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Abstract. Spatiotemporal behavior of soil water is essential
to understand the science of hydrodynamics. Data intensive
measurement of surface soil water using remote sensing has
established that the spatial variability of soil water can be
described using the principle of self-similarity (scaling prop-
erties) or fractal theory. This information can be used in de-
termining land management practices provided the surface
scaling properties are kept at deep layers. The current study
examined the scaling properties of sub-surface soil water and
their relationship to surface soil water, thereby serving as
supporting information for plant root and vadose zone mod-
els. Soil water storage (SWS) down to 1.4 m depth at seven
equal intervals was measured along a transect of 576 m for
5 years in Saskatchewan. The surface SWS showed multi-
fractal nature only during the wet period (from snowmelt un-
til mid- to late June) indicating the need for multiple scaling
indices in transferring soil water variability information over
multiple scales. However, with increasing depth, the SWS
became monofractal in nature indicating the need for a sin-
gle scaling index to upscale/downscale soil water variability
information. In contrast, all soil layers during the dry period
(from late June to the end of the growing season in early
November) were monofractal in nature, probably resulting
from the high evapotranspirative demand of the growing veg-
etation that surpassed other effects. This strong similarity be-
tween the scaling properties at the surface layer and deep
layers provides the possibility of inferring about the whole
profile soil water dynamics using the scaling properties of
the easy-to-measure surface SWS data.

1 Introduction

Knowledge on the spatial distribution of soil water over a
range of spatial scales and time has important hydrologic
applications including assessment of land–atmosphere in-
teractions (Sivapalan, 1992), performance of various engi-
neered covers, monitoring soil water balance, and validating
various climatic and hydrological models (Rodriguez-Iturbe
et al., 1995; Koster et al., 2004). However, high variabil-
ity in soil is a major challenge in hydrology (Quinn, 2004)
as the distribution of soil water in the landscape is con-
trolled by various factors and processes operating at differ-
ent intensities over a variety of extents (Entin et al., 2000).
The individual and/or combined influence of these physical
factors (e.g., topography, soil properties) and environmen-
tal processes (e.g., runoff, evapotranspiration, and snowmelt)
gives rise to complex and nested effects, which in turn
evolve a signature in the spatial organization (Western et
al., 1999) or patterns in soil water as a function of spatial
scale (Kachanoski and de Jong, 1988; Kim and Barros, 2002;
Biswas and Si, 2011a). This complexity makes the manage-
ment decision difficult at a scale other than that of measure-
ment. Therefore, it is necessary to transfer variability infor-
mation from one extent (e.g., pedon) to another (e.g., large
catchment), which is called scaling.

The scaling of soil water is possible if the distribution of
some statistical parameters (e.g., variance) remain similar at
all studied scales. This feature, known as scale-invariance,
means that the spatial feature in the distribution of soil water
will not change if the length scales are multiplied by a com-
mon factor (Hu et al., 1997). Generally, the soil water will
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have a typical size or scale, a value around which individual
measurements are centered. So the probability of measuring
a particular value will vary inversely as a power of that value,
which is known as the power-law decay, a typical principle
of the scaling process. Now, as the spatial distribution of soil
water follows the power-law decay (Hu et al., 1997; Kim and
Barros, 2002; Mascaro et al., 2010), the spatial variability
can be investigated and characterized quantitatively over a
large range of measurement extents using the fractal theory
(Mandelbrot, 1982). When the spatial distribution of soil wa-
ter is the response of some linear processes, the scaling can
be done using a single coefficient over multiple scales and
the distribution shows monofractal behavior. However, the
spatial distribution of soil water is the nonlinear response of
multiple factors and processes acting over a variety of scales
and therefore needs multiple scaling indices (multifractals)
for quantifying spatial variability (Hu et al., 1997; Kim and
Barros, 2002; Mascaro et al., 2010).

The multifractal behavior in the surface soil water as a re-
sult of temporal evolution of wetting and drying cycles has
been reported from the sub-humid environment of Oklahoma
by Kim and Barros (2002). Mascaro et al. (2010) reported
the multifractal behavior of soil water, which was ascribed
as a signature of the rainfall spatial variability. Though these
measurements can provide a quick estimate of soil water over
a large area, they are limited to very few centimeters of the
soil profile. These studies reported the multifractal behavior
of only the surface soil water indicating the superficial scal-
ing properties. Surface soil layer is exposed to direct environ-
mental forces and is the most dynamic in nature. The scaling
properties of surface soil water can be used for land man-
agement practices, provided the observed scaling properties
remain the same for the deep layers such as vadose zone or
the whole soil profile. Understanding the overall hydrologi-
cal dynamics in soil profiles requires information on the scal-
ing properties and the nature of the spatial variability of soil
water over a range of scales at deep layers as well (Biswas et
al., 2012c). The information on the similarity in the nature of
the spatial variability of soil water between the surface layer
and deep layers may also help inferring about the soil pro-
file hydrological dynamics. Therefore, the objectives of this
study were to examine over time the scaling properties of
sub-surface layers and their relationship with surface layers
at different initial soil water conditions. We have examined
the scaling properties of soil water storage at each layer and
their trend with increasing depth from the surface (cumula-
tive depth) over a 5-year period from a hummocky landscape
from central Canada using the multifractal approach. The re-
lationship between the scaling properties of the surface layer
and the subsurface layers was also examined using the joint
multifractal analysis.

2 Materials and methods

2.1 Study site and data collection

A field experiment was carried out at St. Denis National
Wildlife Area (52◦12′ N, 106◦50′W; ∼ 549 m mean above
sea level), which is located 40 km east of Saskatoon,
Saskatchewan, Canada. The landscape of the study area is
hummocky with a complex sequence of slopes (10 to 15 %)
extending from differently sized rounded depressions to ir-
regular complex knolls and knobs, a characteristic landscape
of the North American prairie pothole region encompassing
approximately 780 000 km2 from north-central United States
to south-central Canada (National Wetlands Working Group,
1997). Some of these potholes are seasonal in nature meaning
to store water in the spring (wet period) and drying out during
late summer and in fall season (dry period) (Fig. 1). Variable
water distribution within the landscape and in different land-
form elements such as side slopes, knolls, and depressions
support vegetation differently. For example, the large amount
of stored water in depressions provide a luxurious supply of
water to growing plants compared to knolls (Fig. 1). A tran-
sect of 128 points (576 m long) extending in the north–south
direction covering multiple knoll-depression cycles was es-
tablished in 2004 at the study site to examine the soil water
variation at field scale. The sample points were selected at
4.5 m regular intervals along the transect to catch the system-
atic variability of soil water. Soil water measurements were
carried out at every 20 cm depth down to 140 cm along the
transect over the period of 2007 to 2011, among which the
surface soil water (0 to 20 cm) was measured using verti-
cally installed time domain reflectometry (TDR) probes and
a metallic cable tester (model 1502B, Tektronix, Beaverton,
OR), while deeper layers down to 140 cm were measured us-
ing a neutron probe (model CPN 501 DR Depthprobe, CPN
International Inc., Martinez, CA) (Biswas et al., 2012a). Soil
water content data were then multiplied by depth and added
together to obtain the overall soil profile water storage so as
to examine the fractal behavior of soil water storage (SWS)
at different depths over time. A detailed description of the
study site, development of the transect, measurement of soil
water and the calibration of measurement instruments can be
found in earlier publications from this project (e.g., Biswas
et al., 2012a).

2.2 Data analysis

Various methods including geostatistics (Grego et al., 2006),
spectral analysis (Kachanoski and de Jong, 1988), and
wavelet analysis (Biswas and Si, 2011a, b) have been used to
examine the scale-dependent spatial patterns of SWS. These
methods generally deal with how the second moment of SWS
changes with scales or frequencies. When the statistical dis-
tribution of SWS is normal, the second moment plus the av-
erage provide a complete description of the spatial series.
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Figure 1. Conceptual schematics showing the vegetation growth patterns over the landscape at different times of the year. The figure is
developed based on field observations and the scale is arbitrary.

However, for other distributions (e.g., left skewed distribu-
tion) higher-order moments are necessary for a complete de-
scription of the spatial series. For example, let us define the
qth moment of a spatial series z as zq . In this situation, for
a positive value of q, the qth moment magnifies the effect of
larger numbers and diminish the effect of smaller numbers
in z. While, on the other hand, for a negative value of q, the
qth moment magnifies the effect of small numbers and di-
minish the effect of large numbers in the spatial series z. In
this way, using variable moments, we can look at the effect of
the magnitude of the data in a series and better characterize
its spatial variability.

2.2.1 Statistical self-similarity or scale invariance

Soil water is highly variable in space and time. If the variabil-
ity in the spatial/temporal distribution remains statistically
similar at all studied scales, the SWS is assumed to be self-
similar (Evertsz and Mandelbrot, 1992). Self-similarity, also
called scale invariance, is closely associated with the transfer
of information from one scale to another. We used the mul-
tifractal analysis to explore self-similarity or inherent differ-
ences in scaling properties of SWS in this study.

2.2.2 Multifractal analysis

On the spatial domain of the studied field, multifractal anal-
ysis was used to characterize the scaling property of SWS
by statistically measuring the mass distribution (Zeleke and
Si, 2004). The spatial domain or the data along the tran-
sect was successively divided into self-similar segments fol-
lowing the rule of the binomial multiplicative cascade (Ev-
ertsz and Mandelbrot, 1992). This method required that the
two segments divided from a unit interval to be of equal

length. With regards to a unit mass M (a normalized prob-
ability distribution of a variable or measured in a generalized
case) relating to the unit interval, the weight was also parti-
tioned into [h×M] and [(1−h)×M], where h was a ran-
dom variable (0≤h≤ 1) governed by a probability density
function. Sequentially, the new subsets with their associated
mass were equally divided into smaller parts. In this way,
multifractal analysis was able to describe the scaling prop-
erties for the higher-order moments compared to semivari-
ogram, which can only measure the scaling properties of the
second moment. In a special case, if the scaling properties
do not change with q, the spatial series can be identified as
monofractal, when one scaling coefficient is enough to char-
acterize scaling property of SWS. Generally, the multifractal
analysis is good at measuring the highly fluctuated mass (box
size) within a scale interval. This also provides physical in-
sights at all scales regardless of any ad hoc parameterization
or homogeneity assumptions in the analysis (Schertzer and
Lovejoy, 1987).

For SWS spatial series, the scale-invariant mass exponent,
was termed as τ(q) (Liu and Molz, 1997):

〈[1z(x)]q〉 ∝ xτ(q), (1)

where z was the SWS spatial series, x was the lag dis-
tance and the symbol∝ indicated proportionality. The τ(q) is
widely used in multifractal analysis. If the plot of τ(q) vs. q
[or τ(q) curve] has a single slope (i.e., a linear line), then the
series is a simple scaling (monofractal) type. If τ(q) curve is
nonlinear and convex (facing downward), then the series is
a multiscaling (multifractal) type. In this study, we used the
universal multifractal (UM) model of Schertzer and Love-
joy (1987) to create a reference line that represented the per-
fect monofractal type of scaling. Assuming the conservation
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in mean value of SWS, this model simulated a cascade pro-
cess with a scaling function in an empirical moment. It is thus
used here to compare and characterize the observed scaling
properties with a reference to the monofractal behavior. The
goodness-of-fit between the τ(q) curves and the UM model
was tested using the chi-square test. The sum of squared
residuals (SSRs) between the τ(q) curve and the UM model
was also calculated to test the deviation. The τ(q) curves
over the range of q values (in this study −15 to 15 at 0.5 in-
tervals) were fitted with a linear regression line (referred to as
a single fit). The linear fitting of the τ(q) curves with q < 0
and q > 0 (referred to as segmented fit) was also completed.
The difference between the mean of slopes and segmented
fits (for positive and negative q values) was checked using
the Student’s t test.

In a similar manner to Eq. (1), the qth-order normalized
probability measure of SWS, µ(q, ε) (also known as the par-
tition function), is proven to vary with the scale size:

µi(q,ε)=

[
pi(ε)

]q∑
i

[
pi(ε)

]q ∝ (ε/L)τ(q), (2)

where ε is scale size in the ith segment and pi(ε) is the prob-
ability of a measure pi(ε) and measures the concentration of
a variable of interest (e.g., SWS) by dividing the value of the
variable in the segment to the whole support length (e.g., to
the whole transect of length L units) (Meneveau et al., 1990;
Evertsz and Mandelbrot, 1992). The mass exponent τ(q)was
related to the probability of mass distribution of SWS.

Moreover, the fractal dimension of the subsets of seg-
ments in scale size ε was measured by the multifractal spec-
trum f (q). When a coarse Hölder exponent (local scaling
indices) of α was at the limit as ε→ 0, f (q) was calculated
as follows (Evertsz and Mandelbrot, 1992):

f (q)= lim
ε→0

(
log

( ε
L

))−1∑
i

µi(q,ε) logµi(q,ε), (3)

and the local scaling indices, α, were given by

α(q)= lim
ε→0

(
log

( ε
L

))−1∑
i

µi(q,ε) logpi(ε). (4)

Noting that f (α) was determined through the Legendre
transform of the τ (q) curve: f (α)= qα(q)− τ(q) (Chhabra
and Jensen, 1989).

The multifractal spectrum is a powerful tool in portraying
the similarity and/or differences between the scaling proper-
ties of the measures (e.g., SWS). The width of the spectrum
(αmax–αmin) was used to examine the heterogeneity in the
local scaling indices. The wider the spectrum, the higher the
heterogeneity in the distribution of SWS and vice versa. Sim-
ilarly, the height of the spectrum corresponded to the dimen-
sion of the scaling indices. The small f (q) values indicated
rare events (extreme values in the distribution), whereas the

largest value was the capacity dimension (D0) obtained at
q = 0.

In addition to the multifractal spectrum, [f (q) vs. α(q)],
for many practical applications, we used models to incorpo-
rate a few selected indicators to describe the scaling property
and variability of a process. One of the widely used models
for multifractal measure was the generalized dimension. The
generalized dimension was calculated as follows:

Dq =
1

q − 1
lim
ε→0

log
∑
i

pi(ε)

log(ε)
(5)

when q = 1, D1 was referred to as the information dimen-
sion (also known as entropy dimension), which provided in-
formation about the degree of heterogeneity in the measure
distribution in analogy to the entropy of an open system in
thermodynamics (Voss, 1988). If the value of D1 is close to
unity, it indicated the evenness of measures over the sets of
cell size, whereas the value approaching 0 indicated a subset
of scale in which the irregularities were concentrated. The
D2, known as the correlation dimension, was associated with
the correlation function and measured the average distribu-
tion density of the SWS (Grassberger and Procaccia, 1983).
For a monofractal distribution,D1 andD2 tend to be equal to
D0. A same value ofD0,D1, andD2 indicates that the distri-
bution exhibits perfect self-similarity and is homogeneous in
nature. Contrarily, in multifractal type scaling, theD1 andD2
tend to be smaller thanD0, showingD0>D1>D2. Accord-
ingly, the D1/D0 value can be used to describe the hetero-
geneity in the distribution (Montero, 2005). When this value
equals to 1, it indicated exact monoscaling of the distribution.

2.2.3 Joint multifractal analysis

While the multifractal analysis characterized the distribution
of a SWS spatial series along its geometric support, the joint
multifractal analysis was used to characterize the joint dis-
tribution of two SWS spatial series along a common geo-
metric support. As an extension of the multifractal analy-
sis, the length of the data sets was also divided into several
segments of size ε. Two variables (Pi(ε) and Ri(ε) repre-
senting two spatial series of SWS) were used here to mea-
sure the probability of the measure in the ith segment, when
Pi(ε)∞(ε/L)

α and Ri(ε)∞(ε/L)
β . Among them, α and

β were the local singularity strength, which respectively rep-
resented the mean local exponents of Pi(ε) and Ri(ε) in the
corresponding expressions above. The partition function for
the joint distribution of Pi(ε) and Ri(ε) was calculated as
follows (Chhabra and Jensen, 1989; Meneveau et al., 1990;
Zeleke and Si, 2004):

µi(q, t,ε)=
pi(ε)

q
· ri(ε)

t

N(ε)∑
j=1

[
pj (ε)q · rj (ε)t

] , (6)
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where the normalized µ was the partition function, q and
t were the real numbers for weighting, and the aforemen-
tioned local singularity strength (coarse Hölder exponents)
α and β were the function to q and t as well:

α(q, t)=−[ln(N(ε))]−1
N(ε)∑
i=1

[
µi(q, t,ε) · ln(pi(ε))

]
, (7)

β(q, t)=−[ln(N(ε))]−1
N(ε)∑
i=1

[
µi(q, t,ε) · ln(ri(ε))

]
. (8)

To indicate the dimension of the joint distribution, the multi-
fractal spectra f (α, β) were given by

f (α,β)=−[ln(N(ε))]−1
N(ε)∑
i=1

[
µi(q, t,ε) · ln(µi(q, t,ε))

]
. (9)

In fact, the joint partition function in Eq. (6) can be simplified
to Eq. (2) when q or t is equal to 0. In this case, the joint mul-
tifractal spectrum was transformed to the multifractal spec-
trum with a single measure. When both q and t were 0, f (α,
β) reached maximum and indicated box dimension of the
geometric support of the measures. Pair value of α and β
fluctuates with the change of variable q and t . Therefore, it
is possible to examine the distribution of high or low values
(different intensity levels) of one variable with respect to an-
other by varying the values of q or t . As the joint multifrac-
tal spectra f (α,β) represent the frequency of the occurrence
of certain values of α and β, high values of f (α, β) repre-
sent strong association between the values of α and β. The
Pearson correlation coefficient was used to quantitatively de-
scribe their relations across similar moment orders. In addi-
tion, correlation coefficients between the surface layer and
subsurface layers were used as well to examine the similar-
ity in the scaling properties. Additionally, a contour plot was
used to represent the joint distribution of a pair of variables
by permuting similar values (highs vs. highs or lows vs. lows)
of q and t . The bottom left part of the contour graph presents
the joint distribution of high data values of both variables
while the top right part represents the low data values of both
variables. Therefore, a diagonal contour with low stretch in-
dicates a strong association between the variables in consid-
eration (Biswas et al., 2012b).

3 Results

3.1 Spatial pattern of soil water storage at different
depths

Average SWS for the surface 0–20 cm layer over the 5-
year period was 5.51 cm. A slight decrease in SWS was ob-
served at the immediate deep layer (20–40 cm) and a grad-
ual increase thereafter. The 5-year average SWS was 5.45,
5.48, 5.56, 5.61, 5.69, and 5.77 cm for the 20–40, 40–60,

60–80, 80–100, 100–120, and 120–140 cm layers, respec-
tively. Average SWS for a single measurement varied from
3.40 to 7.16 cm. The highest average SWS for the surface
layer was observed on 29 June 2011. The study area re-
ceived a large amount of spring snowmelt (2010 received
642 mm, double the annual average precipitation) and rain-
fall during 2011 leading to the high SWS in the surface layer
(Weather Canada historical report). The lowest average SWS
for the surface layer was observed on 23 August 2008, which
was one of the driest summers within the 5-year study period.
The highest average SWS (on 29 June 2011) at the surface
layer gradually decreased to 6.55 cm at the deepest layer and
the lowest average SWS (on 23 August 2008) at the surface
layer gradually increased to 5.28 cm at the 120–140 cm layer
(Table 1). These top and bottom boundaries formed a wider
range (3.76 cm) of the average SWS at the surface layer com-
pared to that at the deepest layer (1.27 cm). A big range
(2.00 cm) in the standard deviation (maximum= 2.43 cm and
minimum= 0.43 cm) of the measurement at the surface layer
(0–20 cm) was also observed compared to that at the deepest
layer (120–140 cm; maximum= 1.28 and minimum= 0.76).
This indicated large variations in SWS at the surface layer
that gradually decreased at deeper layers. The coefficients of
variation (CVs) at the surface layer (0–20 cm) varied from
10 to 43 % and at the deepest layer (120–140 cm) varied from
13 to 23 % (Table S1 in the Supplement).

The maximum SWS at the surface layer also var-
ied widely (maximum= 13.96 cm and minimum= 4.64 cm)
compared to the deepest layer (maximum= 9.81 cm and
minimum= 6.71 cm) (Table 1). There was a gradual decrease
in the maximum value and increase in the minimum value
from the surface to the deepest layer. The maximum SWS at
different layers was more localized. For example, there was
high SWS at different layers at the locations of 100 to 140 m
and 225 to 250 m from the origin of the transect. These loca-
tions had very high SWS compared to the field-average be-
cause they were situated in the depressions while low SWS
was observed on the knolls.

The variations in SWS with time were evaluated within
a year. There was little change in the average SWS over
measurements within the years from 2007 to 2011 except
for 2008 (Table 1). For example, average SWS was 6.47,
6.03, 6.54, and 6.33 cm on 6 April 2010, 19 May 2010,
14 June 2010, and 28 September 2010, respectively. How-
ever, the average SWS in 2008 drops from 6.28 cm on
2 May 2008 to 3.51 cm on 17 September 2008 in the sur-
face 0–20 cm layer. This falling trend was observed at all
soil layers. When compared between years, the trend over
time and with depth was very similar in 2007 and 2009 while
slightly different between 2010 and 2011 (Table 1). A de-
creasing trend of the variability was also observed with time.
For example, the CV of the surface layer was around 28 %
on 2 May 2008, which gradually decreased to around 13 %
on 17 September 2008 (Table S1).
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4.85
6.59
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5.05

6.68
3.05

5.25
6.91

2.96
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O
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6.11
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3.10

4.37
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6.13
2.46
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1.22
5.28
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A
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11.55
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10.49
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9.51
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5.38
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3.08

5.49
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2.85
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M
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13.96
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5.49
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3.00
5.36
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5.35
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3.01
5.43

8.91
2.84

5.51
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M
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2009
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5.43

8.15
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5.52
8.08

3.43
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3.13

5.37
7.16

2.64
5.39

8.08
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5.51
8.45

2.80
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6.92
3.16
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7.24

3.16
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6.47

9.51
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9.43
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5.23
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3.01

5.34
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11.32
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5.94

10.49
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5.93
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3.55

5.90
9.81

4.03
5.91

9.81
3.96
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14
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13.96
4.38

6.54
11.55

4.48
6.32
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4.58
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6.22
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6.24
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6.33
11.55

4.48
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6.61
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6.34

9.96
3.17

6.32
9.79

4.30
6.45

6
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13.96

4.31
7.05

11.55
4.56

6.59
10.49

3.85
6.52

9.06
4.75

6.44
9.51

4.21
6.40

9.96
3.17

6.39
9.79

4.77
6.52

29
Jun

2011
13.96

4.93
7.16

11.55
4.96

6.73
10.49

4.29
6.64

9.74
4.42

6.57
9.51

4.28
6.49

9.96
3.17

6.46
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4.30
6.55

29
Sep

2011
12.60

3.11
5.25

8.15
3.46
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8.08
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5.68

7.58
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9.19
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6.02
9.36

4.14
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5-yearaverage
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Figure 2. Log–log plot between the aggregated variance of the SWS spatial series and the scale. A linear relationship indicated the presence
of scale invariance and scaling laws for three selected dates.

The average water storage for soil layers with increasing
depth was also calculated by adding the individual layers to-
gether. The time-averaged values of SWS were 10.96, 16.44,
22.00, 27.61, 33.30, and 39.07 cm for the 0–40, 0–60, 0–80,
0–100, 0–120, and 0–140 cm, respectively (Table S2). The
CV of the 0–20 cm layer was the highest during the wet pe-
riod and gradually declined to the smallest during the dry
period (Table S3). The variability also gradually decreased
with depth.

3.2 Statistical scale invariance

The power-law relationships and the statistical scale invari-
ance were evaluated using a log–log plot of the aggregated
variance of SWS spatial series at different depths of soil lay-
ers and the level of disaggregation (or scales) at different
q values or statistical moments. The linear relationship of
the logarithm of the variance with scale indicated the pres-
ence of statistical scale invariance (Fig. 2). The scale invari-
ance was observed for all measurements and at all depths, al-
though only all depths of three selected dates were presented
as an example. The coefficient of determination (r2) for a
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Figure 3. Mass exponents for soil water storage spatial series mea-
sured at selected 20 cm soil layer down to 140 cm in 2008 for a
range of q (−15 to 15 at 0.5 increments). The solid line is a linear
reference created following the UM model of Schertzer and Love-
joy (1987) passing through (q = 0).

linear fit (n= 7) was between 0.99 and 1.00 (significant at
P = 0.001) for any measurement days and depths. A simi-
lar trend in scale invariance was also observed for SWS with
increasing depth.

3.3 Multifractal analysis

The τ(q) curves for the surface layer displayed deviation
from the UM model during the wet period (Fig. 3). A high
SSR value was observed between the τ(q) curves and the
UM model. Nonlinearity in the τ(q) curve was observed
and the slopes of the segmented fit of the τ(q) curves
were significantly different from each other. For exam-
ple, the SSR values between the τ(q) curve and the UM
model were 27.74 and 50.49 for the surface layer (0–20 cm)
on 2 and 31 May 2008, respectively. The slopes of the
τ(q) curve for single fit were 0.97 and 0.96, respectively, for
the surface layer of 2 and 31 May 2008 (Fig. 3). The slopes of
the segmented fit for these measurements were 1.04 (q < 0)
and 0.87 (q > 0) and, 1.06 (q < 0) and 0.82 (q > 0), respec-
tively (Fig. 3; Table S4).

With the maximum deviation at the surface layer, the
τ(q) curves gradually became very similar to the UM model
with depth. The SSR value decreased considerably in deep
layers. The slopes of the τ(q) curve (single fit) became al-
most at unity with no significant difference with the UM
model. There was no significant difference between the
slopes of the segmented fit. For example, the SSR value
was 6.17, 4.98, 8.80, 8.50, 8.86, and 6.16 respectively for
the 20–40, 40–60, 60–80, 80–100, 100–120, and 120–140 cm
layer of 2 May 2008. The slopes (single fit) for these lay-
ers were 0.99, 1.00, 1.01, 1.01, 1.00, and 0.99, respectively

Figure 4. Mass exponents for selected soil water storage spatial
series from surface to different soil layers (cumulative storage) at
20 cm increment down to 140 cm in 2008 for a range of q (−15 to
15 at 0.5 increments). The solid line is a linear reference created
following the UM model of Schertzer and Lovejoy (1987) passing
through (q = 0).

(Fig. 3). The slopes of the segmented fit were also very close
to unity with no significant difference between them.

The SSR values gradually decreased and the slopes be-
came almost at unity with increasing depth (Fig. 4). For ex-
ample, the SSR values were 14.11, 9.31, 7.71, 6.86, 6.71
and 6.30 and the slopes (single fit) were 0.98, 0.99, 0.99,
1.00, 1.00, and 1.00, respectively, for 0–40, 0–60, 0–80,
0–100, 0–120, and 0–140 cm layer (Table S5). The slopes
of the segmented fit for the τ(q) curve became almost the
same as soil layers went deeper (Fig. 4). The linearity of
the τ(q) curves was gradually strengthened and the SSR
value gradually fell with the depth increase of soil layers at
any time. A significant difference was observed between the
slopes of the τ(q) curves in segmented fitting at the surface
layer of the first three measurements in 2007 (Fig. S1 in the
Supplement), two measurements in 2008 (Fig. 4), three mea-
surements in 2009, and all measurements in 2010 and 2011
(Fig. S2).

A decreasing trend in the SSR value was also observed
over time within a year. During the dry period, the slopes
(single fit and segmented fit) became almost at unity with no
significant difference (Table S6). For example, the SSR value
was 14.12, 8.25, 1.30, 1.46, and 0.52 and the slope was 0.99,
0.99, 1.00, 1.00, and 1.00, respectively, for the surface layer
(0–20 cm) of 21 June 2008, 16 July 2008, 23 August 2008,
17 September 2008 and 22 October 2008 (Fig. 3). Similarly,
a small SSR value and consistent slope were also observed
at the deepest layer (120–140 cm). The SSR values of the
120–140 cm were 2.47, 2.47, 3.31, 3.44, and 4.57, respec-
tively, for the measurements on 21 June 2008, 16 July 2008,
23 August 2008, 17 September 2008, and 22 October 2008
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Figure 5. The width of the multifractal spectrum (αmax–αmin value) for soil water storage at different depths (20 cm increment) for all
measurements completed during the study period.

(Table S6). The slope (single fit) for all these measurements
was equal to 1.01 (Fig. 3). There was very little difference in
the slopes of the segmented fits.

A significant difference in the slopes of the segmented fit
was observed for the surface layer (0–20 cm) of three mea-
surements in 2007 (17 July, 7 August, and 1 September;
Fig. S1), and three measurements in 2009 (21 April, 7 May,
and 27 May) (Table S4; Fig. S2). The difference became non-
significant with depth and during other measurement times.
The trend in deep layers over time was very similar to that
of 2008. However, the trend in the SSR values and the slopes
with time was different in 2010 and 2011 (Table S6). There
was very little difference in the SSR values at different times
of the year. For example, the SSR value for the surface layer
(0–20 cm) was 20.79, 27.18, 24.63, and 26.66 and the slope
(single fit) was 0.97, 0.97, 0.97, and 0.97, respectively, for the
measurements on 6 April 2010, 19 May 2010, 14 June 2010,
and 28 September 2010 (Fig. 3). The slope of the segmented
fit of the surface layer (0–20 cm) was significant for all mea-
surements in 2010 and 2011. However, the trend with depth
was similar to other years.

The height of the multifractal spectrum at different depths
of measurement was very similar over time. The width of the
spectrum (αmax–αmin) varied with depth and time (Fig. 5).
Generally, a comparatively large value of αmax–αmin was ob-
served at the surface layer during the wet period and the
value gradually became smaller with depth. For example,

the value of αmax–αmin for the surface soil layer (0–20 cm)
was 0.23 and 0.31, respectively, for the measurements of
2 and 31 May 2008 (Fig. 5). Meanwhile, the value of αmax–
αmin for the soil layers of 20–140 cm with 20 cm increment
was 0.15, 0.14, 0.19, 0.20, 0.20, and 0.18 for 2 May 2008
and 0.25, 0.19, 0.11, 0.14, 0.12, and 0.11 for 31 May 2008,
respectively (Fig. 6). In the later part of the year, the width
of the spectrum gradually decreased (Table S8). For ex-
ample, the αmax–αmin values were 0.19, 0.16, 0.07, 0.08,
and 0.05, respectively for the surface layer on 21 June 2008,
16 July 2008, 23 August 2008, 17 September 2008 and
22 October 2008. Similar trend in values of αmax–αmin was
also observed at deep layers (Fig. 6).

The trend of the αmax–αmin values in 2007 and 2009 was
very similar to that of 2008 (Table S8). A higher value
of αmax–αmin was observed in the first three measurements
of 2007 (Fig. S5) and three measurements of 2009 (Fig. S6).
However, the values in the surface layer (0–20 cm) in 2010
and 2011 were always higher compared to the deep layers
(Fig. 6). There was no decreasing trend in values for the
surface layer over time. For example, the αmax–αmin value
was 0.21, 0.24, 0.21, and 0.22, respectively, for the measure-
ments on 6 April 2010, 19 May 2010, 14 June 2010, and
28 September 2010 (Fig. 6). However, the trend in the αmax–
αmin value of deep layers was similar to that of other years.
A similar trend was observed for cumulative SWS with in-
creasing depth over the years (Fig. 7). Generally, the value of
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Figure 6. Multifractal spectra of soil water storage spatial series measured at each 20 cm soil layer down to 140 cm in 2008, 2010 and 2011
for a range of q (−15 to 15 at 0.5 increments).

αmax–αmin was also small with the highest in the 0–20 soil
layers and gradually decreased with depth (Fig. 7; Table S9).

A very similar height of the f (q) curve for all depths and
all periods indicated a consistent frequency distribution of
the scaling indices (Figs. 6 and 7). Additionally, the posi-
tion and the symmetry of the curve revealed the distribution
of scaling exponents. A symmetric f (q) curve indicated uni-
form distribution of the scaling exponents. The left side of the
spectrum corresponded to the large SWS that were amplified
by the positive values of q, whereas the right side indicated
smaller SWS that were amplified by negative q values. Sym-
metry leaning towards the left side during the early spring
and in the surface layers in 2008 clearly showed the wider
distribution of scaling indices and multifractal nature of the
SWS (Fig. 6). While the shifting of the symmetry towards
the right side clearly indicated less variable scaling indices
and thus reduction of multifractal behavior. During the wet
years of 2010 and 2011, the symmetry towards the left side
indicated the variability in the scaling indices. This also per-
sisted with depth. A similar trend was observed for different
years at all depth layers (Fig. 7).

Generally, the D1 and D2 values for different depths of
different measurements were very close to 1 (Fig. 8 and Ta-
ble S10). In general, theD1 value of the surface layers gradu-
ally increased with depth. Similarly, at any depth, theD1 val-
ues gradually increased from the spring to the fall season
through summer (Fig. 8). The highest variation in D values

with q was observed in the surface layer and in the spring
season and gradually decreased with depth and later part of
the growing season. For example, the first three measure-
ments in 2007 and 2009 presented high D values at high
q values (Figs. S9 and S10). This high D value gradually
decreased in the dry period of the year. For example, the
D value with positive q was high in the surface layer of 2 and
31 May 2008 (Fig. 9), whereas it gradually decreased at the
later part of the year (e.g., 17 September 2008). The trend
with time and depth in 2007 and 2009 was very similar to that
of 2008 (Tables S10 and S11). A consistently high D value
was observed in the surface layer for all 2010 and 2011 mea-
surements (Fig. 9). The trend inD values with depth in 2010
and 2011 was also similar to other years. A high value of D1
and D2 were also observed at all depth layers for all mea-
surements (Fig. 10; Table S11).

3.4 Joint multifractal analysis

There were strong correlations between the scaling prop-
erty of the joint distribution of the surface soil layer and the
deep soil layers. The narrow width and the diagonally ori-
ented contours between SWS measured on 22 October 2008
at 0–20 and 20–40 cm layers clearly demonstrate strong as-
sociation between those two layers (Fig. 11). The correla-
tion between the surface 0–20 cm and the deep layers on
2 May 2008 (wet period) was larger than 0.9 (significant at
P = 0.001; Table 2). The highest correlation was observed
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Figure 7. Multifractal spectra of soil water storage spatial series from surface to different soil layers (cumulative storage) at 20 cm increment
down to 140 cm in 2008, 2010, and 2011 for a range of q (−15 to 15 at 0.5 increments).

Figure 8. The information dimension (D1) for soil water storage at different depths (20 cm increment) over the whole measurement period.

between those layers closest to each other. The correlations
gradually increased over time and showed high consistency
between different layers on 17 September 2008 (Table 2). A
very similar trend was observed in other years.

4 Discussion

The amount of water stored in the soil is the result of
the dominant underlying hydrological processes. Located in
semi-arid climate, the study area receives about 30 % of the
long-term annual average precipitation as snowfall during
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Table 2. Correlation coefficients between joint multifractal indices (α and β) (n= 440) of the surface layer with those from subsurface layers
at 20 cm intervals in 2008.

2 May 31 May 21 Jun 16 Jul 23 Aug 17 Sep 22 Oct
2008 2008 2008 2008 2008 2008 2008

0–20 cm vs.
0.96 0.98 0.99 0.99 0.99 1.00 1.00

20–40 cm

0–20 cm vs.
0.93 0.96 0.96 0.97 0.97 1.00 1.00

40–60 cm

0–20 cm vs.
0.93 0.94 0.95 0.95 0.96 0.99 0.99

60–80 cm

0–20 cm vs.
0.92 0.92 0.93 0.94 0.94 0.98 0.99

80–100 cm

0–20 cm vs.
0.92 0.92 0.93 0.93 0.93 0.97 0.99

100–120 cm

0–20 cm vs.
0.93 0.94 0.95 0.94 0.94 1.00 1.00

120–140 cm

Figure 9. Generalized dimension spectra of soil water storage spa-
tial series measured at each 20 cm soil layer down to 140 cm in 2008
for a range of q (−15 to 15 at 0.5 increments).

winter months (Pomeroy et al., 2007). Generally, the de-
pressions receive snow from surrounding uplands or knolls
as redistributed by strong prairie wind (Pomeroy and Gray,
1995; Fang and Pomeroy, 2009). The snow melts within a
short period of time during the early spring and contributes
a large amount of water. The frozen ground restricts infil-
tration and redistributes excess water within the landscape
with greater accumulation in depressions (Fig. 1) (Gray et
al., 1985). Apart from the snowmelt, the spring rainfall also
contributes to the water inflow in the landscape (Fig. 1). This
created a spatial pattern of SWS that was almost a mirror im-
age of the spatial distribution of relative elevation (Biswas
and Si, 2011a, c; Biswas et al., 2012a).

In the spring, the sources of water loss were the deep
drainage and the evaporation. As the loss of water through
deep drainage in the study area was as low as 2 to 40 mm per
year, occurring mainly through the fractures and preferential
flow paths (Hayashi et al., 1998; van der Kamp et al., 2003),
the major loss occurred mainly through evaporation from the
surface of the bare ground and standing water in depressions.
These processes lose a very small amount of water compared
to the input of water in spring and early summer leaving the
soil wet. Moreover, the surface soil with high organic mat-
ter content and low bulk density stored a larger amount of
water than the deep layers where the organic matter grad-
ually decreased and the bulk density increased. Reflecting
the long-term history of vegetation growth in the landscape,
the variability of organic matter content (CV= 41 %) may be
one of the main factors of the high variability in surface layer
SWS (Biswas and Si, 2011b).

As the vegetation developed in summer, strong evapotran-
spiration resulted in the lowest average SWS. High amounts
of water in the depressions allowed grasses to grow faster
and transpire more water compared to the knolls (Fig. 1).
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Figure 10. Generalized dimension spectra of soil water storage spa-
tial series from surface to different soil layers (cumulative storage)
at 20 cm increment down to 140 cm in 2008 for a range of q (−15
to 15 at 0.5 increments).

For example, the aquatic vegetation growth within the de-
pressions was as high as 2 m, while the grasses on the knolls
grew to a maximum of 1 m tall. The uneven growth of veg-
etation and the high evapotranspirative demand in summer
narrowed the range of SWS. In the soil where water is more
available, evapotranspiration will be stronger while the less
evapotranspirative demand will be shown in the relatively dry
soil. As a result, the excessive water in the relatively wet soil
will be offset by evapotranspiration, reducing the disparities
between maximum and minimum values. This variable wa-
ter uptake was visible in the growth of vegetation in the later
part of the growing season as well (Fig. 1). The reduction
in the range of SWS was the largest in the surface layer and
gradually decreased at deeper layers. This is because the sur-
face layer was exposed to various environmental forces. For
example, plants can take up more than 70 % of the water they
need from the top 50 % of the root zone (Feddes et al., 1978).
This dynamic behavior of the surface layer exhausted readily
available water and finally reduced the range in water stor-

Figure 11. Multifractal spectra of joint distribution of SWS at 0–
20 and 20–40 cm measured on 22 October 2008. Contour lines show
the joint scaling dimensions of the SWS measurement series.

age. This decrease in range also happened in the later part of
the growing season.

The multifractal and joint multifractal analyses explained
the scaling behavior of SWS at different depths over time.
The linearity in the log–log plot between the aggregated vari-
ance in SWS and the scale at all soil layers over time indi-
cated that SWS behaved under scaling laws (Fig. 2). The near
unity slope of the τ(q) curves and the insignificant difference
from the UM model indicated a monofractal type scaling at
all layers except the surface layer during the wet period (un-
til mid- to late June) where a multifractal behavior led to a
slight convex downward curve (Fig. 3). This was also sup-
ported by a significant difference between the slope of single
and segmented fit in the surface layer during the wet period.

Generally during the wet period, excess water fills and
drains macropores quickly and creates variations in SWS.
Variations in the evaporation due to uneven solar incidence
over micro-topography also triggered SWS variability in the
surface layer. Additionally, the snowmelt and the release of
water controlled by local (e.g., soil texture) and non-local
(e.g., topography) factors also affected the spatial distribu-
tion of SWS, making it more heterogeneous in the wet pe-
riod (Grayson et al., 1997; Biswas and Si, 2012). To the con-
trary, as depth increased, less impact of environmental fac-
tors tended to create less variability in SWS and exhibited a
monofractal behavior, which was consistent with the uniform
slope shown in Fig. 3. During the dry period or later part of
the growing season, the SWS storage variability at all depths
was small and exhibited monofractal behavior (Fig. 3). Ac-
cordingly, the deeper layers in the wet period and all layers in
the dry period can be accurately represented by only one scal-
ing exponent while the surface layer in the wet period may
require a hierarchy of exponents. A similar trend was ob-
served in SWS of cumulative depth layers (Fig. 4). Resulting
from increasing buffering capacity of the deeper soil layers,
the variability of cumulative SWS overlaid the multifractal
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nature of the surface layer, and finally exhibited monofractal
behavior in general.

The scaling patterns of SWS at different depths and peri-
ods were further examined using multifractal spectrum [f (q)
vs. α(q)] (Figs. 6 and 7). The degree of convexity was used to
characterize the heterogeneity of scaling exponents or the de-
gree of multifractality. Large values of αmax–αmin indicated
stronger heterogeneity in the local scaling indices of SWS
or cumulative SWS and vice versa. The largest value for the
surface layer(s) in the wet period indicated the most multi-
fractal behavior of SWS. However, the value decreased with
depth and gradually converged in deep layers (Fig. 6). This
decline manifested a conformity in the scaling behavior of
SWS at deeper layers. Over time, the αmax–αmin value of the
surface soil layer decreased and became very similar to that
of deep layers. This indicated a reduction in the degree of
multifractality for surface soil layers from the wet period to
the dry period. A consistent αmax–αmin value for all depths
during the dry period suggested the homogeneity and least
multifractal nature of SWS. A similar behavior was observed
in the cumulative SWS (Fig. 7).

To sum up, both the unity slope of the τ(q) curves (Figs. 3
and 4) and the degree of convexity of the f (q) spectrum
(Figs. 6 and 7) jointly demonstrated that dynamic behavior
of surface soil layers in the wet period made SWS highly
variable and exhibited a multifractal nature, while less en-
vironmental forces and increased buffering capacity of deep
layers led to a monofractal nature. As a result, multiple scal-
ing exponents were required to characterize the variability
of SWS in the surface layer during the wet period, while a
fewer number of exponents were necessary for deeper layers
during wet period or all layers during dry period.

The height of the spectrum, f (q) revealed the dimension
or frequency distribution of the scaling indices (Caniego et
al., 2003). A low height of f (q) curve indicated rare events
or extreme values in the distribution, while a high value rep-
resented uniform distribution in all segments. A very simi-
lar height of the f (q) curve for all depths and all periods
indicated a consistent frequency distribution of the scaling
indices.

The two upper soil layers during the wet period tended to
exhibit a longer tail of the curve on the left, showing more
heterogeneity in the distribution of large values. However,
when stepping into the dry period, the spectrum tended to
display a longer tail on the right compared to the left side,
suggesting more heterogeneity in the distribution of smaller
values. A few locations with standing water lead to the spatial
differences during the wet period, whereas a few points with
very small SWS due to high evapotranspiration by growing
vegetation during the dry period results in the heterogenic
distribution in smaller values.

The generalized dimension, Dq was subsequently used
to characterize the scaling property and variability in SWS
(Figs. 9 and 10). The largest value of f (q), referred to as
the capacity dimension (D0) obtained at q = 0, was close to

unity for all layers at different times (Fig. 9). The informa-
tion dimension (D1) obtained at q = 1 was different from the
correlation dimension (D2), which is denoted as the average
distribution density of the measurement for the surface layers
in the wet period (Grassberger and Procaccia, 1983). In this
case, the different values of D0, D1, and D2 indicated the
multifractal nature of the distribution of SWS. Similarly, a
non-unity value ofD1/D0 (Montero, 2005) also indicated the
multifractal nature of SWS at the surface layer(s) during the
wet period. However, over the growing season, the D1 and
D2 value approached toD0 and indicated a monofractal type
behavior. Similar values of D0, D1, and D2 during the dry
period also indicated homogeneous distributions.

Joint multifractal distribution between the surface to var-
ious subsurface layers indicated the similarity in the scaling
patterns (Table 2). Basically, the hydrological processes of
shallower layers were similar to those of the top layer, while
deeper layers showed more disparities from the surface. The
nearest subsurface (20–40 cm) layer showed generally the
highest similarity with the surface (0–20 cm) layer. However,
in the wet period, the subsurface layers displayed the small-
est similarity to the surface layer, suggesting a higher dy-
namic nature of hydrological processes. In the dry period, a
stronger effect of vegetation overwhelmed the effect of small
variations of water distribution, thus creating a more uniform
distribution of SWS at all soil layers (Table 2).

Overall, our result revealed a multifractal behavior of sur-
face soil layers during the wet period due to the dynamic
nature of hydrological processes. This behavior gradually
changed with depth and time (Fig. 12). In the deeper layers
during the wet period, the behavior became less multifractal
or nearly monofractal. Similarly, in the dry period, the vege-
tation development and its high evapotranspirative demand in
the semi-arid climate of the study area increasingly buffered
the variation of SWS, as a result, all the soil layers showed
uniform distribution or monofractal behavior (Fig. 12).

5 Summary and conclusions

The transformation of information on soil water variability
from one scale to another requires knowledge on the scal-
ing behavior and the quantification of scaling indices. Sur-
face soil water can be easily measured (e.g., remote sensing)
and presents multi-scaling behavior (requiring multiple scal-
ing indices). However, land-management practices require
the understanding of the hydrological dynamics in the root
zone and/or the whole soil profile.

In this manuscript, the scaling properties of soil water stor-
age at different soil layers measured over a 5-year period
were examined using multifractal and joint multifractal anal-
ysis. The scaling properties of soil water storage mainly sug-
gested a monofractal scaling behavior. However, the surface
layer in the wet period or with high soil water storage tended
to be multifractal, which gradually became monofractal with

Nonlin. Processes Geophys., 23, 269–284, 2016 www.nonlin-processes-geophys.net/23/269/2016/



W. Ji et al.: Fractal behavior of soil water storage at multiple depths 283

Figure 12. Conceptual schematics showing vegetation development over time, dominant water loss processes and the scaling behavior of soil
water storage at different depths. The figure is developed based on field observations and scaling analysis. The scale of the figure is arbitrary.

depth. With the decrease in soil water storage, the scaling be-
havior became monofractal during the growing season. In a
year with high annual precipitation, the soil stored more wa-
ter in the surface layer throughout the growing period and
displayed nearly multifractal scaling behavior. This multi-
fractal nature indicated that the transformation of informa-
tion from one scale to another at the surface layer during the
wet period requires multiple scaling indices. On the contrary,
the transformation requires a single scaling index during the
dry period for the whole soil profile. The scaling properties
of the surface layer were highly correlated with those of the
deep layers, which indicated a highly similar scaling behav-
ior in the soil profile. The study was conducted in an un-
dulating landscape from a semi-arid climate and the results
were very consistent over the years. Therefore, the observa-
tion completed at the field scale in this type of landscape
and climate may be generalized in similar landscapes and
climatic situations, otherwise may need to be examined thor-
oughly. The method used here can be transferred to examine
the scaling properties in other experimental situations.

The Supplement related to this article is available online
at doi:10.5194/npg-23-269-2016-supplement.
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