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Abstract. To study the imprints of the solar–ENSO–
geomagnetic activity on the Indian subcontinent, we have ap-
plied singular spectral analysis (SSA) and wavelet analysis to
the tree-ring temperature variability record from the Western
Himalayas. Other data used in the present study are the so-
lar sunspot number (SSN), geomagnetic indices (aa index),
and the Southern Oscillation Index (SOI) for the common
time period of 1876–2000. Both SSA and wavelet spectral
analyses reveal the presence of 5–7-year short-term ENSO
variations and the 11-year solar cycle, indicating the possi-
ble combined influences of solar–geomagnetic activities and
ENSO on the Indian temperature. Another prominent signal
corresponding to 33-year periodicity in the tree-ring record
suggests the Sun-temperature variability link probably in-
duced by changes in the basic state of the Earth’s atmosphere.
In order to complement the above findings, we performed
a wavelet analysis of SSA reconstructed time series, which
agrees well with our earlier results and increases the signal-
to-noise ratio, thereby showing the strong influence of solar–
geomagnetic activity and ENSO throughout the entire pe-
riod. The solar flares are considered responsible for causing
the atmospheric circulation patterns. The net effect of solar–
geomagnetic processes on the temperature record might sug-
gest counteracting influences on shorter (about 5–6-year) and
longer (about 11–12-year) timescales. The present analyses
suggest that the influence of solar activities on the Indian
temperature variability operates in part indirectly through
coupling of ENSO on multilateral timescales. The analy-
ses, hence, provide credible evidence of teleconnections of
tropical Pacific climatic variability and Indian climate rang-

ing from inter-annual to decadal timescales and also suggest
the possible role of exogenic triggering in reorganizing the
global Earth–ocean–atmospheric systems.

1 Introduction

Several recent studies of solar–geomagnetic effects on cli-
mate have been examined on both global as well as on re-
gional scales (Lean and Rind, 2008; Benestaed and Schmidt,
2009; Meehl et al., 2009; Kiladis and Diaz, 1989; Pant and
Rupa Kumar, 1997; Gray et al., 1992; Wiles et al., 1998; Friis
and Svensmark, 1997; Rigozo et al., 2005; Feng et al., 2003;
Tiwari and Srilakshmi, 2009; Chowdary et al., 2006, 2014;
Appenzeller et al., 1998; Proctor et al., 2002; Tsonis et al.,
2005; De Freitas and Mclean, 2013). The Sun’s long-term
magnetic variability caused by the sunspots is considered to
be one of the primary drivers of climatic changes. The short-
term magnetic variability is due to the disturbances in the
Earth’s magnetic fields caused by the solar activities and is
indicated by the geomagnetic indices. The Sun’s magnetic
variability modulates the magnetic and particulate fluxes in
the heliosphere. This determines the interplanetary condi-
tions and imposes significant electromagnetic forces and ef-
fects upon the planetary atmosphere. All these effects are due
to the changing solar-magnetic fields, which are relevant for
planetary climates, including the climate of the Earth. The
Sun–Earth relationship varies on different timescales rang-
ing from days to years, bringing a drastic influence on the
climatic patterns. The ultimate cause of solar variability, on
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timescales from decadal to centennial to millennial or even
longer scales, has its origin in the solar dynamo mechanism.
During the solar maxima, huge amounts of solar energy par-
ticles are released, thereby causing the geomagnetic distur-
bances. The 11-year solar cycle acts as an important driving
force for variations in the space weather, ultimately giving
rise to climatic changes. It is, therefore, imperative to un-
derstand the origin of space climate by analyzing the differ-
ent proxies of solar-magnetic variabilities. Another impor-
tant phenomenon is El Niño–Southern Oscillation (ENSO),
which is associated with droughts, floods, and intense rain-
fall in different parts of the world. The strong coupling and
interactions between the tropical ocean and the atmosphere
play a major role in the development of the global climatic
system. The El Niño events generally recur approximately
every 3–5 years, with large events spaced around 3–7 years
apart. The ENSO phenomena have shown a huge impact
on the Asian monsoon (Cole et al., 1993), Indian monsoon
(Chowdary et al., 2006, 2014), as well as globally (Horel
and Wallance, 1981; Barnett, 1989; Yasunari, 1985; Nicol-
son, 1997). In particular, the El Niño, solar, geomagnetic
activities are the major affecting forces on the decadal and
interdecadal temperature variability on global and regional
scales in a direct/indirect way (El-Borie et al., 2010; Gray et
al., 2010). Recent studies (Frohlich and Lean, 2004; Stein-
hilber et al., 2009) indicate the possible influence of so-
lar activity on Earth’s temperature/climate on multi-decadal
timescales. The 11-year solar cyclic variations observed from
the several temperature climate records also suggest the im-
pact of solar irradiance variability on terrestrial temperature
(Budyko, 1969; Friis and Lassen, 1991; Friis and Svensmark,
1997; Kasatkina et al., 2007). The bi-decadal (22-year) cy-
cle, called the Hale cycle, is related to the reversal of the
solar-magnetic field direction (Lean et al., 1995; Kasatkina
et al., 2007). The 33-year cycle (Bruckener cycle) is also
caused by the solar origin, but it is a very rare cycle (Kasatk-
ina et al., 2007). The 2–7-year ENSO cyclic pattern and its
possible coupling process are the major driving forces for
the temperature variability (Gray et al., 1992; Wiles et al.,
1998; Mokhov et al., 2000; Rigozo et al., 2007, Kothawale et
al., 2010). El-Borie and Al-Thoyaib (2006) and El-Borie et
al. (2007, 2010) have indicated in their studies that the global
temperature should lag the geomagnetic activity with a maxi-
mum correlation when the temperature lags by 6 years. Men-
doza et al. (1991) reported on possible connections between
solar activity and El Niños, while Reid and Gage (1988) and
Reid (1991) reported on the similarities between the 11-year
running means of monthly sunspot numbers and global sea
surface temperature. These findings suggest that there is a
possibility of strong coupling between temperature–ENSO
and solar–geomagnetic signals.

Several studies have been carried out to understand the cli-
matic changes of India in the past millennium using various
proxy records, e.g., ice cores, lake sediments, glacier fluctu-
ations, and peat deposits. There is a lack of high-precision

and high-resolution palaeo-climatic information for longer
timescales from the Indian subcontinent. Tree-ring data are
a promising proxy to retrieve high-resolution past climatic
changes from several geographical regions of India (Bhat-
tacharyya et al., 1988, 1992, 2006; Hughes, 1992; Bhat-
tacharyya and Yadav, 1996; Borgaonkar et al., 1996; Chaud-
hary et al., 1999; Yadav et al., 1999; Bhattacharyya and
Chaudhary, 2003; Shah et al., 2007). It has been noted that
tree-ring-based climatic reconstructions in India generally
do not exceed 400-year records except at some sites in the
northwestern Himalaya. Thus, a long record of tree-ring
data is needed to extend available climate reconstruction fur-
ther back to determine climatic variability on sub-decadal,
decadal, and century scales. However, non-availability of
older living trees at most of the sites is hindering the prepa-
ration of a long tree chronology. In a previous study (Ti-
wari and Srilakshmi, 2009), we have studied the periodic-
ities and non-stationary modes in the tree-ring temperature
data from the same region (AD 1200–2000). To reveal sig-
nificant connections among the solar–geomagnetic–ENSO
“triad” phenomena on tree-ring width in detail for the pe-
riod from 1876 to 2000, we have applied here singular spec-
tral analysis (SSA) and the wavelet spectral analysis for
sunspot data, geomagnetic data (aa index), the Troup South-
ern Oscillation Index (SOI), and the Western Himalayan tree-
ring data. Here our main objective is to employ wavelet-
based analysis in SSA reconstructed time series to find ev-
idence of the possible linkages, if any, among ENSO–solar–
geomagnetic activity in the Indian temperature records.

2 Source and nature of data

The data analyzed here include the time series of the
(1) smoothed sunspot number for solar activity, (2) geo-
magnetic activity data (aa indices), (3) the Troup South-
ern Oscillation Index (SOI) for the study of the El Niño–
Southern Oscillation, called ENSO, and (4) the Western Hi-
malayan temperature variability record. All the data sets
have been analyzed for the common period of 125 years
spanning over 1876–2000. The monthly sunspot number
data have been obtained from the Sunspot Index Data Cen-
ter (http://astro.oma.be/SIDC/). The Troup SOI data are ob-
tained from the Bureau of Meteorology of Australia (http:
//www.bom.gov.au/climate/). The data for geomagnetic ac-
tivity, the aa index, were provided by the National Geo-
physical Data Center, NGDC (http://www.ngdc.noaa.gov/
stp/GEOMAG/aastar.shtml). The aa index is a measure of
the disturbance level of Earth’s magnetic field based on
magnetometer observations at two, nearly antipodal, stations
in Australia and England. In recent studies, the tree-ring
proxy climate indicators are being used for extracting in-
formation regarding past seasonal temperature or precipi-
tation/drought based on the measurements of annual ring
width. The detailed description of the data has been pre-
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sented elsewhere (Yadav et al., 2004). A brief account of
the data pertinent to the present analysis, however, is sum-
marized here. The tree-ring data being analyzed here are one
of the best temperature variability records (1876–2000) of
the pre-monsoon season in the Western Himalayas available.
The mean temperature series is obtained from nine weather
stations including both from high- and low-elevation areas
in the Western Himalayas. Temperature variability history is
based on widely spread pure Himalayan cedar (Cedrus deo-
dara (Roxb.) G. Don) trees and characterizes all the sites with
almost no ground vegetation, thereby minimizing individual
variation in tree-ring sequences induced by inter-tree compe-
tition (Yadav et al., 2004). The mean chronological structure
is based on a total of 60 radii from 45 trees in total, the statis-
tical feature of which shows that the chronology is suitable
for dendro-climatic studies back to AD 1226 (Yadav et al.,
2004).

3 Methods applied

To analyze the temporal series and to find the climatic struc-
ture, we have here three methods: principal component anal-
ysis (PCA), singular spectral analysis (SSA), and wavelet
analysis.

3.1 Principal component analysis (PCA)

As a preliminary analysis, we have applied principal compo-
nent analysis (PCA) to the data sets for the reduction and ex-
traction of dimensionality of the data and to rate the amount
of variation present in the original data set. The purpose of
applying PCA is to identify patterns in the given time series.
The new components thereby obtained by the PCA analysis
are termed PC1, PC2, PC3, and so on (for the first, second,
and third principal components), and are uncorrelated. The
different PCs capture part of the variance and are ranked de-
pending on their corresponding percentage variance.

3.2 Singular spectral analysis

The singular spectrum analysis (SSA) method is designed to
extract as much information as possible from a short, noisy
time series without any prior knowledge about the dynam-
ics underlying the series (Broomhead and King, 1986; Vau-
tard and Ghil, 1989; Alonso et al., 2005; Golyandina et al.,
2001). The method is a form of principal component anal-
ysis (PCA) applied to lag-correlation structures of the time
series. The basic SSA decomposes an original time series
into a new series that consists of trend, periodic or quasi-
periodic, and white noises according to singular value de-
composition (SVD), and provides the reconstructed compo-
nents (RCs). The basic steps involved in SSA are decomposi-
tion (involves embedding and singular value decomposition,
SVD) and reconstruction (involves grouping and diagonal
averaging). Embedding decomposes the original time series

into the trajectory matrix; SVD turns the trajectory matrix
into the decomposed trajectory matrices. The reconstruction
stage involves grouping to make subgroups of the decom-
posed trajectory matrices and diagonal averaging to recon-
struct the new time series from the subgroups.

3.2.1 Step 1: decomposition

a. Embedding: the first step in the basic SSA algorithm
is the embedding step where the initial time series
change into the trajectory matrix. Let the time series
be Y ={y1, . . . , yN } of length N without any missing
values. Here the window length L is chosen such that
2<L<N /2 to embed the initial time series. We map
the time series Y into the L lagged vectors, Yi ={yi ,
. . . , yi+L−1 for i= 1 . . . K , whereK =N −L+ 1. The
trajectory matrix TY (L×K dimensions) is written as

TY =


Y1
Y2
.

.

YK

 . (1)

b. Singular value decomposition (SVD): here we apply
SVD to the trajectory matrix TY to decompose and ob-
tain TY =U DV ′ called eigen triples, where Ui (K ×L
dimensions; 1< i <L) is an orthonormal matrix; Di
(1< i <L) is a diagonal matrix of order L; and Vi
(L×L dimensions; 1< i <L) is a square orthonormal
matrix.

The trajectory matrix is thus written as

TY =
d∑
i=1

Ui
√
λiVTi , (2)

with the ith eigen triple of Ti =Ui ×
√
λi ×VTi , I = 1,

2, 3 . . . , d, in which d =max(i:
√
λi > 0).

3.2.2 Step 2: reconstruction

c. Grouping: here the matrix Ti is decomposed into sub-
groups according to the trend, periodic or quasi-periodic
components, and white noises. The grouping step of the
reconstruction stage corresponds to the splitting of the
elementary matrices Ti into several groups and sum-
ming the matrices within each group. Let I ={i1, i2,
. . . , ip} be the group of indices i1, . . . ip. Then the
matrix TI corresponding to the group I is defined as
TI=TI1+TI2+ . . . Tip. The split of the set of indices
J = 1, 2, . . . , d into the disjoint subsets I1, I2, . . . Im
corresponds to Eq. (3):

T= TI1+TI2+ . . .TIm. (3)

The sets I1, . . . , Im are called the eigen triple grouping.
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d. Diagonal averaging: the diagonal averaging transfers
each matrix T into a time series, which is an additive
component of the initial time series Y . If zij stands for
a element matrix Z, the kth term of the resulting se-
ries is obtained by averaging zij over all i, j such that
i+ j = k+ 2. This is called diagonal averaging or the
Hankelization of the matrix Z. The Hankel matrix HZ
is the trajectory matrix corresponding to the series ob-
tained by the result of diagonal averaging.

Considering Eq. (3), let X (L×K) be a matrix with
elements xij , where 1≤ i ≤L, 1≤ j ≤K . Here diago-
nal averaging transforms matrix X into a series g0, . . . ,
gT−1 using the formula

gk =



1
k+ 1

k+1∑
m=1

xm,k−m+2∗ 0≤ k < L∗− 1

1
L∗

L∗∑
m=1

x∗m,k−m+2 L∗− 1≤ k < K∗

1
T − k

N−k+1∑
m=k−k∗+2

x∗m,k−m+2 K∗− 1≤ k < T

. (4)

This diagonal averaging by Eq. (4) applied to the resul-
tant matrix XIn, produces time series Yn of length T .
For such signal characteristics, it is essential to examine
the time–frequency pattern so as to understand whether
a particular frequency is temporally consistent or in-
consistent. Hence, for non-stationary signals, we need
a transform that will be useful to obtain the frequency
content of the time series/signal as a function of time.

An alternative method for studying the non-stationarity
of the time series is wavelet transform. For non-
stationary signals, wavelet decomposition would be the
most appropriate method because the analyzing func-
tions (the wavelet functions) are localized both in time
and frequency.

3.3 Wavelet spectral analysis

During the past decades, wavelet analysis has become a pop-
ular method for the analysis of aperiodic and quasi-periodic
data (Grinsted et al., 2004; Jevrejeva et al., 2003; Torrence
and Compo, 1998; Torrence and Webster, 1999). In partic-
ular, it has become an important tool for studying localized
variations of power within a time series. By decomposing a
time series into time–frequency space, the dominant modes
of variability and their variation with respect to time can be
identified. The wavelet transform has various applications in
geophysics, including tropical convection (Weng and Lau,
1994) and the El Niño–Southern Oscillation (Gu and Philan-
der, 1995). We have applied the wavelet analysis to analyze
the non-stationary signals, which permits the identification of
the main periodicities of ENSO–sunspot–geomagnetic activ-
ity in the time series. The results give us more insight infor-
mation about the evolution of these variables in frequency–
time mode.

A wavelet transform requires the choice of analyzing func-
tion 9 (called “mother wavelet”) that has the specific prop-
erty of time–frequency localization. The continuous wavelet
transform revolves around decomposing the time series into
scaling components for identifying oscillations occurring on
a fast (time)scale and others on slow scales. Mathematically,
the continuous wavelet transform of a time series f (t) can be
given as

Wψ (f )(a,b)=
1
√
a

∞∫
−∞

f (t)ψ

(
t − b

a

)
dt. (5)

Here f (t) represents time series and 9 is the base wavelet
function (here we have chosen the Morlet function), with
a length that is much shorter than the time series f (t).
W stands for wavelet coefficients. The variable “a” is called
the scaling parameter that determines the frequency (or scale)
so that varying “a” gives rise to the wavelet spectrum. The
factor “b” is related to the shift of the analysis window in
time so that varying b represents the sliding method of the
wavelet over f (t).

In several recent analyses, a complex Morlet wavelet has
been found useful for geophysical time series analysis. The
Morlet is mostly used to find areas where there is high am-
plitude at certain frequencies. The complex Morlet wavelet
can be represented by a periodic sinusoidal function with a
Gaussian envelope and is excellent for a Morlet wavelet that
may be defined mathematically, as follows:

ψ(t)= π−1/4e−iω0te−t
2/2, (6)

where ω0 is a non-dimensional value. ω0 is chosen to be 5
to make the highest and lowest values of ψ approximately
equal to 0.5, thus satisfying the admissibility condition. The
complex-valued Morlet transform enables us to extract infor-
mation about the amplitude and phase of the signal to be an-
alyzed. Wavelet transform preserves the self-similarity scal-
ing property, which is the inherent characteristic feature of
deterministic chaos. The continuous wavelet transform has
edge artifacts because the wavelet is completely localized
in time. The cone of influence (COI) is the area in which
the wavelet power caused by a discontinuity at the edge has
dropped to e−2 of the value to the edge. The statistical sig-
nificance of the wavelet power can be assessed relative to
the null hypotheses that the signal is generated by a station-
ary process with a given background power spectrum (Pk) of
the first-order autoregressive (AR1) process (Grinsted et. al.,
2004):

Pk =
1−α2∣∣1−αe−2iπk

∣∣2 , (7)

where k is the Fourier frequency index.
The cross-wavelet transform is applied to two time se-

ries to identify the similar patterns that are difficult to as-
sess from a continuous wavelet map. Cross-wavelet power
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Figure 1. Time series data of (a) sunspot index, (b) the mean pre-monsoon temperature anomalies of the Western Himalayas (Yadav et al.,
2004), (c) the Southern Oscillation Index (SOI) and (d) geomagnetic indices (aa indices) for the common period 1876–2000.

reveals areas with high common power. The cross-wavelet of
two time series x(t) and y(t) is defined as WXY

=W xW y∗ ,
where “∗” denotes the complex conjugate. The cross-wavelet
power of two time series with background power spectra PXk
and P Yk is given as

D


∣∣∣WX

n (s)W
Y ∗

n (s)

∣∣∣
σXσY

< p

= Zv(p)
v

√
PXk P

Y
k , (8)

whereZv(p) is the confidence level associated with the prob-
ability p for a pdf defined by the square root of the prod-
uct of the two χ2 distributions (Torrence and Compo, 1998).
The wavelet power is |WX

n (s)|
2 and the complex argument

of |WX
n (s)| can be interpreted as the local phase. The cross-

wavelet analysis gives the correlation between the two time
series as a function of the period of the signal and its time
evolution with a 95 % confidence level contour. The statisti-
cal significance is estimated using a red noise model.

Wavelet coherence is another important measure to as-
sess how coherent the cross-wavelet spectrum transform is
in time–frequency space. The wavelet coherence of two time
series is defined as (Torrence and Webster, 1999)

R2
n(s)=

∣∣S (s−1WXY
n (s)

)∣∣2
S
(
s−1

∣∣WX
n (s)

∣∣2) · S (s−1
∣∣WY

n (s)
∣∣2) (9)

where S is a smoothing operator. The smoothing oper-
ator is written as S(W)= Sscale (Stime (Wn(s))), where
Sscale denotes smoothing along the wavelet scale axis and
Stime smoothing in time. Here, for the Morlet wavelet, the
smoothing operator is

Stime (W)|s =

(
Wn(s) · c

−t2

2s2
1

)
, (10)

Stime (W)|s = (Wn(s) · c25(0.6s))n
∣∣ , (11)

where c1 and c2 are normalization constants and n is the
rectangle function. The factor of 0.6 is the empirically deter-
mined scale decorrelation length of the Morlet wavelet (Tor-
rence and Compo, 1998). The statistical significance level of
the wavelet coherence is estimated using the Monte Carlo
methods (Grinsted et al., 2004).

4 Results and discussion

We analyzed the data sets spanning over the period of 1876–
2000 using the PCA, SSA, and wavelet spectral analyses.
Figure 1 shows four time series: (1) the smoothed sunspot
number representing solar activities; (2) geomagnetic (aa in-
dices); (3) the Troup Southern Oscillation Index (SOI) for
the study of ENSO, and (4) the Western Himalayan temper-
ature variability record, which are analyzed in the present
work. From visual inspection it is apparent from Fig. 1 that
both WH and SOI data show an irregular and random pat-
tern, while sunspot numbers have a quasi-cyclic character.
Furthermore, the WH tree-ring record also exhibits distinct
temperature variability but nonstationary behavior at differ-
ent scales. This variability might be suggestive of coupled
global ocean–atmospheric dynamics or some other factors,
such as deforestation, anthropogenic, or a high latitudinal in-
fluence (Yadav et al., 2004).

Hence it is quite difficult to differentiate such a complex
climate signal visually, and difficult to infer any clear oscilla-
tion without the help of powerful mathematical methods. For
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Figure 2. First four principal components (PCs 1–4) for time series: (a) sunspot numbers, (b) the mean pre-monsoon temperature anomalies
of the Western Himalayas, (c) SOI index and (d) geomagnetic indices (aa indices) for the period 1876–2000.

identification of any oscillatory components and understand-
ing of the climatic variations on regional and global scales,
we have applied PCA, SSA, and wavelet analysis. Figure 2
shows the principal components (PCs) for the first four eigen
triples (PC1, PC2, PC3, PC4) for the given data sets. Figure 3
shows the power spectra of the principal components (PCs)
for the four data sets shown in Fig. 2. From Fig. 3, it is ob-
served that the power spectra of PCs 1–4 for the sunspot data
exhibit high power at 124, 11, and 4–2.8 years. The pres-
ence of a high solar signal at 124 years indicates the quasi-
stable oscillatory components in the data. The power spec-
tra of geomagnetic data also show the presence of strong
signals at 124, 10–11, and 4–2 years, suggesting a strong
link of solar–geomagnetic activity. The power spectra of
WH temperature data show strong high power at ∼ 62, 32–
35, 11, 5, and 2–3 years, suggesting a strong combined in-
fluence of global ocean–atmospheric circulation, and solar–
geomagnetic and ENSO effects on the Indian climate system.
Climate cycles of 50–70 years have been widely reported
in various ocean and atmospheric phenomena (Ogurtsov et
al., 2002; Tiwari, 2005). Schlesinger and Ramankutti (1994)
and Minobe (1997) have reported similar 55–70-year inter-
decadal oscillations in global mean temperature. Dominant
amplitudes corresponding to 62- and 32–35-year periodici-
ties may, therefore, be linked to the Atlantic Multi-decadal
Oscillation (AMO) of ocean–atmospheric circulations. The
11-year peak is a well-known solar signal, while the 2–5-year

periods apparently fall in the ENSO frequency band. These
results could be better confirmed by applying the mathemat-
ical tools of SSA and wavelet analyses.

To explore the stationary characteristics of these peaks ob-
tained by the PCA, we have applied the Morlet-based wavelet
transform approach (Holschneider, 1995; Foufoula-Georgiou
and Kumar, 1995; Torrence and Compo, 1998; Grinsted et
al., 2004). The wavelet spectrum identifies the main period-
icities in the time series and helps to analyze the periodicities
with respect to time. Figure 4 shows the wavelet spectrum for
the (a) smoothed sunspot number for solar activity (SSN), the
(b) Western Himalayan (WH) temperature variability record,
(c) geomagnetic activity, and the (d) Troup Southern Oscil-
lation Index (SOI). From the wavelet spectrum of sunspot
time series (Fig. 4a), the signal near 11 years is the strongest
feature and is persistent during the entire series, indicating
the non-stationary behavior of the sunspot time series. The
wavelet spectrum of SOI (Fig. 4c) shows strong amplitudes.
However, due to the non-stationary (time-variant) character
of the time series, the observed spectral peaks (power) split in
the interval of 2–8 years. The wavelet power spectrum of the
Western Himalayan temperature variability (Fig. 4b) reveals
significant power concentration on inter-annual timescales of
3–5 years and at an 11-year solar cycle. A dominant ampli-
tude mode is also seen in the low-frequency range at around
35–40 years (at periods 1930–1980) corresponding to AMO
cycles. Our result agrees well with the results of other cli-
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Figure 3. Power spectra of the first four principal component (PCs) (PCs 1–4 shown in Fig. 2) for all the data sets with their significant
periodicities at 124, 11, 4 and 2.8 years indicated in bold letters.

mate reconstructions (Mann et. al., 1995) from tree rings and
other proxies. The observed variability in AMO periodicity
has also been reported in other tree-ring records (Gray et
al., 2004). The statistical significance of the wavelet power
spectrum is tested by a Monte Carlo method (Torrence and
Compo, 1998). The WH spectra depicting statistically signif-
icant powers above the 95 % significance level at around 5,
11 and 33 years suggests the possible imprint of sunspot–
geomagnetic and ENSO phenomena on the tree-ring data. On
shorter timescales, the wavelet power spectrum of the geo-
magnetic record (Fig. 4d) also reveals statistically significant
power at around 2-, 4–8-, and 11-year periods.

In order to have better visualization of similar periods in
two time series and for the interpretation of the results, the
cross-wavelet spectrum has been applied. Figure 5 shows
the cross-wavelet spectrum of the (a) SSN–WH temperature
data, (b) WH data–SOI, and (c) SSN–SOI data. The contours
(dark black lines) are the enclosing regions where cross-
wavelet power is significantly higher, at 95 % confidence lev-
els. The wavelet cross-spectra of WH–SSN (Fig. 5a) show a
statistically significant high power over a period of 1895–
1985 in a 8–16-year band. It is seen that in the WH–SOI
cross-spectra (Fig. 5b), the high power is observed at a 2–
4-year band and at 8–16 years as well. The SSN–SOI spec-
tra (Fig. 5c) show a strong correlation at an 11-year solar
cycle, which is stronger during 1910–1950 and 1960–2000
(Rigozo et al., 2002, 2003), suggesting the strongest El Niño
and La Niña events, indicating solar modulation on ENSO

(Kodera and Kuroda, 2005; Kryjov and Park, 2007). These
results show a good correspondence in response to growth
of the tree-ring time series during the intense solar activ-
ity. Hence the results strongly support the possible origin of
these periodicities from solar and ENSO events. The inter-
esting conclusion from Fig. 5 is that WH–sunspot connec-
tions are strong at 11 years, and ENSO–sunspot connections
also exhibit strong power around 11 years; the WH–ENSO
connections are spread over three bands, 2–4, 4–8, and 8–
16 years, covering the solar cycle and its harmonics; the
WH–geomagnetic exhibits strong connections around 2–4,
4–6, 11, and 35–40 years, indicating the influence of solar–
geomagnetic activity on Indian temperature.

Singular spectral analysis (SSA) is performed for all four
data sets with a window length of 40. The SSA spectra with
40 singular values and their corresponding reconstructed se-
ries (varying from RCs 1 to 15 in some cases) are plotted
as shown in Figs. 6 and 7. The important insights from SSA
spectra are the identification of gaps in the eigenvalue spec-
tra. As a rule, the pure noise series produces a slowly de-
creasing sequence of singular values. The explicit plateau in
the spectra represents the ordinal numbers of paired eigen
triples. Eigen triples 2–3 for the sunspot data correspond to
the 11-year period; eigen triples for 1–2, 3–5, 6–10, and 11–
14 for the WH temperature data are related to harmonics with
specific periods (periods 33–35, 11, 5, 2 years); eigen triples
for 2–5, 6–9, and 10–13 for the geomagnetic data are related
to periods of 11, 5, and 2 years. The eigen triples for the SOI
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Figure 4. Wavelet power spectrum of (a) sunspot number, (b) Western Himalayan temperature data, (c) Southern Oscillation Index (SOI) and
(d) geomagnetic activity (aa indices) with the cone of influence (lighter shaded smooth curve) and black lines indicating significant power
on the 95 % level compared to red noise based on the first-order auto-regressive (AR(1)) coefficient. The legend on the right indicates the
cross-wavelet power.

data represent ∼ 5–7- and 2-year periods. In order to assess
periodicities, the periodogram and the wavelet power spec-
tra are plotted using the SSA reconstructed data (SSA-RC)
(Fig. 8). From Fig. 8, the periodogram of SSA-RC of SSN
and geomagnetic data shows strong power at ∼ 120 and 10–
11 years; the SOI data show strong peaks at 6–9 and 3 years,
and WH data show strong power at ∼ 32, ∼ 10–11, and 3–
5 years. The wavelet spectra for all the SSA–RC data confirm
the results, except for the periods at ∼ 120 years, which are
beyond the maximum scaling period chosen for the present
wavelet. The coherency plot of the SSA-RC data sets (Fig. 9)
indicates a significant power at 33, 11, and 2–7 years in the
WH temperature record, suggesting the possible influences
of sunspot–geomagnetic activity and ENSO through telecon-
nection and hence a significant role of these remote inter-
nal oscillations of the atmosphere–ocean system in the In-
dian climate system. Researchers have attributed these phe-
nomena to internal ocean dynamics and involve ocean at-
mospheric coupling as well as variability in the strength of
thermohaline circulations (Knight et al., 2005; Delworth and
Mann, 2000).

In general our result agrees well with earlier findings in the
sense that statistically significant global cycles of coupled ef-
fects of sunspot–geomagnetic activity and ENSO are present
in the land-based temperature variability record. However,
there are certain striking features in the spectra that need to
be emphasized regarding the Western Himalayan tempera-
ture variability: (i) inter-annual cycles in a period range of 3–
8 years corresponding to ENSO in the wavelet spectra exhibit
intermittent oscillatory characteristics throughout the large
portion of the record (Fig. 4); (ii) the 11-year solar cycle in
the cross-wavelet spectrum of SSN and SOI (Fig. 5) indi-
cates the solar modulation in the ENSO phenomena (Kodera
and Kuroda, 2005; Kryjov and Park, 2007); and (iii) the high
amplitude at 11 years in the time interval 1900–1995 with a
strong intensity from 1900 to 1995 shows a good correspon-
dence to the high temperature variability for the interval of
high solar–geomagnetic activity. The multi-decadal (30–40-
year) periodicity identified here in the Western Himalayan
tree-ring temperature record matches with North Atlantic sea
surface temperature variability, implying that the temperature
variability in the Western Himalayas is not a regional phe-
nomenon but a globally teleconnected climate phenomenon
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Figure 5. Cross-wavelet spectrum between (a) sunspot number–Western Himalayan data, (b) Western Himalayan–Southern Oscillation In-
dex, (c) sunspot number–Southern Oscillation Index, and (d) geomagnetic aa indices–Western Himalayan data with the cone of influence
(lighter shaded smooth curve) and black lines indicating significant power on a 95 % level compared to red noise based on the AR(1) coeffi-
cient. The legend on the right indicates the cross-wavelet power.

Figure 6. Singular spectra with their SSA decomposed components and their reconstructed time series for (a) sunspot number and (b) Western
Himalayan temperature data.

www.nonlin-processes-geophys.net/23/361/2016/ Nonlin. Processes Geophys., 23, 361–374, 2016



370 S. L. Sunkara and R. K. Tiwari: Study of the imprints of solar–ENSO–geomagnetic activity on Indian climate

Figure 7. Singular spectra with their SSA decomposed components and their reconstructed time series for (a) SOI and (b) geomagnetic
activity (aa indices).

Figure 8. Power spectrum and wavelet power spectrum of SSA reconstructed (a) sunspot data, (b) geomagnetic indices (aa index), (c) SOI,
and (d) the Western Himalayan temperature data, with the cone of influence (lighter shaded smooth curve) and black lines indicating sig-
nificant power on the 95 % level compared to red noise based on the AR(1) coefficient. The legend on the right indicates the cross-wavelet
power.

associated with the global ocean–atmospheric dynamics sys-
tem (Tiwari and Srilakshmi, 2009; Delworth et al., 1993;
Stocker, 1994). The coupled ocean–atmosphere system ap-
pears to transport energy from the hot equatorial regions to-
wards Himalayan territory in a cyclic manner. These results
may provide constraints for modeling of climatic variabil-
ity over the Indian region and ENSO phenomena associated
with the redistribution of temperature variability. The solar–

geomagnetic effects play a major role in abnormal heating
of the land surface, thereby indirectly affecting the atmo-
spheric temperature gradient between the land–ocean cou-
pled systems. In the present work, the connections between
solar–geomagnetic activity and ENSO on the WH time series
are found to be statistically significant, especially when they
are studied over contrasting epochs of, respectively, high and
low solar activity. The correlation plots for the SSA-RC data
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Figure 9. Squared wavelet coherence plotted for the SSA recon-
structed time series between (a) WH-SSN, (b) WH-SOI, and (c) the
WH-aa index, with the cone of influence (lighter shaded smooth
curve) and black lines indicating significant power on the 95 % level
compared to the red noise based on the AR(1) coefficient.

sets of WH-sunspot, WH-aa index, WH-SOI, and sunspot-
aa index are plotted in Fig. 10. One can notice that there is
a correlation plot for the geomagnetic–sunspot activity with
a maximum correlation value at a 1-year lag, suggesting the
strong influence of sunspot and geomagnetic forcing on one
another. The cross-correlation plot for the WH data and the
SOI represents a maximum value at zero lag. The correla-
tion plot for the WH-sunspot and WH-geomagnetic indices
exhibits almost identical results, suggesting the possible im-
pact of solar activities on the Indian temperature variability.

The net effect of solar activity on temperature record there-
fore appears to be the result of cooperating or counteract-
ing influences of Earth’s magnetic activity on the shorter and
longer periods, depending on the indices used; scale inter-
actions, therefore, appear to be important. Nevertheless, the
link between Indian climate and solar–geomagnetic activity
emerges as having strong evidence; next is the ENSO–solar
activity connection.

5 Conclusions

In the present paper, we have studied and identified the pe-
riodic patterns from the published Indian temperature vari-
ability records using the modern spectral methods of sin-
gular spectral analysis (SSA) wavelet methods. The appli-
cation of wavelet analysis for the SSA reconstructed time
series, along with the removal of noise in the data, identi-
fies the existence of high-amplitude, recurrent, multi-decadal
scale patterns that are present in Indian temperature records.
The power spectra of WH temperature data show a strong
high power at ∼ 62, 32–35, 11, 5 and 2–3 years, suggest-
ing a strong influence of solar–geomagnetic–ENSO effects

Figure 10. Cross-correlation of SSA reconstructed time series of
(a) aa index–Western Himalayan (WH) temperature data, (b) SOI–
WH temperature data, (c) sunspot–WH data, and (d) aa index–
sunspot data.

on the Indian climate system. The presence of a dominant
amplitude at 33-year cycle periodicity corresponds to At-
lantic Multidecadal Oscillation (AMO) cycles. It also sug-
gests the Sun-temperature variability, probably involving
the induced changes in the basic state of the atmosphere.
The 30–40-year periodicity in the Western Himalayan tree-
ring temperature record matches with the global signal of
the coupled ocean–atmospheric oscillation (Delworth et al.,
1993; Stocker, 1994), implying that the temperature vari-
ability in the Himalayas is not a regional phenomenon
but seems to be teleconnected phenomena with the global
ocean–atmospheric climate system. The coherency plots of
the SSA reconstructed WH–sunspot, WH–geomagnetic, and
WH–SOI data sets show strong spectral signatures in the
whole record, confirming the possible influences of sunspot–
geomagnetic activities and ENSO through teleconnection
and hence the significant role of these remote internal oscilla-
tions of the atmosphere–ocean system in the Indian temper-
atures. We conclude that the signature of solar–geomagnetic
activity affects the surface air temperatures of the Indian sub-
continent. However, long data sets from the different sites on
the Indian subcontinent are necessary to identify the influ-
ences of the 120-year solar–geomagnetic cycles.

6 Data availability

The data on the Western Himalayan data was given to us by
Dr. Ram Ratan Yadav of Birbal Sahni Institute of Palaeob-
otany, India. The data plot was given in his publication (Ya-
dav et al., 2004).
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