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Abstract. This paper investigates in detail a possible mecha-
nism of energy convergence leading to freak waves. We give
examples of a freak wave as a (weak) pseudo-maximal wave
to illustrate the importance of phase coherence. Given a time
signal at a certain position, we identify parts of the time sig-
nal with successive high amplitudes, so-called group events,
that may lead to a freak wave using wavelet transform anal-
ysis. The local coherence of the critical group event is mea-
sured by its time spreading of the most energetic waves. Four
types of signals have been investigated: dispersive focusing,
normal sea condition, thunderstorm condition and an exper-
imental irregular wave. In all cases presented in this paper,
it is shown that a high correlation exists between the local
coherence and the appearance of a freak wave. This makes it
plausible that freak waves can be developed by local interac-
tions of waves in a wave group and that the effect of waves
that are not in the immediate vicinity is minimal. This indi-
cates that a local coherence mechanism within a wave group
can be one mechanism that leads to the appearance of a freak
wave.

1 Introduction

Understanding the mechanism of the freak wave phe-
nomenon is intriguing for scientists, engineers and mariners.
The mechanisms that lead to freak waves are understandably
diverse and it is not surprising that different freak waves ex-
hibit different qualitative features (Liu and Mori, 2000). A
review of the existing mechanisms of freak waves was pre-
sented by Pelinovsky and Kharif (2008) and Slunyaev et al.
(2011).

We consider freak waves in unidirectional wave fields
which satisfy the common definition of a freak wave, namely
that the wave height exceeds approximately 2 times the sig-
nificant wave height (H;) or that the crest height exceeds
1.25H; (Kharif and Pelinovsky, 2006, 2003; Olagnon and
van Iseghem, 2000; Dysthe et al., 2008). Freak waves that
are dominantly generated from wave energy convergence as
a consequence of the random superposition of many wave
components with not necessarily strong nonlinearity is still
under discussion (Wang et al., 2015; Onorato et al., 2013;
Garret and Gemmrich, 2009; Gemmrich and Garrett, 2008;
Slunyaev et al., 2005; Muller et al., 2005). Different from
some papers (Haver, 2004; Kharif and Pelinovsky, 2003;
Pelinovsky et al., 2000), in which a freak wave is discussed
as an accidental event from nowhere that appears and dis-
appears suddenly, we discuss freak waves in (mainly) ran-
dom wave fields that exhibit long-life gradual growth and
decay. Latifah and van Groesen (2012) described and pre-
dicted freak waves by measuring the degree of phase co-
herence from a given time series at one position. It is the
phase variance over an interval of the dominant wave fre-
quencies. In this paper, we investigate the local coherence
computed from the local time spreading of the most energetic
waves, which is determined by wavelet transform. Nowa-
days, wavelet transformation is widely applied to analyze
freak waves (Hu et al., 2015; Kwon et al., 2015; Cherneva
and Guedes Soares, 2014; Bai et al., 2015; Wang et al., 2015;
Wu et al., 2010), as it has wider applicability than Fourier
techniques (Lin and Liu, 2004).

In the study of Slunyaev et al. (2005), the calculation of the
first derivative of the local group velocity in the time series
shows the presence of regions of strong wave convergence
or divergence near freak events where strong modulations
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occurs. However, the question about the origin of the freak
wave, whether it is naturally contained in the wave trains or
induced by Benjamin Feir instability, is still open. Pelinovsky
et al. (2011) discussed a freak wave of the solitary-like shape
that is originated from the wave packet and is based on the
dispersive focusing of unidirectional wave packets. In ad-
dition to the references cited above, we will contribute in
understanding the process and the origin of freak wave ap-
pearance in random wave fields that is mainly based on dis-
persive effects. In realistic sea states, a directional spread-
ing could possibly influence dispersive focusing effects (Pre-
vosto, 1998). Also Johannessen and Swan (1999) concluded
that the introduction of directionality significantly reduces
the nonlinearity of wave groups. That nonlinearity gives little
or no extra amplitude compared to linear extreme events, but
the changing shape of the extreme crest was also observed
by Adcock et al. (2015). In this paper, we will not take direc-
tional spreading into account, but will restrict to long-crested,
unidirectional waves.

In unidirectional linear waves, the focusing due to disper-
sion is one mechanism that causes a freak wave (Porubov
et al., 2005; Slunyaev et al., 2005; Kharif et al., 2001; Brown
and Jensen, 2001; Pelinovsky et al., 2000; Baldock et al.,
1996). If short waves with small group velocities are initially
located in front of long waves having large group velocities,
the long waves will overtake the short waves with increasing
time and large-amplitude waves can appear. Afterwards, the
long waves will be in front of the short waves and the ampli-
tude of the wave train will decrease (Kharif and Pelinovsky,
2003). This mechanism is observed in the type of dispersive
focusing waves which are often used in hydrodynamic lab-
oratories (Merkoune et al., 2013; Brown and Jensen, 2001;
Clauss, 2002; Shemer et al., 2007, 2005; Grue et al., 2003).
In random waves, this mechanism could also trigger a freak
wave, but it is not as clear as in the dispersive focusing case.
In the study of Wang et al. (2015), they presented a freak
wave in a random wave field that was generated from two
successive wave groups with different main frequencies and
the higher frequency waves are in front of the others.

According to the study of Sergeeva et al. (2014) and
Sergeeva and Slunyaev (2013), most of the long-living freak
waves often occur on the background of intense wave groups.
The evolution of modulated wave groups over large spatial
and temporal scales were also a concern in the study of Viotti
et al. (2013) and Grimshaw et al. (2001). Recently Cousins
and Sapsis (2014, 2016) and Ruban (2013) underlined that
the appearance of extreme events can be triggered by focus-
ing energy in localized wave groups. Therefore, to identify
the group profiles that can be the origin of freak waves ap-
pearance, they used envelope equations and identified the en-
velope of the dominant groups associated with the length
scale and amplitude by a group detection algorithm. Fur-
ther, they computed the probability of the group to develop
an extreme event. The evolution of the freak waves is sum-
marized into focusing—defocusing process of energy. During
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the generation, a single wave absorbs energy from neighbor-
ing waves, increases its amplitude, reaches a maximum and
then returns its energy back to other waves (Xia et al., 2015;
Slunyaev et al., 2005). According to Kharif et al. (2009), the
transient change of the local energy of wave groups can be
caught by wavelet analysis better than Fourier analysis.

In this paper, we will consider the appearance of freak
waves in evolving wave groups in space and time. The waves
are generated from a signalling problem: at the influx posi-
tion, say xo, a given time signal n(xo, t) is forced in one di-
rection, the positive x axis. The resulting waves n(x, t) may
show a freak wave at certain time and space (x s, ) at which
the amplitude is larger than 1.25H;, which is taken as the
definition of a freak wave in the rest of this paper. We will
investigate this appearance by concentrating on successive
high amplitudes in the initial signal, which will be called crit-
ical group events. We will apply the wavelet analysis for the
identification of the energy spectral distribution in the group
events.

This paper is organized into five sections starting with
this introduction. Section 2 starts with a motivation to in-
vestigate the local coherence by showing the rapid decrease
of the maximal amplitude when the coherence is decreased.
Wavelet transformation is then described and shown to be
better capable than Fourier methods to analyze the local
phase of a wave. Section 3 starts with the selection of possi-
ble freak waves by estimating the critical group events from
the influx signal that can lead to freak waves further down-
stream. The propagation of the most energetic group is then
simulated to show the successive local energy convergence.
We introduce quantitative measures of local coherence as one
tool to predict the freak wave appearance. Using numerical
simulations of linear and nonlinear waves with the AB equa-
tion described in Appendix A (van Groesen and Andonowati,
2007; van Groesen et al., 2010), we compute the wave evo-
lution and measure the local coherence of the time signal at
several positions. We consider various wave types, a disper-
sive focusing wave and irregular waves, synthetic and exper-
imental signals from the MARIN hydrodynamic laboratory
in Sect. 4. Conclusions are formulated in the final section.

2 Coherence and wavelet transform

In this section, we will start to motivate and illustrate the role
of coherence by considering maximal, pseudo-maximal (pm)
and weak pseudo-maximal (wpm) signals that can describe
freak waves. In Latifah and van Groesen (2012), the notion
of a pseudo-maximal signal was introduced for which the
phases of all frequencies were band limited. Below, we also
consider a less restrictive notion of weak pseudo-maximal
signal, by restricting the phase only for the most energy-
carrying modes. The measure of phase coherence in these
concepts uses Fourier transform that represents the energy
and the phase as function of the frequency. In Sect. 2.2, we
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describe the wavelet transform that is used in this paper to ex-
tract the local energy spectral distribution and the local phase
as the time—frequency information of a given signal. Plots of
the energy distribution over the frequencies will show that
the wavelet transform improves results obtained with Fourier
transform.

2.1 Signal coherence

Waves in the ocean at a specific position are described by
a time signal. An irregular signal will have phases that
are commonly understood to be uniformly distributed in
(—m, ]. Previous study (Latifah and van Groesen, 2012) de-
fined maximal waves and pseudo-maximal waves. A maxi-
mal wave is a wave with all phases zero and has maximal
amplitude equal to the integration of its two-sided absolute
spectrum. Thus, we call a signal with all phases zero at some
time (say ¢ = 0) a maximal signal, as

MS(z) :/|170(a))|cos (wt) dw.

At r =0, all wave components contribute to a constructive
interference, hence

MS(0) = / 170(@)] doo.

This is the highest amplitude that is possible for given spec-
trum, 1no(w). In view of the assumption of uniform distribu-
tion of the phases, the chance for such a maximal wave van-
ishes.

A pseudo-maximal (pm) wave is a partly coherent wave,
that is in between a completely irregular wave and a fully
coherent maximal wave. For a given signal with random
phase 8(w) € (—m, ] as a function of wave frequencies with
0(w) = —0(—w), we consider a pm signal as the signal for
which the phases are restricted for certain « € (0, 1) to the
phases 0, (w) = @6 (w), as

[Upm(l)]O[:/|770(a))|COS(9a(w)—wt) do. ey

By taking a fraction « of the random phase, the maximal am-
plitude decreases and the background increases for increas-
ing «. For a =0, it is a maximal wave with coherent phases
while for o =1 it is an irregular wave and the freak wave
may disappear completely.

The phases of all frequencies in a pm signal are con-
strained as |f(w)| < aw. We now define a weak pseudo-
maximal (wpm) signal, n.(¢), by restricting the phases of
only the frequencies of large energy-carrying modes (see
Fig. 1 for an illustration). We also illustrate the importance
of such restrictions for coherence by plotting the maximal,
pm and wpm signals of a given Jonswap spectrum in Fig. 2.

The restriction of wpm signal is typically for frequencies
within one (or a half) standard deviation (SD) around the
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Figure 1. A Jonswap spectrum with restricted random phases,
0y (w). The shaded area represents the energy-carrying modes (re-
stricted by a half standard deviation).
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Figure 2. Shown are plots from up to down of a maximal, pseudo-
maximal and weak pseudo-maximal signal corresponding to the
same random signal at the bottom. The random signal corresponds
to a Jonswap spectrum with Hg = 6.3 m and y =1.9. The pm and
wpm signals correspond to the value o« =0.7.

mean frequency, |w — wy| < 0, or less. Then we consider
a signal for o = [0, 1] and define 6, as

af(w), for |w—wn| <o,
o () = (2)

0(w), elsewhere

and get a signal that has maximal amplitude less than the
maximal amplitude of the pm signal:

[nr(t)]a=/In(w)ICOS(Ha(w)—wt)de[npm(O)]a. 3)

In general, the mean frequency is not necessarily equal to
the peak frequency because the spectrum of waves that is
usually of Jonswap shape is not symmetric around the peak
frequency.

Nonlin. Processes Geophys., 23, 341-359, 2016



344 A. L. Latifah and E. van Groesen: Localized coherence of freak waves

35

a=0.5
a=0.6
a=0.7
a=0.8
a=0.9
a=1

30

I
a

max | ni{m]

N
S

\‘"WJ \M i

qu

15 M\'}f‘\! f‘“\ WW

L L L L L I
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
x[m]

(a)

55

50

45 -

40 -

max | ni{m]

® y M{\W“Mw i
J& )
BT W"m\yn\,v\ L, _ \'u_'- Uil |

ot A

10 L I
-4000 3000 2000 1000 0 1000 2000 3000 4000
x[m]

(b)

Figure 3. The maximal temporal amplitude of the linear evolution of the wpm signal for various values of «. Panel (a) corresponds to
restricting the phases to a quarter SD, |w — wp| < 0.250, and (b) for a half SD, |@ — wp| < 0.50,.
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Figure 4. The maximal temporal amplitude of the linear evolution of the wpm signal with & =0.5 for various fractions of the standard

deviation oy,.

Figure 3 illustrates that the value of « significantly affects
the maximal crest height and the wave evolution along the
x axis. The smaller the value of «, the higher the value of
the generated crest. On the other hand, variations in o, influ-
ence much less the maximum elevation of the influx signal.
In any case, the wave evolution is tremendously affected and
the maximum amplitude during the evolution can be much
higher for larger o,. In Fig. 4 it is shown that at an influx
position (x &~ —3600 m), the maximum amplitudes are quite
the same for various fractions of SD, but near the focusing
position a larger fraction of SD produces a higher maximum
amplitude. This is the consequence of the fact that the larger
fraction of SD gives more wave components with coherent
phases.

Although the signal coherence can describe and measure
the appearance of freak waves, the concepts use the whole
interval of the time signal. However, not the whole interval
will contribute in generating a freak wave since the waves
propagate with their own group and phase velocity. The freak
wave will be generated from local waves’ interaction. There-
fore, we will investigate the local energy propagation using
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wavelet transformation. This is expected to give a more re-
fined measure of the appearance of the freak wave.

2.2 Wavelet transform

In Fourier analysis we transform a function that depends on
time into a function that depends on the frequency as a sin-
gle variable. Given a time signal n(¢), Fourier transformation
gives the relations

n(w) = L / n(t)e ' dt
2

n(t) = / n(@)e " dw
:2/|n(w)|cos(wt+9(a)))dw.

The Fourier transform of 7 () is the complex valued function
n(w) = |n(w)|e’?®, in which |(w)| is the amplitude spec-
trum and 6 (w) is the phase of the signal. The spectral energy
density of the signal is defined by |1 (w) |2 that describes how
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Figure 5. Shown is the distribution of the local energy of the dispersive focusing wave at some positions before the focusing point. The left
plots are computed by Fourier transform and the right plots are by wavelet transform. The upper plots are in 3-D view, while the lower plots

are in 2-D view.

the energy of the signal is distributed with frequency. Any
local (time) information is not directly contained in Fourier
transform, but is hidden in the spectrum and phase. At a cer-
tain local time, r = ty, we have

nm»=2/WMwNwawm+9«me. @
0

The term inside the integral represents the amplitude spec-
trum and phase distribution with the frequency at a single
time. Then we may define a local energy spectrum, E(fy, ®),
as

E(tg, ®) = (In(w)|cos(wty + 6 (w)))?, ®)

presenting the local information of the signal directly. More
generally, we will not only consider the energy at a single
instant but will also analyze the energy in the neighborhood.
Therefore, we will use wavelet transformation for the local
energy analysis since it will show the distribution of the local
energy spectrum better because it includes energy contribu-
tions from neighboring times instead of only one local time.
Figures 5 and 6 illustrate the local energy distribution com-
puted by Fourier and wavelet transform for a dispersive fo-
cusing wave and an irregular wave that will be used as study
cases in Sects. 4.1 and 4.3. The plots show that the wavelet
transform gives a more refined description of the local energy
distribution as a function of time and frequency.
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The wavelet transform is an extension of Fourier trans-
formation. The basis function in Fourier transform is a
sinusoidal of a specific frequency, and the L? inner product
with the signal leads to the Fourier coefficient of that
frequency only. A wavelet is composed of a mixture of
frequencies (which is indicated by its own Fourier trans-
form). As a consequence, the wavelet coefficients refer to
this mixture of frequencies, not a single frequency. We will
now provide a summary of the main notions needed in the
following sections.

Definition 2.1. A mother wavelet is a zero average function,

v, as
v e L*(R) :/w(z)dr =0.
Definition 2.2. A wavelet family is family of functions gen-

erated from any type of mother wavelet, v, through dilatation
(s > 0) and translation (u € R):

£ (5)

Vu,s (1) =

Nonlin. Processes Geophys., 23, 341-359, 2016



346

0.8

0

0.6

0.4

[Wl/[|Wnl|

1.5
0.2

o ©

0.5
wirad s

wlrad s

1000

2000
t[s]

3000

40.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

A. L. Latifah and E. van Groesen: Localized coherence of freak waves

o0
o
®

[Wl/|Wnl]

0.5
3000 wirad s

t[s]

wlrad 5'1]

500 1000 1500 2000 2500 3000 3500
t[s]

Figure 6. The same as Fig. 5; now for the irregular wave IW12 at some positions before the freak wave.

There are many types of mother wavelets: Morlet, Haar,
Daubechies, Meyer, etc. (see Vialar, 2009). In this paper, we
use the Morlet wavelet consisting of a plane wave modulated
by a Gaussian, ¥ (t) = e"z/ze_i“’o’, which is given in the
Fourier domain by 1} (w) = 2re~(@=@0)*/2 with the central
frequency wy.

Definition 2.3. The continuous wavelet transform of a signal
n(t) at the scale s and at the time u is calculated by correlat-
1
n(t)—=y*
s

ing n with the wavelet family, v, :
t p—
de,
(%)

where ¢* is the complex conjugate of .

From Definition 2.3, the wavelet transform of a time sig-
nal 7(¢) gives a complex valued function Wn(u, s). For the
Morlet wavelet, we obtain

u

Wn(u,5)=(n,1ﬂu,x)=/ ©)

W (u, s) =/T)(t)%e_(’_”)z/zszein(’_“)/Sdt.
s

By substituting s=wp/@w and writing F(t; u,w)=
_L = —u)?/2s(w)?

o) , the equation above gives

Wi, ) = / BOF (¢ 1, ) el @00z,

The function F(¢; u, w) applies as a Gaussian window func-
tion to the signal n(#). This shows that the wavelet transform
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can be interpreted as the Fourier transform of a windowed
signal in the neighborhood of ¢ = u. The magnitude of the
wavelet transform, |Wn(u, w)|, represents the energy distri-
bution of the signal over frequency and time and its angle,
arg Wn(u, w)), represents the local phase of the signal.

Similar to Fourier transform, it is possible to rebuild the
signal from the wavelet transform, the so-called inverse
wavelet transform. It is given by

1 T 1
1 = c_w//W”(”’ ”ﬁ‘”(
0
/Wn(u, ) F(t; u, w)e_iw(t_”)du] do, (7)

]"[

t—u

N

1
woCy

with

0
ci= |
0

As an example, for wp = 6 the Morlet wavelet above pro-
duces Cy = 1.883. Different from Eq. (4) that gives the local
energy spectrum computed at one time, Eq. (7) shows that
the local energy spectrum from the wavelet transform is not
only computed at the local time but it also includes the con-
tribution of the signal surrounding that time.

The choice of the central frequency wg should be such
that the Morlet wavelet satisfies the admissibility condition,

7 2
W@l
w
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Cy < 00, which is equivalent to &(O) =0. Then the (real)
wavelet transform is complete and preserves the quantity of
energy:

o0
1
/|n(r)|2dmm//wn(u,w)ﬁdudw.
0

Actually, the Morlet wavelet satisfies the condition only ap-
proximately because 1&(0) =27 ¢=3/2 does not vanish ex-
actly. A proper choice of wy can make the wavelet at least
practically admissible and allows one to apply it widely to
the signal decomposition (Lebedeva and Postnikov, 2014;
Mertins, 1999). The defined Morlet wavelet is sufficiently
admissible if we choose wg > 5 (see Mertins, 1999), hence
wo = 6 is taken to be sufficient since then @(w) <3.8x1078
for w < 0. Parseval’s identity gives a relation between the sig-
nal and its Fourier transform as

/In(t)lzdt =27r/|n(w)|2dw

m/[;/|Wn(u,a))|2du:|dw.
wCy

Therefore, the spectral energy density of a signal can be com-
puted through the wavelet transform, i.e,

P~ 5 [ Wn.o)Pau. ®)
T woCy

This equation shows that the energy distribution from the

wavelet transform behaves locally, and its integration over

the time shift # is approximately the spectral energy density

obtained by Fourier transform.

3 Characterizing freak waves

The capability of the wavelet transform to represent a sig-
nal in time and frequency domain motivates us to investigate
a freak wave locally. For a given signal, we identify group
events which are parts of the time signal that may develop
into propagating wave groups, i.e., that contain an amount of
energy larger than a certain threshold. This threshold is de-
termined such that the group event can build a freak wave
if additional conditions are satisfied. We then determine the
most energetic waves from each group event to see how the
energy is distributed in both time and frequency. The most
energetic waves will determine the evolution of the group
event and whether its energy will converge or diverge. With
these elements, we will be able to define the local coherence
which will describe quantitatively the process of freak wave
formation from a critical group event.

3.1 Critical group events

Holthuijsen (2007) defines a wave group as an uninterrupted
sequence of waves with wave heights higher than an arbi-
trarily chosen, but usually high, threshold value. Instead of a

www.nonlin-processes-geophys.net/23/341/2016/
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Figure 7. The normalized spectral shape of the influx signal for the
case 202002.

wave group, we define a group event based on a chosen local
energy level as threshold, which is determined by the con-
tour level of the spectral energy determined by the wavelet
transform. A group event of a time signal 7(¢) is part of the
time signal with WWn(u, w)| higher than a threshold value.
We denote the set of group events with respect to the thresh-
old value €, by WG¢:

WG ={ni(1):i=1,2,...,Ng}
ni()={n@) 1 =[n,0] C0,THWhi(u,0)| z €. 9)

WG is the assembly of Ny group events; each group is de-
termined by the time interval during which the wavelet trans-
form is larger than a specified value €. The selection of the
group events depends on the chosen threshold value €. In
practice, we normalize the value of |WWn| with its maximum,
so that the value of € is chosen in (0, 1). The choice depends
on the background waves since it aims to ignore the waves
that do not contribute to the evolution of the group under con-
sideration. When the background waves are high, we should
choose a large €, but when the background waves are small,
we can choose a small value of €. In this paper, we choose
€ ~0.65 for the random signals and € & (.2 for the maximal
signal.

From all the group events determined in this way, we char-
acterize the groups that may lead to a freak wave. For a given
time signal, (z), ¢ € [0, T], we define a total energy signal,
ET, as

T T
1
ET=/|U(I)|2dl“—//IWn(u,w)lzda)du. (10)
woCy
0 0

For each value of the total energy signal, there can be a max-
imal wave with a coherent state.

Next, we define the total energy threshold to eliminate
group events which unlikely generate a freak wave. The re-
maining groups are so-called critical group events.

n
WGerit = WGe N { 1 (1) | / ni(t)>dr > p*Er (11)
n
in which
_ 1.25H;
P Th@)ldo

Nonlin. Processes Geophys., 23, 341-359, 2016



348 A. L. Latifah and E. van Groesen: Localized coherence of freak waves

0.
x=56[m] o
0.

0
4 -0.1
1-0.

1-0

x=50.2[m]

N Ao ®
o = N w

N B O ®

o
o =N W

x=40[m] 0.02

wlrad s-1]
N £ o o
=

n[m]
- N W

o 2N w

x=30[m] 0.02 x10 4

N B O ®
L =)
o =MW

o =N W

(a) (b)

Figure 8. Case 202002. (a) Time signals at various positions of the evolution of the critical group event with the filled contour plot of wavelet
spectra. The vertical axis at the left represents the wave frequency w and the vertical axis at the right represents the surface elevation in
meters. (b) The corresponding time-averaged wavelet spectra (solid line) and the time spreading (dotted line). Observe that at x =50.2m
the time spreading vanishes identically in the shaded area. The shaded areas show the chosen frequency interval of the most energy carrying
modes.

x=20[m] x=30[m] x=40[m] x=50.2[m] x=56[m]

8

7
_6
»
e
Ss
3

4

3

2

75 85 95 %0 100 9

Figure 9. Case 202002. A filled contour plot of the energy distribution of the critical group event at position x =20, 30, 40, 50.2, 56 m. At
each position, the red solid lines show the time of maximal energy at each wave frequency. The ++ lines show the wave frequency as function
of time. Both are estimated by the most energetic waves in time and frequency, respectively. Before x = 50.2 m, both solid and ++ lines show
decreasing frequencies (increasing wave length) in time; then it leads to energy convergence.
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Figure 10. Case 202002. Zoomed version of the maximal wave; the Figure 11. The same as Fig. 7; now for the case W100.

crest height is 4.65 m and the wave height is 6.56 times the signifi-
cant wave height.
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Figure 12. Case W100. Initial time signal in the interval ¢ € [2500, 4500] s. The critical group events are shown in the shaded areas of the
upper plot. The lower plot presents the amount of local energy signal of the recognized group events compared to the local energy threshold
(dashed line). The local energy signal of the critical group events is above the threshold.
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Figure 13. Case W100. (a) Time signals at various positions of the evolution of the critical group event with the filled contour plot of wavelet
spectra. (b) The corresponding time-averaged wavelet spectra (solid line) and the time spreading (dotted line). Observe that at x = 1420 m
the time spreading is zero in the shaded area. The shaded areas show the chosen frequency interval of the most energy-carrying modes.

is a freak wave threshold normalized by the amplitude of a
maximal signal. Based on their local energy, these critical
group events could generate a freak wave forward or back-
ward, but the probability depends on the phases.
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Figure 14. Case W100. Zoomed version of the freak wave; the crest
height is 1.35m and the wave height is 2.37 times the significant
wave height.
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Figure 15. Case W100. A filled contour plot of the energy distribution of the critical group event at various positions. At each position, the
red solid lines show the time of maximal energy at each wave frequency. The ++ lines show the wave frequency as function of time. Both
are estimated by the most energetic waves in time and frequency, respectively. Both lines show a decreasing frequency before the freak wave
and an increasing frequency after the freak wave, while the freak wave occurs at x = 1420 m.
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Figure 16. The same as Fig. 7; now for the case TS10000.

3.2 Most energetic waves

We start from the complex value of the wavelet transform of

n(1),
Wn(u, ) = |Wn(u, w)|et® )

It gives the spectral energy distribution |Wn(u, w)| and the
phase information ®(u,®) as a function of time and fre-
quency. From this we may look at the frequencies that carry
most energy as a function of time denoted by wp, (#) from the
critical group event:

om(u) = {] Wi, @) = max W@, o))}

Convergence of waves will occur when long waves catch up
with shorter waves. Hence, when the local wave length in-
creases, i.e., when the wave frequency decreases, the waves
will converge at a later time and vice versa. Therefore, the
distinction is determined by the frequency in the time inter-
val: when decreasing in forward time, this leads to a focus-
ing energy, and an increase leads to defocusing energy. Since
continuity of the local wave frequency in the random waves
cannot be guaranteed, we approximate the local wave fre-
quency by a linear interpolation, wy, (1) &~ w(u), so that we

Nonlin. Processes Geophys., 23, 341-359, 2016

can distinguish the two cases:
o(u)
~ _[A> 0, defocusing/diverging ener:
—Au+ B2 USINEICIVEISING ENCIRY. — (19)
A <0, focusing/converging energy

Moreover, we can also look at the most energetic waves as
a function of wave frequency. This leads to a local time of
each wave contribution. In the case of a dispersive focusing
wave, focusing of the energy occurs when all wave contribu-
tions are in phase at one local time.

Motivated by this, for each critical group event in a local

time interval [#1, 2], we define a function 1y, (w) representing
the local time of the maximal energy, T () € [#1, 2], as

(@) = {ul W@, @) = maxW(w. )]} (13)

Hence, if the critical group event gives a constant 7, (w), all
frequencies contribute at the same time, which leads to local
coherence at that time. If the frequencies are decreasing over
the local time interval, it may indicate a local focusing at a
later time.

3.3 Local coherence

The observations of the most energetic waves in either time
or frequency can be used to see whether a freak wave may
appear in forward or backward time, but the generation of a
freak wave is still not assured, since the amplitude is not de-
termined yet. The local information of the energy and phase
gives a method to investigate locally the relation between
the local coherence and freak wave occurrence. In this sub-
section, we measure the local coherence of the group event
along its evolution and we will show that the highest am-
plitude occurs when the local coherence is maximum in the
restricted frequency interval. As the wavelet transformation

www.nonlin-processes-geophys.net/23/341/2016/
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upper plot. The lower plot presents the amount of local energy signal of the recognized group events compared to the local energy threshold
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Figure 18. Case TS10000. (a) Time signals at various positions of the evolution of the critical group event with the filled contour plot of
wavelet spectra. (b) The corresponding time-averaged wavelet spectra (solid line) and the time spreading (dotted line). The shaded areas

show the chosen frequency interval of the most energy-carrying modes.
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Figure 19. Case TS10000. Zoomed version of the freak wave; the
crest height is 1.22 m and the wave height is 2.23 times the signifi-
cant wave height.

gives a function of frequency and time, we define a time
spreading of the most energetic waves [¢(w)],; € [—m, 7] for
each time t € (¢1, 1) as follows:

[p(w)]; = [tm(®w) — T]mod2x

that is taken at the time at which the absolute mean is mini-

#(@) = {le@ 7@ =ming@):}. (14)

The time spreading is exactly zero at a certain frequency in-
terval when 7, (w) is constant at that interval. To investigate
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Figure 20. Case TS10000. A filled contour plot of the energy distribution of the critical group event at various positions. At each position,
the red solid lines show the time of maximal energy at each wave frequency. The ++ lines show the wave frequency as function of time. Both
are estimated by the most energetic waves in time and frequency, respectively.
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Figure 21. The same as Fig. 7; now for the case IW12.

the local coherence, we determine the maximum (M), the
mean (u) and the standard deviation (o) of the absolute value
of the time spreading normalized by 7. Accordingly, we de-
fine three quantities depending on position that can repre-
sent local coherence, 'y, i, o (x) € [0, 1], depending on the
choice for the parameters, M, ;L or o':

Ty)=1-M T,x)=1-2u Tox)=1-+30. (15)

These values represent a somewhat different measure of local
coherence. Note that the extreme case (I'y =T, =Ts =1)
occurs for the maximal signal, when all the phases are zero.
Note also that this measure is different from the degree of
phase coherence defined in Latifah and van Groesen (2012),
as it corresponds to the local time spreading of the most ener-
getic waves of a group event. To investigate the dependence
between the local coherence and the occurrence of freak
waves, we compute the correlation between the local coher-
ence and the maximum amplitude normalized by its time-
averaged local energy, Corr(I'y, i, o, Am). For N number of
time signals at the positions (x1, x2, ..., xy), the correlation
is computed by

Corr (. Ay = 2iet TCD) = wr) (Am() = a)
(N —1)oroa
with

maXye(s,1)|1M(Xi, 1)]
Am(xj) = — b
n N(xi, 1)dt

h—n

and I"(x;) is the local coherence of the time signal at x;.
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4 Case studies

This section presents the investigations of four study cases:
an experimental dispersive focusing wave, a synthetic normal
wave condition (W100), a synthetic thunderstorm condition
(TS10000) and an experimental irregular wave (IW12). For
each case, we start to characterize the critical group events,
then we investigate the local features of these groups, namely
the most energetic wave and its time spreading. We investi-
gate the evolution of the local energy and the time spreading
of each case, particulary around the critical group events, and
measure the local coherence. Furthermore, we compute the
correlation between the local coherence and the maximum
amplitude of the group event that generates a freak wave. It
will give an impression of the relevance of the parameters I'
for measuring a freak wave.

4.1 Focusing wave (202002)

The case is a focusing wave that will lead to a maximal
wave. We consider a dispersive focusing wave with signifi-
cant wave height 0.013 m, for which measurements at several
positions are available from an experiment at MARIN (Case
202002). The experiment was executed at a water depth of
1 m. Here, we use the elevation at the first measurement po-
sition after the wave flap as the influx signal for the numeri-
cal simulation by both the linear and nonlinear AB equation.
The spectral shape of the influx signal with peak frequency
of approximately Srads—! is shown in Fig. 7. The result of
the numerical simulation of a dispersive focusing wave using
both the linear and nonlinear AB equations have been pre-
viously verified with the measurements (Liam et al., 2014;
Lakhturov et al., 2012).

Referring to Fig. 5, the influx signal only consists of one
group event with almost zero background, which is therefore
the only critical group event. This is an idealized case as the
freak wave turns out to be a maximal wave that is generated
from all wave components in the initial signal. This can be
observed from the evolution of the influx signal; the shorter

www.nonlin-processes-geophys.net/23/341/2016/
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Table 1. Measure of the local coherence of the dispersive focusing wave.

X Linear Nonlinear
Ty T, Iy Am A Ty T, Ty An
20 0.009 0.044 0.504 0.012 -— 0.002 0.009 0.04 0.49
30 0.002 0.116 0516 0.019 - 0.001 0.002 0.12 0.52
40 0.001 0.231 0.507 0.046 — 0.001 0.001 0.23 0.51
45 0312 0285 0.659 0.113 -— 0.293 029 027 0.65
50.05/50.2 0987 0996 0994 0.692 + 0975 098 097 0.99
56 0.230 0.208 0.627 0.097 + 0.281 028 024 0.64
Corr(Am(x),I")  0.95 0.96 0.94 1 0.93 094 092 1
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(slower) waves are followed by longer (faster) waves such
that at the focusing point at 50.2m all waves have vanish-
ing phase. See Fig. 8 for various plots of snapshots of the
dynamics at successive measurement positions.

During the evolution, the changes of the distribution of the
local energy in the time—frequency frame are described well
by the filled contour plot of the local energy. The local energy
distribution from one group event is squeezed into a maximal
wave. This is also shown by the decreasing width of the time
intervals towards the focusing point in Fig. 9. We can see at
x =20 m that the energy is distributed in 20s, at x =40 m it
is distributed approximately in 10 s and at the focusing point
the energy is only distributed in 3 s. Moreover, the pure max-
imal wave is shown by the zeroes of the time spreading at
x =50.2m in Fig. 8b. The profile of the maximal wave can
be seen in Fig. 10.

In order to show that the occurrence of the freak wave is re-
lated to a local coherence, and to illustrate the three different
measures of coherence introduced above, we show the evolu-
tion of these coherence measures for the linear and nonlinear
evolution in Table 1. It can be observed from this table that
the correlation of each of the three measures of coherence
and the occurrence of the maximum amplitude at x =50.2m
is very strong (= 0.95), although outside the focusing posi-
tion the values of the three I"’s can be rather different. I"js
and I'; seem to be much better indicators for the focusing
than I,

4.2 Synthetic signals

The second and third case are synthetic signals of irregu-
lar waves that are generated from a Jonswap spectrum with
normal and thunderstorm sea conditions at a water depth of
480m (deep water). The wave evolutions are computed lin-
early by the AB equation as the nonlinear effect for these
cases is not significant. However, a freak wave is still found
in both cases.

www.nonlin-processes-geophys.net/23/341/2016/

4.2.1 Normal sea (W100)

The initial time signal is generated from a Jonswap spectrum
with time period 11.3 s, y = 1.9 and significant wave height
6.3 m (van 't Veer and Vlasveld, 2014). The spectral shape of
the initial signal is shown in Fig. 11. The duration of the time
signal is approximately 3 h. From the initial time signal, there
are nine critical group events, of which the two largest groups
will be investigated. We do not investigate the other critical
group events since their amount of the local energy signal is
slightly equal to the threshold such that they are unlikely to
develop a freak wave.

Figure 12 shows the two critical groups of the influx signal
with approximately the same amount of local energy signal;
one is around ¢ = 3200 s and the other is at # &~ 3600 s. Those
are the most probable group events that can develop a freak
wave. In the observation of the contour energy distribution,
the preceding group event gives a positive A while the other
one gives a negative value. Therefore, the critical group event
around r =3600s is the candidate to generate a larger am-
plitude in forward time. The evolution of this critical group
together with its energy distribution is shown in Fig. 13a and
the changes of its time spreading are in Fig. 13b. We ob-
serve that at the freak wave position (x = 1420 m), the time
spreading is almost zero for the wave-carrying modes. Out-
side the freak wave position, the time spreading of the critical
group event is distributed in [0, 7]. The freak wave is shown
in Fig. 14.

In this case, the occurrence of the freak wave can also
be observed from the most energetic wave in either time
or frequency (see Fig. 15). Before the freak wave, the most
energetic waves give a decreasing wave frequency and af-
ter the freak wave, an increasing wave frequency occurs. At
x = 1420 m, the local time of the maximal energy is almost
constant for the carrying wave modes (@ € [0.5; 0.7]), there-
fore its time spreading is nearly coherent and it generates a
freak wave.

Furthermore, we investigate the change of the local coher-
ence of the critical group event during its 3 km linear wave
evolution. The measure of coherence at various positions is
shown in Table 2 and the correlation between the local coher-
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Table 2. Measure of the local coherence of the normal sea condition

wave.
X FM F/'L FO’ Am Av
500 0.05 0.10 0.35 001 -
1420 0.68 0.90 076  0.018 —
2000 0.045 0.167 0397 0.010 -—
2500 0.045 0.175 0306 0.008 +

3000 0.045 0.028 0341 0.007 +

Corr(Am(x),I')  0.78 0.82 0.74 1

ence and the maximum amplitude along the evolution is pre-
sented in the lowest row. All three I"’s show a quite high cor-
relation (> 0.74) between the local coherence and the maxi-
mum amplitude. According to the correlation value, I'j; and
I",, seem to be better indicators for the freak wave appearance
than I[',;.

4.2.2 Thunderstorm sea (TS10000)

The other synthetic signal is generated from a Jonswap spec-
trum with time period 13.6s, y =2 and significant wave
height 15.2m (van ’t Veer and Vlasveld, 2014). A snapshot
of the initial time signal is shown in Fig. 17 and its spectral
shape is presented in Fig. 16. This type of wave is catego-
rized as thunderstorm sea condition, in which the appearance
of a freak wave is more probable than in a normal sea condi-
tion. The duration of the initial time signal is approximately
3 h. There are five critical group events found from the influx
signal, but the two unlikely ones do not generate a freak wave
since their local energy signal is not so high compared to the
threshold. The largest local energy signal of the group events
appears around ¢ &~ 5400 s and its maximum crest is already
quite high at the initial time. Then, in forward time, it still
develops to a higher crest and generates a freak wave.
Figure 18a presents the snapshots of the time signals at
various positions. Also shown is the local energy distribu-
tion of the critical group event that leads to a freak wave. In
Fig. 18b, the time spreading of the critical group event shows
the chosen carrying wave modes (w € [0.45; 0.52]). A freak
wave appears at x =2985 m (see Fig. 19). If we observe the
time spreading at x =2000 m, it seems that the local time
is more coherent than at the freak wave position. This can
also be seen from the measure of the local coherence in Ta-
ble 3. The larger amplitude of the freak wave compared to
the group event at x = 2000 m can be explained from its local
energy distribution. The width in time of the energy spectral
distribution is a bit squeezed and there is some higher wave
frequency contribution which does not appear at x =2000 m.
Figure 20 shows the filled contour plot of the local energy
distribution for the most energetic waves at several positions
as function of time and frequency. It can be observed that
there is a change of the wave frequency order. Before the
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Table 3. Measure of the local coherence of the thunderstorm condi-
tion wave.

X FM FM Fa Am A
1500 0.19 0.17 052 001 —
2000 053 0.66 0.77 0.018 —
2985 037 039 0.69 0.010 -—
3500 0.05 0.03 047 0.008 +
3800 0.11 0.16 0.50 0.007 +

Corr(Am(x),I') 0.80 0.78 0.81 1

freak wave, the short waves run ahead the long waves and
after the freak wave, the short waves are behind, just as in
focusing waves.

We measure the local coherences of the critical group
event along its linear evolution and the results are presented
in Table 3. The correlation for each local coherence I' and
the maximum amplitude normalized by the local energy sig-
nal is quite high (> 0.78). This shows that the appearance of
the freak wave is mostly caused by the local coherence of the
critical group event from the influx signal.

4.3 Experimental signal: irregular wave (IW12)

The fourth case is an irregular wave, for which measurements
at several positions are available from MARIN experiment
with a water depth of 0.6 m (Case 103001). It has 1.697 s
peak period and significant wave height of approximately
0.06 m. We use the time signal from the first measurement
position after the wave flap as the influx signal. The spectral
shape of the influx signal is shown in Fig. 21. The local en-
ergy distribution of the signal is presented in Fig. 6. There
are six critical group events from the influx signal as shown
in Fig. 22. The largest local energy signal of the wave groups
is found around ¢ & 240 s and it develops a freak wave.

The evolution of the time signal around the critical group
event and its energy distribution at several positions are
shown in Fig. 23a. Even though the energy spectral distri-
bution does not show clearly the development of the criti-
cal group event into a freak wave, the change of the time
spreading shows the development of its local coherence (see
Fig. 23b). A freak wave occurs at x = 103.7 m when its time
spreading is near coherent for a short carrying wave mode.
The freak wave is shown in Fig. 24. From Fig. 25, we can
also see that there is unclear increasing or decreasing wave
frequencies of the most energetic wave. The local coherences
are measured and presented in Table 4. The three values of
I'’s present quite high correlation (> 0.75) between the local
coherences and the maximum amplitude in both the linear
and nonlinear evolution. In this case, I';, performs as the best
indicator for the freak wave appearance.
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Figure 22. Case IW12. The upper plot shows the influx signal. Four critical group events are shown in the shaded areas. The lower plot
shows the local energy signal of group events compared to the local energy threshold (dashed line). The local energy signal of the critical
group events are above the threshold.
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Figure 23. Case IW12. (a) Time signals at various positions of the evolution of the critical group event with the filled contour plot of wavelet
spectra. (b) The corresponding time-averaged wavelet spectra (solid line) and the time spreading (dotted line). The shaded areas show the
chosen frequency interval of the most energy-carrying modes.

5 Conclusions

In this paper, we showed the relevance of phase coherence by
illustrations of signals with increasingly less restrictions on
the phase function. Then, the wavelet transform was used to
e - p— o o o~ - o determined the time—frequency spectrum of a time signal. We

t[s] used the wavelet transform to identify critical group events
of the influx signal and it is shown that the group event with
the largest local energy signal is the most probable group to
generate a freak wave. We remarked that the identification
of a group event is dependent on the choice of the thresh-

n[m]

Figure 24. Case IW12. Zoomed version of the freak wave; the crest
height is 1.31 m and the wave height is 2.15 times the significant
wave height.
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Table 4. Measure of the local coherence of IW12.

X Linear

Nonlinear

Ty Ty To Am

Y] r, Ty Am A

80 0.19 031 046 0.005 0.325 0.511 0.618 0.005 —
90 0.15 046 049 0.007 0415 0.588 0.666 0.006 —
102.2/103.7 0.82 0.86 0.90 0.009 0.685 0.820 0.814 0.009 —
110 0.55 0.66 0.74 0.006 + 0.775 0.833 0.869 0.006 +
120 0.10 0.22 041 0.006 + 0415 0331 0.637 0.006 +
Corr(Ap, ')  0.78 0.86 0.78 1 0.75 0.88 0.76 1
Xx=80[m] X=90[m] x=103.7[m] Xx=110[m] x=120[m]
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Figure 25. Case IW12. A filled contour plot of the energy distribution of the group event at various positions. At each position, the red solid
lines show the time of maximal energy at each wave frequency. The ++ lines show the wave frequency as function of time. Both are estimated

by the most energetic waves in time and frequency, respectively.

old value (¢). For irregular waves, we suggested to choose
€ ~ 0.65 and for waves with vanishing background, we could
choose a smaller value € &~ 0.2. We defined local coherence
by three parameters (the mean, maximum or standard devia-
tion) of the time spreading of the most energetic waves from
the critical group events. We investigated the change of the
local coherence along its evolution and showed that all three
values of the local coherence are strong indicators for the
appearance of a freak wave. This indicates a local mecha-
nism of a freak wave appearance: the freak wave is mostly
developed by a local coherence of a group event. At the in-
flux signal, the group event already contains a considerable
amount of energy, which evolves into successive states with
even higher coherence. Four study cases illustrate the useful-
ness of the introduced concepts to describe and predict the
appearance of freak waves.
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6 Data availability

The data used by this study are experimental and syn-
thetic data. The data are freely available but not otherwise
published in any publicly accessible database. The exper-
imental data can nonetheless be provided on request by
MARIN hydrodynamic laboratory, Wageningen, the Nether-
lands. The synthetic data can nonetheless be provided on re-
quest via email to the corresponding author Arnida L. Latifah
(a.l.latifah @utwente.nl).
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Appendix A: AB equation

The AB equation proposed by van Groesen and Andonowati
(2007) is a unidirectional wave equation above a flat bottom
describing the surface wave elevation. This equation is de-
rived by exploiting the variational formulation of surface wa-
ter waves. It is accurate in second order in the wave height,
applicable for finite and for infinite depth dispersion, but here
we only present the equation for the finite depth. For waves
above finite depth, the AB equation can be interpreted as a
higher-order KdV equation; in lowest order, it is the classical
KdV equation.

We describe the dynamics by the surface elevation, n(x, ).
The nonlinear AB equation can be written as

. ey, 1 21
[n+4(3n) +ZB(an) 4(An) +2A(77An)], (A1)

where A and B are the pseudo-differential operators which
depend on the dispersion relation; see also van Groesen et al.
(2010). The linear AB equation is only the first term within
the brackets of Eq. (A1l). The minus sign in the Eq. (A1) is
for the wave evolution traveling to the right and the plus sign
is for the wave evolution traveling to the left. We consider
dispersive wave evolution and apply the exact dispersion re-
lation for water waves. In one space dimension, water waves
on a layer of depth / in a constant gravity field g, have dis-
persion given by the relation

w = Q (k) = sign(k)+/ gktanh(kh), (A2)

where k is the wave number. The skew-symmetric operator
A and the symmetric operator B are defined by

x JE&
A=C— B=->*—. A3
NG c (A3

Here, C is the phase velocity operator, i.e., the symmetric
pseudo-differential operator with symbol the phase velocity
C. The Fourier transform of C is defined by C= %, there-
fore we can derive the Fourier transform of the operator A
as

A = isign(k)\/k tanh(kh) = isj/(gl‘), (A4)

and the Fourier transform of the operator B as

~ Ik
B = . (AS)
tanhkh

The quadratic operators in the nonlinear terms of the AB
equation cannot be easily approximated by ordinary differen-
tial operators. Thus, instead of solving the AB equation (A1)
in physical space, the AB equation is solved by a pseudo-
spectral method.
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