compound extremes could be happening on
top of the observed linear changes, as, e.g., the temperature
increase.

For hot and dry states in summer, the Markov method iden-
tified two regions where changes are probable, Spain and
Bulgaria. The persistence and recurrence time in regions 1
and 6 (Spain and Bulgaria) both increase in the future, which
means that the system resides longer in the extreme state.
The entropy does not change significantly. Any reordering
of the succession of extremes has an impact. For instance
such changes could be harmful for the local agriculture, be-
cause, as explained above, these dynamic changes would oc-
cur on top of the known linear increase of, e.g., temperatures.
Interestingly, in region 6 (Bulgaria) the absolute number of
compound hot and dry extremes (Fig. 10) decreases in the
future, but the extreme periods become longer. The changes
for region 3 (Russia) are small but indicate that the region
in Russia near Moscow will be less susceptible to dynam-
ical changes of the succession of compound extremes and
will additionally experience fewer compound extremes in the
near future.

A number of studies have shown an influence of atmo-
spheric drivers (mostly NAO, North Atlantic Oscillation) and
atmospheric blocking patterns on summer as well as win-
ter temperature extremes and generally the temperature vari-
ability in Europe (e.g., Photiadou et al., 2014; Sillmann and
Croci-Maspoli, 2009). Although the extremes analyzed in
these studies were mostly of absolute nature, an analysis of
the influence of the same factors on the relative extremes
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studied in this paper would be very interesting. Using a simi-
lar methodology as described in this paper to calculated per-
sistence, recurrence and entropy of time series of, e.g., the
NAO index in a certain regime could be linked to the de-
scriptors of the compound extreme events.

Areas to apply this method are manifold. Besides the anal-
ysis of different dynamical behavior varying on the region
and extreme considered, it can be used as a model validation
tool. As extremes and especially compound extremes are an
important quantity that we want to assess with climate model
data, it is necessary for the models to capture the dynamical
behavior of these extreme events. As shown in this paper,
the models can also project changes of the future dynamical
behavior, which is an interesting supplementary information
to changes in mean and variability. An example where this
could be useful is the decision whether to apply simple or
more sophisticated bias correction techniques.

Follow up studies using simulations of other regional
climate models and regional climate ensembles for time
periods further in the future (e.g., ENSEMBLES, http:
//ensembles-eu.metoffice.com/, or CORDEX, http://www.
euro-cordex.net/, data for the end of the century) would be
interesting. For one, this would allow for an analysis of
whether or not there are significant differences depending on
the regional climate model used. In addition, data for the end
of the 21st century are available where changes in the de-
scriptors could possibly be larger because the influence of the
CO2 forcing plays a more important role. In this sense, the
Markov chain analysis could be useful to identify possible
future regime shifts (Scheffer and Carpenter, 2003; Scheffer
et al., 2009). Of further interest is an analysis of the dynam-
ical behavior of the driving GCMs as well as the ERA-40
reanalysis data set since for parts the ERA-40-driven CCLM
model runs performed worse in comparison to observations
than the CCLM ensemble. This leads to the question whether
or not the CCLM model runs compensate for errors in the
driving GCMs and are right for the wrong reasons. Compar-
ison of the E-OBS data set to other regionally defined data
sets would also be helpful to evaluate the observational data.

7 Data availability

The underlying model data have been produced in the context
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erally publicly available. We obtained special permission to
use the data for our publication. However, if for some reason
data are externally required, it should be possible to obtain
them by contacting the authors.
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