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Abstract. Soil processes are characterized by a great degree
of heterogeneity, which may be assessed by scaling prop-
erties. The aims of the current study were to describe the
dynamics of soil water content at three depths in a vine-
yard under rain-fed and irrigation conditions and to assess
the multifractality of these time data series. Frequency do-
main reflectometry (FDR) sensors were used for automat-
ically monitoring soil water content in a vineyard located
in Leiro (Ourense, northwest Spain). Data were registered
at 30 min intervals at three depths (20, 40, and 60 cm) be-
tween 14 June and 26 August 2011 and 2012. Two treatments
were considered: rain-fed and irrigation to 50 % crop evap-
otranspiration. Soil water content data series obeyed power
laws and tended to behave as multifractals. Values for en-
tropy (D7) and correlation (D>) dimensions were lower in the
series from the irrigation treatment. The Holder exponent of
order zero (op) was similar between treatments; however, the
widths of the singularity spectra, f(«), were greater under ir-
rigation conditions. Multifractality indices slightly decreased
with depth. These results suggest that singularity and Rényi
spectra were useful for characterizing the time variability of
soil water content, distinguishing patterns among series reg-
istered under rain-fed and irrigation treatments.

1 Introduction

Soil water storage variability is strongly related to topograph-
ical, geological, edaphic, and vegetation factors (Braud et
al., 1995). These environmental factors and processes (rain-
fall, evapotranspiration, runoff) do not operate independently
but as a conjunction of processes with nested and complex
effects. Overall, this results in a distribution of soil water
storage that varies as a function of the temporal and spatial
scales. Therefore, similar to other soil properties and pro-
cesses (Western and Bloschl, 1999; Zeleke and Si, 2006), soil
water storage along time is a complex process characterized
by a lack of homogeneity; heterogeneity in space and/or time
is a feature that can be described by scaling procedures.
Fractals have been widely employed in soil science, as soil
properties may be described through scale invariance con-
cepts (Tyler and Wheatcraft, 1990; Perfect et al., 1996; Vi-
dal Vazquez et al., 2007; Biswas et al., 2012a). More re-
cently, several authors performed multifractal studies of het-
erogeneous time data series. For instance, Jiménez-Hornero
et al. (2010) described ozone time series using the multifrac-
tal formalism. Rodriguez-Gémez et al. (2013) used a multi-
fractal approach for characterizing solar radiation time series.
Soil water content can be automatically estimated by using
sensors that measure variations in the soil dielectric constant,
since it is strongly related to soil water content (Mestas-
Valero et al., 2012). This parameter is characterized by its
spiky dynamics, with sudden and intense peaks of high fre-
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Figure 1. Location of the studied vineyard and experimental layout.

quency activity, mostly at soil surface. Several studies have
described scaling patterns for the behaviour of soil water con-
tent spatial distribution (e.g. Kim and Barros, 2002; Biswas
et al., 2012b); however, multifractal analyses of continuously
measured soil water content are scarce, except for a study on
rain-fed grassland (Mestas-Valero et al., 2011). Therefore,
the aim of the current work was to describe soil water dy-
namics in a vineyard subjected to two different treatments
(rain-fed and irrigated) and to assess multifractality of these
data series over two consecutive seasons.

2 Materials and methods
2.1 Description of the study area

The experiment was conducted over two consecutive
growing seasons (2011-2012) in a 0.2ha vineyard (Vitis
vinifera L.) planted with cultivar Albarifio, located in the ex-
perimental farm of the Estacién de Viticultura e Enoloxia de
Galicia (EVEGA), in Leiro (42°21.6’ N, 8°7.02’ W; elevation
115 m), Ourense, Spain (Fig. 1). Vines were grafted in 1998
on 196-17C rootstock and trained to a vertical trellis on a sin-
gle cordon system (10-12 buds per vine). Rows were east—
west oriented, spacings between vines and between rows
were 1.25 and 2.4 m, respectively (3333 vines ha~!). The soil
at the site was sandy textured (64 % sand, 16 % silt, 20 %
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clay), slightly acidic (pH 6.3), medium fertility (2.7 % or-
ganic matter), and with a rather shallow profile (= 1.2 m).
The climate of the studied site is temperate, humid with cool
nights (Fraga et al., 2014).

2.2 Experimental design

The reference evapotranspiration (ETy) per week for the site
was calculated from weather variables recorded at a sta-
tion located 150 m away from the experimental vineyard us-
ing the Penman—Monteith equation (Allen et al., 1998). The
ET( was then used, along with a constant crop coefficient
(K;=0.8) to compute the amount of water required by the
vines (Trigo-Coérdoba et al., 2015). Precipitation was sub-
tracted from ET. each week. The calculated amount of water
was applied the following week.

Treatments consisted of a rain-fed control and an irriga-
tion to the 50 % of ET.. Irrigation was applied from late June
to early July (after bloom) till mid-August, approximately
2 weeks prior to harvest through two pressure-compensated
emitters of 4 Lh~! located 25 cm on either side of the vine.
Irrigation water was of good quality, with a pH of 6.35, elec-
trical conductivity of 163.4 uS cm™', and 0.4 mg L~ of sus-
pended solids. The water amount applied each season was
40 and 50 mm for 2011 and 2012, respectively (Table S1 in
the Supplement).

www.nonlin-processes-geophys.net/23/205/2016/
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2.3 Measurements

The volumetric soil water content was continuously moni-
tored through the soil profile in two spots of the experimen-
tal vineyard (one in the rain-fed treatment and another in
the irrigated treatment) using two capacitance probes (Envi-
roSCAN, Sentek, Australia), based on the frequency domain
reflectometry (FDR) technique. Each probe was equipped
with three sensors installed on an access tube at 20, 40, and
60 cm depth and connected to a data logger. The probes were
properly maintained for recording soil water content at half-
hour intervals over the 2011 and 2012 seasons. Here, data
from the irrigation period (mid-June to late August) are re-
ported.

In each treatment, the probe was located within two vines
(Fig. 1), avoiding proximity to the emitters (25 cm from the
emitter and 50 cm from the vine trunk, approximately). The
equation provided by the manufacturer was used for trans-
forming permittivity data registered by the probes into soil
water content since we only wanted to compare relative con-
tents between these two irrigation regimes. Previous work
suggests that soil type greatly affects the FDR readings, but
the default equation is valid for differential measurements
(Paraskovas et al., 2012).

2.4 Multifractal analysis

The concepts of multifractals and their estimation methods
that were used in the current study are next summarized.
For detailed descriptions, further information can be found
in Chhabra et al. (1989) and Everstz and Mandelbrot (1992).

To implement the multifractal analysis of one-dimensional
soil water content time distributions supported on a given in-
terval I =[a, b], a set of non-overlapping subintervals of
with equal length is required. A common choice is to con-
sider dyadic downscaling (Everstz and Mandelbrot, 1992;
Caniego et al., 2005), which means successive partitions of /
in k stages (k=1,2,3...). Hence, at each scale, d, a number
of segments, N (§) = 2k are obtained with characteristic time
resolution, § = L x 2%, covering the whole extent of 7.

A multifractal approach applied to time series has already
been described (Jiménez-Hornero et al., 2010), hence, we
only summarize the technique used in the current study. The
time interval of soil water content data series, L, varied from
half an hour to 2 months and the minimum time resolution,
8ini, Was chosen accounting for containing at least one half-
hourly averaged soil moisture datum, 6;y;, at every initial in-
terval. According to this, the probability mass distribution,
pi(8), at time resolution § was estimated as

0 (8)
Ninj

2 (Oni)
j

pi(8) = , ey
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where 6; is the water content of the ith interval and njy; is the
number of initial intervals with mean soil water content 0ip;.

The method of the moments was used (Chhabra et al.,
1989) to analyse the multifractal spectrum of the probabil-
ity mass function, p;(§). The partition function x (g, §) was
estimated as

x(q,8) =) pi®7, )
i=1

where moment ¢ is a real number between —oo and +o0.
A log—log plot of the partition function vs. § for different
values of ¢ yields

x(q,8) 877D, 3)

where t(q) is the mass scaling function of order g. The func-
tions f (o) and o can be obtained by Legendre transforma-
tion of the mass exponent, t(g), as f(«) =a(g)-1(g) and
a(q) =dt(g)/dg, respectively. Log-log plots of x,(d) vs.
8, however, typically exhibit linearity across a limited scale
range (e.g. Posadas et al., 2003), which results in drawbacks
when using the moment method to obtain the singularity
spectrum.

The direct method (Chhabra and Jensen, 1989) avoids in-
accuracies associated with the estimation of o(g) by Legen-
dre transformation. This method is based on the calculation
of the contributions of individual segments, w; (g, J), to the
partition function, which are defined as

N($)

wi(q.8) =pnl(8)/ > ul ). “
1

Then, using a set of real numbers, g, (—00 < g < —00), the
relationships applied to calculate f(«) and «, can be ex-
pressed as

N(3)
> 1i(g, 8)log|ui(g. )]
i=1

fa(g)) « 102 (®) , (5a)
and

N ()

> mi(g,8)log[u;(8)]

i=1
a(g) x Tog(0) (5b)

The f(a)-« spectrum is reduced to a point for monofractal
scaling type. The minimum scaling exponent (opin) corre-
sponds to the most concentrated region of the measure, and
the maximum exponent (omax) corresponds to the rarefied
regions of the measure. A plot of f(«) vs. « is called multi-
fractal spectrum. It is a downward function with a maximum
at ¢ =0. The width of the multifractal spectrum (w = opax—
omin) indicates overall variability (Moreno et al., 2008) sim-
ilar to the nugget effects in geostatistics. For each data se-
ries, we calculated multifractal spectrum with g from —10
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Figure 2. Crop evapotranspiration (ET,), rainfall and irrigation wa-
ter applied over the two growing seasons studied, 2011 and 2012.
Day of the year 166 is 14 June.

to +10 in steps of 0.5, fine enough to show the multifractal
behaviour in the studied moment range.

Multifractal measures can also be characterized on the ba-
sis of the generalized dimension, Dy, of the moment of or-
der g of a distribution, defined by Grassberger and Procac-
cioa (1983), based on the work of Rényi (1955). The D, of a
multifractal measure is calculated as

1 1 8
py= 1D _ 1y, lel®] (62)
g—1 g—15-0 logéd
and
n(s)
2 wi(8)log[pi(8)]
D ~ lim =1 Lg=1. (6b)

§—0 logéd

Equation (6a) shows that t(q) is also related to the gener-
alized fractal dimension, D,. In fact, the concept of gener-
alized dimension, D,, corresponds to the scaling exponent
for the ¢'* moment of the measure. Using Eq. (6a), D be-
comes indeterminate. Therefore, for the particular case that
q =1, Eq. (6b) was employed.

For a monofractal, D, is a constant function of g. How-
ever, for multifractal measures, the relationship between
D, and g is described by a S-shaped curve. In this case,
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Figure 3. Soil water content at three depths (20, 40, and 60 cm) for
rain-fed and irrigation treatments over the 2011 and 2012 growing
seasons. DOY stands for day of the year (165 = 13 June).

the most frequently used generalized dimensions are Dy for
q=0, Dy for g=1, and D, for ¢ =2, which are referred
to as capacity, information (or Shannon entropy), and corre-
lation dimension, respectively. The information dimension,
D1, provides insight about the degree of heterogeneity in
the distribution of the measure. The correlation dimension,
D, is associated to the uniformity of the measure among in-
tervals and describes the average distribution density of the
measure. In general, the generalized dimension, Dy, is more
useful for the comprehensive study of multifractals. Differ-
ences between D, allow comparison of the complexity be-
tween measured soil water content data series. In homoge-
neous structures D, are close, whereas in a monofractal they
are equal.

3 Results and discussion

3.1 Patterns of vineyard soil water content under
rain-fed and irrigation conditions

Temperatures for the two studied growing seasons were sim-
ilar on average (Table S1); however, rainfall and evapotran-
spiration were higher in 2012. Harvest date was almost the
same in both years. Nevertheless, the temporal evolution of
rainfall and ET, differed from year to year (Fig. 2), being
greater during 2012, especially at the beginning of the study
period. This fact caused a different scheduling of irrigation
between years.

Soil water content decreased over the growing season un-
der rain-fed conditions in both years (Fig. 3). However, when
irrigation was initiated, soil water content became more sta-
ble in the irrigated treatment (Fig. 3). The magnitude of the
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Table 1. Selected multifractal parameters: generalized dimensions, for the first three positive moments, Dy, D1, and D;, with their respective
errors of estimation, and two multifractality indices, A(Dy—D,) and A(Dy—Dq).

Treatment  Depth Dy D Dy A(Dog-Dy)  A(Do-Dqg)

(cm)
2011

Rain-fed 20 0.999+£0.001 0.937+0.008 0.884+0.016 0.115 0.672
40 1.000£0.000  0.881£0.007 0.746+0.014 0.254 0.752
60 1.000+£0.000  0.925+0.007 0.868 +0.013 0.133 0.656
20-60 1.000+0.000 0.916£0.008 0.833+0.019 0.167 0.589

Irrigated 20 0.999£0.001 0.868+0.013 0.778 £0.026 0.221 0.757
40 1.000+£0.000 0.852+0.019 0.773+£0.026 0.227 0.698
60 1.000+£0.000 0.852+0.022 0.758 £0.034 0.242 0.664
20-60 1.000+0.000 0.861+£0.023 0.773 £0.037 0.227 0.695

2012

Rain-fed 20 0.999+0.001 0.861+0.014 0.771£0.025 0.228 0.856
40 1.000+£0.000 0.888+0.008 0.739+0.017 0.261 0.801
60 1.000+£0.000  0.949£0.004 0.907 +0.005 0.093 0.548
20-60 1.000+£0.000 0.898£0.006 0.768 +0.016 0.232 0.682

Irrigated 20 0.984+£0.006 0.831+0.010 0.731+0.019 0.253 1.024
40 0.979+£0.006 0.757+0.014 0.589+0.022 0.390 1.210
60 1.000£0.000  0.907+£0.007 0.805=+£0.015 0.195 0.622
20-60 0.993+£0.003 0.822+0.016 0.707 +£0.030 0.286 1.085

soil water loss was more evident in the layers of 20 and 40 cm
depth, and less important in the 60 cm layer, which may in-
dicate the depth of the active root zone as well as the in-
tensity of root water uptake at each soil layer, as reported
for other cultivars and crops (Intrigliolo and Castel, 2009;
Mestas-Valero et al., 2011), and proved that FDR probes can
be successfully used for irrigation scheduling (Goldhamer et
al., 1999), calibrating them with established indicators such
as midday stem water potential (Mirds-Avalos et al., 2014)
and soil evaporation.

3.2 Multifractality of the soil water content time series

Soil water content time series obeyed power-law scaling, as
shown by the double log plots (Fig. S1 in the Supplement).
These plots allow to identify the range of moments needed to
describe the scale variation of the studied parameter (Vidal
Viézquez et al., 2010).

Figure S1 shows the partition functions for rain-fed and ir-
rigation conditions at 20 cm depth in 2011. Visually, a slight
departure from the straight line model was observed for mo-
ments g < —1 (Fig. S1). In general, higher deviations from
linearity were found for the highest ¢ moments in the data
series from the irrigation treatment, when compared to those
from the rain-fed treatment, especially in 2012. Neverthe-
less, determination coefficients, R2, were greater than 0.9
for statistical moments in the range from ¢ = —10 to ¢ = 10,
in all the studied data sets. Consequently, scalings are ade-
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quately defined. Similar results were found by Mestas-Valero
et al. (2011) for soil water content under rain-fed grassland.

The 7 (g) functions were different from a monofractal type
of scaling for all series analysed, especially under irrigation
conditions (Fig. S2), similar to results obtained by Biswas et
al. (2012b) for soil water storage. In fact, the heterogeneity of
the soil water content data series from the irrigated treatment
was greater than that of the rain-fed treatment (Fig. S2).

The value of D; is a good indicator of the heterogene-
ity degree in temporal distributions of a given variable. The
closer the D value to Dy, the more homogeneous is the dis-
tribution of the variable. In our case, rain-fed series were
more homogeneous than the irrigated ones. In general, soil
water content recorded at 60 cm depth presented the lower
differences between D; and Dy (Table 1), thus being more
homogeneous both under rain-fed and irrigation conditions.
Moreover, the 2012 data series presented a higher hetero-
geneity than those from 2011 (Table 1) for both treatments,
caused by the greater rainfall amount collected in 2012.

A monofractal would be characterized by Do = D1 = D,
(Evertsz and Mandelbrot, 1992). In all the studied data series
Dy > Dy > D, (Table 1), indicating that soil water content
had a tendency to behave as a multifractal. However, differ-
ences (Dog—Dq) ranged from 0.051 to 0.222 and (D1—D>) os-
cillated between 0.053 and 0.168, which suggests a different
degree in the homogeneity/heterogeneity of soil water con-
tent depending on the treatment imposed and the depth in the
soil profile. In general, data series from the irrigation treat-
ment showed greater differences between Dy, Di, and D>

Nonlin. Processes Geophys., 23, 205-213, 2016
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Figure 4. Generalized dimension, Dy, spectra (—10 < g < 10) of soil water content for rain-fed and irrigation treatments at the studied depths

in 2011 and 2012. Bars indicate estimation errors.

than the series from the rain-fed treatment for both growing
seasons. Moreover, the 60 cm depth layer presented smaller
differences than the 20 and 40 cm layers (Table 1). The width
of the D, spectra, determined by indicators such as Do—D1g,
showed different degrees of heterogeneity, with a trend to de-
crease in depth and under rain-fed conditions when compared
with the irrigation treatment (Table 1). This is caused by the
spiky nature of soil water content and indicates a multiple
scaling nature at shallow depths. Moreover, the width of the
Dy spectra increased from 2011 to 2012 in both treatments,
mainly in the 20 and 40 cm depths.

Generalized dimensions, or Rényi spectra, calculated for
the range between ¢ = —10 and g = 10 for soil water con-
tent data series at three depths under rain-fed and irrigation
conditions are displayed in Fig. 4. All the data series studied
showed Rényi spectra as asymmetric sigma-shaped curves
with more curvature for the negative values of g than for
positive ones (Fig. 4). The left part of the curves is concave
down and it changes to concave up on the right of the verti-
cal axis. In the case of the soil water content series from the
rain-fed treatment, the most curved spectra corresponded to
the 40 cm depth data series, whereas for the irrigation treat-

Nonlin. Processes Geophys., 23, 205-213, 2016

ment, the most curved one was the 20 cm depth data series
(Fig. 4). When compared between treatments, Rényi spectra
were more curved under irrigation conditions and the esti-
mation errors were also greater under this treatment (Fig. 4).
These results confirmed the higher heterogeneity (multifrac-
tality) of the data series from the irrigation treatment when
compared to those from rain-fed treatment.

Mestas-Valero et al. (2011) obtained monofractal distribu-
tions of soil water content time series under grassland when
measured at depths greater than 40 cm, in contrast with our
results. This disagreement is likely casued by the greater
depth reached by grapevine roots when compared to grass
roots. Therefore, grapevines may uptake water from deeper
soil layers than grasses.

Determination coefficients, R2, were highest for moments
g =0and g = 1 and diminished for the other |¢| moments. In
the case of ¢ = 10, R? was greater than 0.97 and 0.95 in the
rain-fed and irrigated data sets, respectively. For ¢ = —10,
R? values for rain-fed and irrigated data series were greater
than 0.99 and 0.91, respectively (data not shown). Standard
errors of D, values increased with increasing |¢| moments

www.nonlin-processes-geophys.net/23/205/2016/
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Table 2. Selected multifractal parameters derived from the f(«) singularity spectra: most positive (¢+) and most negative (g—) limits the
range of multifractal scaling, Holder exponent of order 0 («g), most positive («,+) and most negative (o, ) exponents, widths of the left
(atg—ay+) and the right («,-—0) sides of the spectra.

Treatment Depth ¢g— q+ o o+ oy - A+ Og——0p
(cm)
2011
Rain-fed 20 —-15 35 1.066 0.768 1.339 0.299 0.273
40 =35 2 1.093 0.632 1.328 0.460 0.235
60 =35 2 1.087 0.718 1.403 0.369 0.315
20-60 —4 2 1.074 0.762 1.297 0.312 0.222
Irrigated 20 =25 2 1.136  0.714  1.450 0.422 0.314
40 —4 3 1.160 0.664 1.383 0.496 0.222
60 -5 2 1.132  0.700 1.333 0.435 0.200
2060 —45 2 1.142  0.709 1.375 0.433 0.233
2012
Rain-fed 20 -25 3 1.146  0.659 1.526 0.487 0.380
40 =35 2 1.082 0.603 1.301 0.479 0.219
60 -2 55 1.056 0.746 1.296 0.309 0.240
20-60 -5 2 1.077 0.651 1.265 0.426 0.188
Irrigated 20 -05 25 1.164 0.602 1.361 0.562 0.197
40 -1 1.5 1.187 0.575 1.491 0.611 0.304
60 —4 2 1.075 0.716 1.223 0.360 0.148
20-60 -1 2 1.172  0.624 1.489 0.548 0.317
and they were much lower for the right (¢ > 0) than for the 12 -
left (¢ < 0) branch of the Rényi spectra (Fig. 4). 1o 2m .o
Parameter «p from the singularity spectra ranged : o* e ’-E'
from 1.056 to 1.146 in the rain-fed treatment and from 1.075 08 4 o ’j%
to 1.187 in the irrigated treatment (Table 2). The singular- T e | a* M
ity spectrum allows for analysing similarity or difference be-
tween the scaling properties of the measures as well as as- 1 Reined
sessing the local scaling properties of soil water content mea- 02 olvigaed
surements. The wider the spectrum is (i.e. the largest a;—— 00 e
a4+ value), the higher the heterogeneity in the scaling indices 00 02 04 06 08 10 12 14 15
and vice versa (Vidal Vazquez et al., 2010). Moreover, the a
f (o) spectrum branch length gives insight about the abun-
dance of the measure. Hence, small f () values at the end of 129 2012
a long branch correspond to rare events. Our results showed 10 .
that the width of the singularity spectra increased in both . 1a G‘g 0
treatments from 2011 to 2012 (Table 2). 0.8 1 Y s °
. . . - o s
Singularity spectra are characterized by a concave down = 056 - -

shape (Fig. 5), showing an asymmetrical curve with wider
but shorter right side. Rain-fed data series showed a shorter
f(a) spectrum in both years, confirming their low degree
of multifractality when compared to the irrigated data series
(Fig. 5).

Differences (a,-—co and ap-a,+) indicate the deviation
of the spectrum from its maximum value (¢ = 0) towards the
right side (¢ < 0) and the left side (g > 0), respectively (Vi-
dal Vazquez et al., 2010). Usually, soil water content data
series from the rain-fed treatment showed lower ap—,+ val-
ues than those from the irrigated treatment (Table 2). More-

www.nonlin-processes-geophys.net/23/205/2016/
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Figure 5. Singularity spectra for soil water content averaged from
20 to 60cm depth for rain-fed and irrigation treatments in 2011
and 2012.
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over, the highest values for this multifractal parameter were
observed at 40 cm depth in both treatments and years (Ta-
ble 2). This may indicate that higher soil water contents were
more frequent under irrigation, with the greatest differences
observed at 40 cm depth in 2012. In contrast, the right branch
(oy——ap) of the spectrum was usually wider for rain-fed
conditions (Table 2). These results confirm the differential
homogeneity/heterogeneity pattern between treatments evi-
denced by the generalized dimension, Dy, analysis (Table 1,
Fig. 4).

4 Conclusions

Under the conditions of this study, continuous soil water con-
tent measurements at different depths reliably described the
soil water balance in a vineyard over two irrigation periods.

The logarithms of the partition function varied linearly
with the logarithms of the time resolution for all the studied
depths under both treatments considered in the range of mo-
ments —10 < g < 10, indicating that soil water content time
series obeyed power laws.

The scaling properties of soil water content time series
were reasonably fitted to multifractal models. These proper-
ties were different for the rain-fed and irrigation treatments,
implying a higher heterogeneity for the data series from the
irrigation treatment, which tended to increase in the second
year of the study (2012). Therefore, multifractal analysis al-
lowed us to discriminate among soil water content patterns
in a vineyard for the 2011 and 2012 growing seasons as a
function of irrigation use.

5 Data availability

Data set related to this article is online available at:
https://www.researchgate.net/publication/305711064 _
Dataset_about_multifractal_analysis_of_soil_water_
content_time_series_in_a_vineyard_under_rain-fed_and_
irrigation_conditions (Mirds-Avalos et al., 2016).

The Supplement related to this article is available online
at doi:10.5194/npg-23-205-2016-supplement.
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