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Abstract. A detailed quantitative comparison of fully non-

linear computations with the measurements of unidirectional

wave groups is presented. Computational results on evolving

wave groups were compared with previous available exper-

iments. The local surface elevation variation, the evolution

of envelope shapes, the velocity of propagation of the steep-

est crests in the group and their relation to the height of the

crests were obtained numerically and experimentally. Condi-

tions corresponding to incipient wave breaking were inves-

tigated in greater detail. The results shed additional light on

mechanisms leading to the breaking of steep waves, as well

as on the crucial importance of exact matching between ini-

tial conditions in computations and experiments.

1 Introduction

Over the past few decades, rogue, or freak, waves have

attracted considerable interest due to their destructive im-

pact on offshore structures and ships (Dysthe et al., 2008;

Kharif et al., 2009). A number of possible mechanisms for

rogue wave generation have been explored. Wave–current

and wave–bathymetry interactions may result in appearance

of rogue waves (Kharif et al., 2009). Extremely steep waves

in the ocean are thus usually affected by the directional char-

acteristics of the wave field. Nevertheless, considerable effort

has been invested in recent decades to study unidirectional

wave fields. The accumulated results clearly demonstrate that

investigation of both deterministic and random unidirectional

waves can lead to a better understanding of mechanisms lead-

ing to appearance of rogue waves in the presence of direc-

tional spreading as well. Experimental studies of 2-D wave

fields in wave basins require large and expensive facilities

and are subject to numerous limitations on the wave parame-

ters. Generation of unidirectional wave groups in long tanks

by a computer-controlled wavemaker offers significant ad-

vantages in terms of availability and versatility of operational

conditions. Extremely steep waves can be generated due to

constructive interference of numerous harmonics. While this

focusing mechanism is basically linear, it is strongly affected

by nonlinearity (Shemer et al., 2007; Bateman et al., 2012).

An alternative, essentially nonlinear, mechanism is related

to the specific properties of the governing equations. To that

end, the nonlinear Schrödinger (NLS) equation (Zakharov,

1968; Hasimoto and Ono, 1972), applicable for descrip-

tion of diverse nonlinear physical phenomena, is the sim-

plest theoretical model describing the evolution of narrow-

banded wave groups in deep and intermediate depth wa-

ter. This equation attracts special interest in rogue waves

studies since it admits analytical solutions such as the so-

called Kuznetsov–Ma breathing solitons (Kuznetsov, 1977;

Ma, 1979). These solutions of the NLS equation present spa-

tially localized patterns that oscillate in time. The closely re-

lated Akhmediev breather (Akhmediev et al., 1987) is peri-

odic in space. When the periodicity in time and space tends

to infinity, both these types of solution tend to a simple Pere-

grine breather (PB) (Peregrine, 1983). It is localized in time

and space, breathes only once and attains a maximum crest

height that exceeds that of the background wave train by a

factor of 3. For this reason, the Peregrine and other breather-

type solutions of the NLS equation have been proposed as

rogue wave prototypes (Dysthe and Trulsen, 1999; Osborne

et al., 2000; Shrira and Geogjaev, 2010).

Shemer and Alperovich (2013) conducted a series of ex-

periments on the evolution of the Peregrine breather (PB)

along a wave tank. They demonstrated that the experimental
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results diverge from Peregrine’s solution of the NLS equa-

tion. Notable asymmetry of the crest was observed, in agree-

ment with many earlier studies of extremely steep waves (Ba-

banin et al., 2007). The discrepancy between the fully sym-

metric NLS solution and experiments manifests itself mainly

in significant asymmetric widening of the wave spectrum, as

well as in notably slower amplification of the wave height

than predicted by the PB solution. Moreover, these exper-

iments suggested that, contrary to the behavior of the PB,

there would be no return to the initial nearly monochromatic

wave train. Similar conclusions based on fully nonlinear sim-

ulations of PB evolution in time were reached by Slunyaev

and Shrira (2013). Shemer and Alperovich (2013) demon-

strated that the modified nonlinear Schrödinger (MNLS, or

Dysthe) (Dysthe, 1979) equation was advantageous in de-

scribing the PB evolution along the laboratory tank as com-

pared to the NLS equation. The improved performance of

the Dysthe model was attributed in Shemer and Alperovich

(2013) to the additional fourth-order terms in this equation

that account for the finite spectral width (Kit and Shemer,

2002). It was thus demonstrated that the statement made by

Chabchoub et al. (2011, 2012) and elsewhere that PB has

been observed in water wave experiments is essentially un-

substantiated. Shemer (2015, 2016) demonstrated that the

spatial evolution patten of PB does not differ from that of

any initially narrow-banded modulated wave train.

Shemer and Liberzon (2014) took advantage of the fact

that the spectral widening, being an essentially nonlinear pro-

cess, occurs at slow spatial and temporal scales. Hence, it was

found that the wave train behavior with background steep-

ness of about 0.1 is still described by the PB solution of the

NLS equation with reasonable accuracy, as long as the sur-

face elevation spectrum remains sufficiently narrow and the

maximum wave height in the train remained below approx-

imately twice that of the background. This observation en-

abled Shemer and Liberzon (2014) to utilize the available

PB analytic solution to design experiments with PB in which

the height of the steepest wave in the train at a prescribed

measuring location can be controlled, thus facilitating quan-

titative studies of the incipient wave breaking. Their study

was motivated by an earlier attempt by Shemer (2013) to

examine the kinematics of the steep wave on the verge of

breaking using the Zakharov equation (Zakharov, 1968). By

comparing the computational results with experimental ob-

servations reported in Shemer et al. (2007), the conclusion

was reached that wave breaking may occur when the hori-

zontal liquid velocity at the crest becomes sufficiently high

(Shemer, 2013). These computations also showed that the

maximum negative vertical Lagrangian acceleration seems

to remain significantly below the acceleration of gravity g, so

that the Phillips dynamic breaking criterion cannot be satis-

fied (Phillips, 1958). Computations of steep wave kinematics

accurate up to the third order in the wave steepness demon-

strated, though, that this approximation, while largely ade-

quate for determination of the shape of the surface eleva-

tion, was insufficient for the accurate characterization of the

kinematics of steep waves (Shemer, 2013). In order to over-

come this limitation, the kinematic parameters of the steepest

wave in the PB-like wave train were determined experimen-

tally in Shemer and Liberzon (2014) simultaneously with es-

timates of the propagation velocity of the steepest crest. To

this end, two synchronized video cameras were used to im-

age the wave field. The maximum possible horizontal La-

grangian velocities and accelerations at the surface of steep

water waves were measured by particle tracking velocimetry

(PTV) for gradually increasing crest heights, up to the incep-

tion of a spilling breaker. Actual crest and phase velocities

were estimated from video-recorded sequences of the instan-

taneous wave shape as well as from surface elevation mea-

surements by wave gauges. The slowdown of the crest as it

grows steeper was observed. It was suggested in Shemer and

Liberzon (2014) that the inception of a spilling breaker is as-

sociated with the horizontal velocity of water particles at the

crest attaining that of the crest, thus confirming the kinematic

criterion for the inception of breaking.

In the present study, we aim to extend the numerical anal-

ysis of the conditions prevailing at the inception of breaking

of the steepest crest in the PB-like wave train by carrying out

fully nonlinear simulations. The simulations were performed

using the conformal mapping method approach developed

by Chalikov and Sheinin (1998, 2005) (hereafter referred to

as the CS numerical scheme). A somewhat different imple-

mentation of this approach was suggested by Milewski et al.

(2010). Recently, Perić et al. (2014) reported on direct nu-

merical simulations based on the volume of fluid method to

solve the two-phase Navier–Stokes equations. In their study,

Peregrine breather dynamics was investigated up to the initial

stages of wave breaking.

In Sect. 2, the difference between the spatial and tempo-

ral evolution of the wave field is discussed. In Sect. 3, we

give details about the solver that is based on the conformal

mapping method and stress that the resulting numerical solu-

tion describes the temporal evolution starting from an initial

spatial distribution. In Sect. 4, the computational results are

discussed for both the temporal evolution problem and then

for the spatial evolution case. The corresponding experimen-

tal results are also presented and compared directly with the

numerical simulations. In Sect. 5, the numerical and experi-

mental results are discussed and the conclusions are drawn.

2 Wave parameters: temporal vs. spatial evolution

cases

The CS numerical scheme enables computation of a unidi-

rectional wave field in time, starting from a given spatial

distribution as an initial condition, under the assumption of

potential flow. In laboratory experiments, however, waves

are generated by a wavemaker usually placed at one end

of the experimental facility. The experimental data are com-
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monly accumulated only at preselected fixed locations within

the tank where the sensors are placed. Quantitative compar-

ison of numerical computations with experimental results

gained in those experiments may thus constitute a compli-

cated task. For a narrow-banded wave field this problem has

been considered by Shemer and Dorfman (2008). For such

wave fields, the envelope equations like the NLS and Dysthe

models often provide adequate results. In the narrow-banded

models the temporal t and spatial x coordinates are related

by the group propagation velocity, cg, thus enabling modi-

fication of the governing temporal evolution equations to a

spatial form. The spatial form of the Dysthe model was pre-

sented by Lo and Mei (1985). Numerical computations based

on the Dysthe model for unidirectional wave groups propa-

gating in a long wave tank indeed provided good agreement

with experiments (Shemer et al., 2002). The spatial version

of the Dysthe equation was also derived from the spatial form

of the Zakharov equation (Shemer et al., 2001, 2007) that is

free of any restrictions on the spectrum width (Kit and She-

mer, 2002).

As demonstrated in Shemer and Dorfman (2008), the

availability of the spatial form of the evolution model is in-

sufficient to pose the initial conditions for the numerical sim-

ulations that correspond exactly to those in experiments. In

the present work, the temporal evolution is computed by a

fully nonlinear solver of the 2-D potential equations in fi-

nite water depth. Following earlier works (Shemer and Alper-

ovich, 2013; Shemer and Liberzon, 2014), the solution of the

spatial version of the NLS equation is used to set the initial

conditions. For a narrow-banded deep water wave group, the

spatial and temporal variations of the surface elevation z at

the leading order can be presented as

ζ(x, t)= Re
[
a(x, t) · ei(k0x−ω0t)

]
. (1)

Here the radian frequency ω0 = 2π /T0,T0 being the car-

rier wave period, and the wavenumber k0 = 2π /λ0, λ0 be-

ing the carrier wavelength, satisfy the finite water depth dis-

persion relation ω0
2
= gk0 tanh(k0h). In Eq. (1), a is the

slowly varying complex group envelope. The wave steep-

ness is defined as ε = a0k0, where a0 is the characteristic

wave amplitude. The wave train given by Eq. (1) propa-

gates with the group velocity cg =
(
∂ω
∂k

)
k=k0

. Following Mei

(1989) and Shemer et al. (1998), in intermediate water depth

the spatial NLS equation for the complex normalized enve-

lope Q= a(x, t) /a0 is given by

−iQX +αQT T +β|Q|
2Q= 0, (2)

where the scaled dimensionless temporal and spatial coor-

dinates are T = εω0(x /cg− t) and X = ε2k0x, respectively.

The coefficients in the NLS equation have the following di-

mensionless form:

α =−
ω0

2

2k0cg
3

∂cg

∂k
, (3)

β =
1

n

[
cos h(4k0h)+ 8− 2tanh2(k0h)

16sin h4(k0h)

−
1

2sin h2(2k0h)

(2cos h2(k0h)+ n
2)

k0h
tanh(k0h)

− n2

]
, (4)

where the parameter n= cg /cp represents the ratio of group

and phase velocities and is given by

n=
1

2

{
1+

2k0h

sin h(2k0h)

}
. (5)

For the deep water case, k0h→∞ and α = β = 1. The Pere-

grine breather solution of the NLS equation for intermediate

water depth (Eq. 2) is

Q=−

√
2
α

β
e−2iαX

[
1−

4(1− 4iαX)

1+ 4T 2+ 16(αX)2

]
. (6)

Equations (1) and (6) provide variation of the instantaneous

surface elevation envelope in time and in space, with fo-

cusing corresponding to T =X = 0. In Shemer and Alper-

ovich (2013) and Shemer and Liberzon (2014), the wave-

maker driving signal as a function of time was chosen us-

ing the deep-water version of Eq. (2) and the prescribed

focusing distance from the wavemaker, x0, by substituting

X =X0 =−ε
2k0x0 into Eq. (6). The relative height of the

initial hump in the wave amplitude distribution at the wave-

maker in Shemer and Liberzon (2014) exceeded 10 % above

the background.

The present study has been carried out in the 18 m

long, 1.2 m wide and 0.9 m deep wave tank (water depth

h= 0.6 m). More details about the experimental facility are

given in Shemer et al. (1998). The carrier wave period T0 =

0.8 s was selected, corresponding to the carrier wavelength

λ0 = 1.0 m and the dimensionless water depth k0h= 3.77.

For these parameters, both coefficients in the NLS equation

(Eq. 2) given by Eqs. (3) and (4) in fact differ from unity:

α = 1.078 and β = 0.711. The carrier wave amplitude of

ζ0 =

√
2α
β
a0 = 0.026 m was used, corresponding to the non-

linearity ε = k0a0 = 0.094.

Since the nonlinear numerical solver in the present study

requires an initial condition as a given spatial distribution at

a certain instant, the following procedure to determine the

appropriate initial spatial distribution was adopted.

Using Eq. (6), a value of x0 is specified at which the pre-

scribed maximum crest of the PB is to be located. Note that

in physical terms, this initial condition corresponds to a sit-

uation in which the whole wave train is placed upstream of

the wavemaker. Due to the focusing properties of the NLS

equation in sufficiently deep water (k0h > 1.36), the maxi-

mum wave height in the train increases in the course of the
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evolution. In Shemer and Liberzon (2014), the amplification

at the wavemaker was about 20 %. To obtain a similar evo-

lution pattern in the present study, the initial height of the

PB hump has to be significantly smaller than that. The am-

plification corresponding to 5 % was selected. The temporal

variation of the surface elevation at x = x0, ζ(x0, t), can be

calculated using T (x0, t) and X(x0). The maximum amplifi-

cation occurs at T = 0 corresponding to the dimensional time

tmax =−x0 /cg; the resulting ζ(t) is symmetric with respect

to tmax. Note that at the instant t = tmax, the spatial distribu-

tion ζ(x, tmax) is not fully symmetric with respect to x0 due to

the presence of term e−2iαX in Eq. (6). It should be stressed

that in experiments as well as in numerical simulations, the

actual extent of the wave group is necessarily finite. In the

experiments of Shemer and Alperovich (2013) and Shemer

and Liberzon (2014), the wave train with a duration of 70

carrier wave periods was generated by the wavemaker. The

duration of the wave train of 70T0 is long enough to elimi-

nate the effect of truncation onto the central part of the train

where the hump is located and which is of particular interest,

and on the other hand sufficiently short to prevent contamina-

tion of the measured surface elevation by possible reflection

from the far end of the tank. In the spatial domain, this du-

ration of the wave train corresponds to 35λ0. The numerical

method applied in the present study assumes spatially peri-

odic boundary conditions. Since the initial spatial distribu-

tion is not periodic, the periodicity was enforced by applying

a linear tapering window over wavelength 2λ0 at the edges

of the wave train. As a result, the effective, undisturbed by

tapering, wave group extended initially for about 32λ0. To

allow evolution of the wave train unaffected by boundaries,

the computational domain was selected as [−32λ0,32λ0],

with x = 0 corresponding to the location of the maximum

crest at the initial instant of the computations, t = 0. The

temporal initial condition adopted in the study is plotted in

the top panel of Fig. 1. The corresponding spatial variation

of the surface elevation with the same maximum crest height

is plotted in the bottom panel of the same figure.

3 Numerical solution methodology

The temporal evolution of the initial wave field presented

in the bottom panel of Fig. 1 is obtained by solving poten-

tial flow equations following the fully nonlinear numerical

approach developed by Chalikov and Sheinin (1998, 2005).

The CS numerical scheme is known to be robust and does not

have limitations in terms of wave steepness. It has been ex-

tensively and successfully used for numerical simulations of

numerous problems related to evolution of nonlinear waves.

The conformal mapping method is applied to solve Laplace’s

equation for the velocity potential. Surface tension effects are

neglected. The principal equations are re-written in a surface-

following coordinate system (ξ and ζ ) and reduced to two

time-evolutionary equations for the surface elevation z and

−30 −20 −10 0 10 20 30
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0.04

τ/T0

η

−30 −20 −10 0 10 20 30
−0.04
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0

0.02

0.04

(x + x0)/λ0

η

Figure 1. The prescribed initial variation of the surface eleva-

tion η in the temporal (top) and spatial (bottom) domains for the

carrier wave period T0 = 0.8 s and background carrier amplitude

ζ0 = 0.026 m; calculated for X =−2.613 (x0 = 31 m) in Eq. (6).

velocity potential φs at the surface. The evolutionary equa-

tions representing the kinematic and dynamic boundary con-

ditions at the free surface are written in terms of the Fourier

coefficients of z and φs. This enables the reduction of the

evolutionary equations into a system of time-dependent or-

dinary differential equations for 4M + 2 Fourier coefficients

of z and φs, coupled with appropriate initial conditions. Here

M refers to the truncation number of the Fourier series.

The initial surface elevation is given as a function of the

physical variable x. To solve the problem in the mapped

space, this initial condition has to be converted into a func-

tion of equally spaced ξ . This is done by an iteration proce-

dure.

For time integration, a fourth-order Runge–Kutta scheme

was used. We refer the reader to Chalikov and Sheinin (2005)

for further details. In the present computations, the dimen-

sional spatial discretization interval was λ0 / 256, so that the

total number of spatial points N = 17 920; the truncation

number for the Fourier series is M =N / 9. This value of

M effectively means that waves with wavelengths shorter

than 1.5 cm where capillary effects become dominant are dis-

regarded. The dimensional integration step in time is dt =

3.125× 10−6 s.

The CS numerical scheme allows for the computation of

the velocity potential as a function of two parameters: ξ and

ζ ; the velocity potential for the entire domain can thus be

calculated at any instant. In view of the focus of the present

study, the output parameters of the numerical integration are

the surface elevation z, velocity potential at the surface φs

and the physical spatial coordinate x, which are all func-

tions of ξ and t . In order to record the data for future use,

the results for surface elevation, the coordinates x and non-

dimensional velocity potential are saved at every 3.125 ms.

Note also that the spline interpolation procedure is needed

to obtain values of the surface elevation z and the velocity

potential φs at equally spaced values of x.

Milewski et al. (2010) have also employed the conformal

mapping method to investigate the unsteady evolution of 2-D
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fully nonlinear free surface gravity–capillary solitary waves

for infinite depth. Though their numerical approach is sim-

ilar to that of CS, certain differences between the methods

exist. The numerical approach of Milewski et al. (2010) was

implemented in our computations as well. No significant dif-

ferences with the results based on the CS numerical scheme

were obtained, thus further demonstrating the robustness of

the present results.

4 Numerical and experimental results

In Fig. 2, the spatial instantaneous wave surface profile is

plotted for several characteristic selected instants. As men-

tioned above, the origin of the frame of references x = 0 cor-

responds to the location of the maximum crest in the initial

spatial distribution. The simulations demonstrate that abnor-

mally high waves appear at both edges of the wave train as

a result of truncation and tapering of the infinite wave train

defined by Eqs. (1) and (6) as specified in the previous sec-

tion. A similar phenomenon was observed in experiments

with truncated wave trains reported in earlier works (Shemer

and Alperovich, 2013; Shemer and Liberzon, 2014). The ef-

fect of truncation, however, apparently does not extend to the

central part of the wave train even at relatively long times, as

can be seen from the upper curves in this figure. The effect

of nonlinear focusing on the behavior of this central part of

the train in the vicinity of the hump is of principal interest in

this study. The dashed lines in Fig. 2 originate at the leading

edge, the center and the trailing edge of the initial wave train

and correspond to the location of the point propagating with

the group velocity cg = 0.63 ms−1. It transpires from the fig-

ure that the leading edge of the train indeed propagates with

the speed that is close to cg, while the trailing edge seems to

move somewhat faster. The propagation velocity of the steep-

est crest, however, exceeds notably the group velocity cg, in

agreement with the experimental observations and the nu-

merical simulation based on the Dysthe equation in Shemer

and Alperovich (2013).

The spatial variation of the velocity of the fluid at the sur-

face uh = ∂φ
s /∂x is plotted in Fig. 3 at the same instants as

in Fig. 2, but in a frame of reference that moves with a group

velocity cg. Only the central part of the wave train is shown.

The horizontal fluid velocity at the steepest crest increases

notably during the focusing process. At the upper curve in

Fig. 3, the fast increase in the horizontal velocity at the crest

is clearly seen. Note that in earlier experiments by Shemer

and Liberzon (2014), wave breaking was indeed observed at

comparable distances from the wavemaker. The individual

waves in Fig. 3 manifest variable left–right asymmetry.

Measurements in a wave tank are routinely performed us-

ing wave gauges spread along the facility. To facilitate the

direct comparison between numerical and experimental re-

sults, we need to first determine the location of the wave-

maker in our numerical simulations. Then, we examine “ver-
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Figure 2. The temporal evolution of the surface elevation η in a

fixed reference frame; wave parameters as in Fig. 1. The vertical

line marks the location of the wavemaker at x = xwm = 25.273 m;

broken lines correspond to propagation with the group velocity cg.
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Figure 3. The temporal evolution of the horizontal fluid velocity in

a moving reference frame; wave parameters as in Fig. 1.

tical” cross sections of the data as presented in Fig. 2 at

fixed locations relative to the adopted coordinate of the wave-

maker. The location of the wavemaker is identified by the

vertical line in the latter figure where x = xwm = 25.273 m.

The temporal variation of the surface elevation is plotted in

Fig. 4 at selected locations that cover the range of the wave

gauge positions in the experiment, starting with that at xwm or

x∗ = 0, the variable x∗ denoting the distance from the wave-

maker. The disturbances at the leading edge of the truncated

wave group are disregarded here. The growth of the maxi-

mum crest height with the distance is obvious, albeit non-

monotonic. In the uppermost curve in Fig. 4 the relative crest

amplification exceeds the factor of 2, as in Shemer and Liber-

zon (2014) at a comparable distance from the wavemaker.

Here again, the broken line that corresponds to the propaga-

tion velocity of cg clearly shows that the steepest crests in the

train propagate at velocities exceeding cg.

A closer look at the surface elevation variation with time

is presented in Fig. 5; the time here is shifted at each position

by delay that would occur if the hump in the group indeed

propagated with the group velocity. Actually, the maximum

crest is invariably observed earlier. Both the vertical (trough–
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at various locations relative to the wavemaker in a moving (with cg)

reference frame.

crest) and horizontal (right–left) asymmetries of steep waves

are clearly visible in the plotted records.

In Fig. 6, we follow the highest crests in the instantaneous

snapshots of wave trains. The elevations of the highest crests

at each instant are compared with the propagation velocity of

those crests, vcr. To enable comparison of parameters with

different dimensions, crest heights are normalized by the

background wave amplitude ζ0, while crest propagation ve-

locities are normalized by the carrier wave phase velocity cp.

Note that this figure corresponds to evolution times at which

the hump’s amplification is still relatively modest. Neverthe-

less, the crests propagate with time-dependent velocities vcr

that may be notably different from cp. It was demonstrated

in experiments of Shemer and Liberzon (2014) that even for

waves in the train that are far away from the hump and thus

seem to be essentially monochromatic, the mean crest prop-

agation velocity is somewhat higher than cp due to the pres-

ence of the exponential term in Eq. (6).

It transpires from the comparison of the two curves in

Fig. 6 that the higher the crests are, the lower their propaga-

tion velocity is. The minima in the instantaneous maximum

crest heights correspond to the local maxima in their instan-

taneous propagation velocities. The averaged highest crest

propagation velocity in Fig. 6 is 1.253 ms−1, slightly above

cp.

20 22 24 26 28 30 32 34 36 38 40
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

t/T
0

 

 

v
cr

/c
p

(Max crest height) / ζ
0

Figure 6. The computed variation with time of the normalized max-

imum crest elevation relative to the background wave amplitude ζ0
and the velocity of the highest crest propagation (vcr) relative to the

phase velocity cp = 1.248 ms−1.

The experiments were carried out with the goal of en-

abling quantitative comparison of the numerical results with

experiments. The wavemaker driving signal was designed

to generate surface elevation variation in time correspond-

ing to the lowest curve in Fig. 4. Measurements were per-

formed by multiple (up to four) resistance-type wave gauges

placed on a bar in the center of the tank and connected to a

computer-controlled carriage. The spacing between adjacent

gauges was 0.4 m. At each run, the position of the carriage

was set by computer. Each successive run was initiated only

after any disturbance of the water surface from the previous

run had fully decayed. Measurements performed in different

runs at fixed locations demonstrated excellent repeatability

of results. Thus, the data collected at different locations ob-

tained in various runs could be compared using the initiation

of the wavemaker driving signal as a common temporal refer-

ence. Multiple experimental runs with different carriage po-

sitions provided experimental records of the temporal vari-

ation of the surface elevation in the wave train propagating

along the whole tank with spacing that did not exceed 0.2 m;

denser measurements were carried out in the vicinity of the

locations where inception of breaking was detected in visual

observations.

An example of the sequence of the experimentally

recorded wave trains for 6.6≤ x ≤ 7.8 m is presented in

Fig. 7. Modifications of the wave train shape between the

adjacent locations are relatively minor. The variation along

the tank of the location and height of the steepest crest in

the central part of the train can be easily followed from these

records. Note that the highest crest at x = 7.6 m ceases to be

such at x = 7.8 m, where the following wave in the train be-

comes the steepest one. Such a transition of the highest crest

in the train from one wave to another causes discontinuity in

the velocity of propagation of the steepest crest; see e.g. She-

mer and Liberzon (2014).
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Figure 7. Measured surface elevation η at various locations.
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Figure 8. Comparison between the envelopes of the measured and

numerical surface elevations η at various locations.

It is impractical to carry out direct comparison of the fast

varying surface elevation records measured in the experi-

ments as presented in Fig. 7, with the corresponding numer-

ical results. In order to compare the computed and measured

results, the corresponding envelopes were computed; the ab-

solute values of the measured and simulated wave train en-

velopes are presented in Fig. 8 for various distances from

the wavemaker. To calculate the envelopes of the wave train

in both simulations and experiments, the records were first

band-pass filtered in the domain 0.5ω0 ≤ ω ≤ 1.5ω0. This

procedure leaves only the “free” waves, while the higher-

order “bound” waves that cause vertical asymmetry of the

records are removed. The envelopes of the filtered signals

were then computed using the Hilbert transform. For more

details, see e.g. Shemer et al. (1998).

Figure 8 demonstrates that essential similarity exists be-

tween the shapes of the measured wave trains at different

distances from the wavemaker and those obtained in the nu-

merical simulations. The propagation velocities of the lead-

ing edge of the wave train, as well as of the steepest crest,

are also quite close in simulations and in experiments. The

agreement between the numerical solution and the experi-

mental results is, however, not perfect; the differences cannot

be attributed to experimental errors only.

Important parameters of the wave train in the course of

its propagation along the tank obtained in the simulations
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Figure 9. The computed temporal variation of the maximum crest

heights, of the velocities of the steepest crests (vcr), and of maxi-

mum horizontal fluid velocity (umax
h

).
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Figure 10. Variation along the tank of the maximum crest heights,

propagation velocity of the highest crests, and the water particle

velocity at those crests. Red lines denote numerical results, blue

symbols experiments. The locations where breaking was observed

in the experiments are marked.

are plotted in Figs. 9 and 10. In Fig. 9, the temporal varia-

tions of the computed velocities of the highest crests at each

instant, vcr, and of the fluid velocity at those crests, umax
h ,

are presented at late stages of the evolution, up to the ap-

parent breakdown of computations at t /T0 ≈ 74. However,

the maximum crest height amplification exceeding 3 was ob-

served at t /T0 ≈ 62. The maximum crest elevations are also

plotted in this figure for comparison. To enable comparison,

all data are rendered dimensionless by normalizing them by

their appropriate characteristic values. The fluid velocities in-

crease with crest heights, while the crest propagation veloc-

ities decrease. At final stages the fluid velocity at the crest

seems to exceed the crest velocity. The corresponding spa-

tial variations are plotted in Fig. 10. In this figure, whenever

available, the related experimental results are plotted as well.

The evolution of the steepest crest heights along the tank,

as plotted in Fig. 10, in simulations and in experiments ex-

hibit qualitative and to some extent quantitative similarity.

The steepest crest heights have a tendency to grow along

the tank; this growth is essentially non-monotonic in com-

putations as well as in measurements. At distances from the

www.nonlin-processes-geophys.net/22/737/2015/ Nonlin. Processes Geophys., 22, 737–747, 2015
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wavemaker beyond 7 m the measured steepest crest heights

may exceed the background by a factor of 2.5; the ampli-

fication factor in simulations is somewhat higher than that.

The propagation velocity of the steepest crest, vcr, varies to a

certain extent in experiments and in computations, remaining

close to the phase velocity of the carrier wave, cp. The dis-

continuity in the steepest crest propagation velocity obtained

in the experiments is related to the transition of the steepest

crest in the train from one wave to another, as discussed with

relation to Fig. 7. The spatial resolution of the determination

of vcr is obviously much better in the numerical simulations

than in the experiments. For that reason, oscillations of the

measured steepest crest velocity are less pronounced in the

experimental results. As discussed with respect to the tem-

poral variation of ccr in Fig. 6, the crest propagation velocity

decreases when crests become higher. This feature is more

visible in the results of simulations as compared to the mea-

surements due to their better resolution.

The bottom curve in Fig. 10 represents the variation along

the tank of the instantaneous water particle velocity at the

steepest crest, computed as umax
h = ∂φs /∂x at the crest. This

velocity varies in accordance with the variation of the crest

height; as the crest becomes higher, the values of umax
h grow

and may exceed notably the group velocity cg. Nevertheless,

for the whole domain of computations, the horizontal liquid

velocity at the crest remains lower than the computed vcr.

Note that the computed temporal variations of vcr and umax
h

plotted in Fig. 9 demonstrate that the values of vcr may de-

crease below the local maximum of umax
h ; however, this does

not occur simultaneously. No measurements of umax
h were

carried out in this study; however, detailed results on the La-

grangian kinematics at the wave crest approaching breaking

obtained using particle tracking velocimetry were presented

for the identical carrier wave parameters and somewhat dif-

ferent wavemaker driving signal in Shemer and Liberzon

(2014).

At distances exceeding about 7 m from the wavemaker, the

pattern of variation of the steepest crests’ height and of their

propagation velocity vcr plotted in Fig. 10 becomes less orga-

nized. In experiments, inception of the spilling breaker was

observed at those distances; see the video in the Supplement.

In order to obtain more accurate estimates of vcr in this re-

gion, measurements of the surface elevation were performed

every 0.1 m. The resulting steepest crest propagation veloc-

ities are plotted in Fig. 10 using different symbols. These

results demonstrate that at the locations where the spilling

breakers were observed, the measured vcr may indeed fall

below the computed water surface velocity at the crest, umax
h .

It was suggested in Shemer and Liberzon (2014) that

spilling breakers appear when the horizontal water particle

velocity at the steep crest umax
h attains the instantaneous crest

propagation velocity vcr. While spilling breakers were clearly

seen in the experiments at distances of about 7.5–8 and 8.5–

9 m from the wavemaker (see the video in the Supplement),

in computations the values of umax
h , while increasing at steep
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Figure 11. Frequency spectra at selected locations. Red line – nu-

merical simulations; blue line – experimental data.

crests, remain consistently lower by about 10 % than the

computed vcr, although extremely low steepest crest propa-

gation velocities were occasionally obtained numerically; see

Fig. 9. The experimentally determined values of crest prop-

agation velocity may indeed fall below the computed water

particle velocity umax
h .

In this respect it should be stressed that the velocities umax
h

and vcr obtained in the present fully nonlinear numerical

simulations, while apparently close to their actual values as

demonstrated in Fig. 10, cannot be seen as the exact ones. Al-

though special effort has been made in this study to calculate

the required conditions at the wavemaker that correspond to

the numerical solution, there remains a certain discrepancy

between the computed and measured initial conditions due

to an essentially nonlinear character of the wavemaker trans-

fer function. While the differences are small, they can affect

the exact locations of the observed extremal values of the sur-

face elevation and the horizontal velocity. The experimental

determination of vcr as performed in the present study is in-

accurate mainly due to the presence of unavoidable low-level

noise in the surface elevation records that limit the precision

of defining the instant when the maximum surface elevation

is attained. The PTV-derived results on umax
h presented in

Fig. 7 of Shemer and Liberzon (2014) show that horizontal

surface velocities as high as 0.8cp, notably higher than the

maximum values of umax
h in Fig. 10, were indeed measured

at the breaking location. It should be noted that since the

wavemaker is an essentially nonlinear device, it is difficult

to adjust the actual surface elevation variation in the tank to

that prescribed by the computations. It thus can be concluded

that the differences between umax
h and vcr obtained numeri-

cally and those measured in the tank as presented in Fig. 10

stem from less than perfect matching between the initial con-

ditions in the experiment and the numerical simulations. The

total body of numerical and experimental results thus pro-

vides further support for the validity of the kinematic break-

ing criterion according to which the spilling breaker emerges

when the instantaneous liquid velocity at the crest, umax
h , at-

tains that of the crest, vcr.
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Figure 12. Wavenumber spectra at selected times.

The amplitude spectra of the wave train are plotted in

Figs. 11 and 12. In Fig. 11, the numerically derived fre-

quency spectra of η(t) are compared at selected values of

x∗ with the corresponding experimental results. At the wave-

maker (x∗ = 0), the spectrum in linear–logarithmic coordi-

nates still retains resemblance to the triangular shape char-

acteristic of the Peregrine breather. Nevertheless, a weak

asymmetry around the dominant frequency ω0 can already

be noticed at this location. Note that at x∗ = 0 the wave

train already evolved over significant duration from its initial

PB shape in Fig. 1. The non-negligible contribution of low-

frequency as well as second and third bound wave harmon-

ics is also evident. The spectral asymmetry gets stronger and

the spectrum widens with the distance from the wavemaker.

Reasonable agreement is obtained between the experimen-

tal and numerical results. The wavenumber spectrum for the

computed variation of η(x) plotted in Fig. 12 at selected in-

stants t cannot be compared with the experiment. This is due

to the fact that the spatial extent of the wave train exceeds

significantly the length of the tank; see Fig. 2. Note that even

for significantly shorter wave trains, the experimental proce-

dure that enables extraction of wavenumber spectra (as op-

posed to frequency spectra) is extremely tedious; see Shemer

and Dorfman (2008). The temporal evolution of wavenum-

ber spectra in Fig. 12 is qualitatively similar to that discussed

with respect to Fig. 11. The initial spectrum is nearly sym-

metric around the dominant wave number. Then, the spec-

trum widens with time and becomes more asymmetric to-

wards breaking.

5 Discussion and conclusions

In the present study, fully nonlinear numerical simulations

of the evolution of a unidirectional nonlinear wave train with

an initial shape of a Peregrine breather were qualitatively and

quantitatively compared with the experimental results. To the

best of our knowledge, this is the first attempt to carry out di-

rect comparison of the results of fully nonlinear simulations

of a deterministic wave train with experiments. The simula-

tions were carried out using a conformal mapping approach

as detailed in Chalikov and Sheinin (2005). To validate the

accuracy of the code, the computational results were repro-

duced using an alternative numerical approach of Milewski

et al. (2010). These and some other numerical methods that

are often applied to solve wave propagation problems require

complete information on the wave field over the entire com-

putational range at a certain instant. These initial conditions

are unavailable in any controlled wave experiment in a lab-

oratory facility. The unidirectional wave field in a tank is in

fact prescribed by the wavemaker that is usually located at

one end of the facility and driven by a computer-generated

signal.

The initial condition in experiments thus corresponds to

surface elevation variation with time at a prescribed wave-

maker location. Shemer and Dorfman (2008) sought to rec-

oncile the fundamental difference between the initial spatial

distribution of wave field parameters required for the numer-

ical solution, and the temporal variation of the surface ele-

vation at the wavemaker prescribed as the initial condition

in the experiments. This approach was generalized here to a

fully nonlinear wave field with an arbitrary spectral width,

thus enabling one to carry out consistent quantitative com-

parison of the results of numerical simulations and measure-

ments.

In the present simulations, the initial spatial distribution of

the surface elevation is based on the PB analytical solution.

In order to determine in the numerical solution the measur-

able temporal variation of the surface elevation at any given

location along the tank, the initial spatial distribution in the

present study was centered upstream of the wavemaker; see

Fig. 2. The appropriate location of the wavemaker was deter-

mined then by comparing the surface elevation variation in

time with that measured in the experiment. The wavemaker

driving signal generates surface elevation variation in time

that corresponds to the bottom curve in Fig. 4. This depen-

dence that is very different from the analytical solution given

by PB is obtained as a result of the evolution of the wave train

with an initial shape given in the bottom panel of Fig. 1. It en-

ables detailed and quantitative comparison of the simulations

with experiment.

Several important points regarding PB were highlighted in

this study. The solution (Eq. 6) of the spatial form of the non-

linear Schrödinger equation (Eq. 2) is aperiodic in space due

to the presence of an exponential term. Similarly, the tem-

poral form of the NLS equation (Lo and Mei, 1985; Shemer

and Dorfman, 2008) yields PB that has an asymmetry in time.

The exact shape of the analytical solution (Eq. 6) thus cannot

be reproduced either in the experiments or in computations.

Note that in the present study, the actual initial condition for

the simulations and the wavemaker driving signal have been

modified and are fundamentally different from PB. The pre-

sented results on steep crests in the wave train are therefore

of a generic nature and applicable beyond the 2-D PB wave

packets.

Two different approaches were suggested to deal with the

problems outlined in the previous paragraph. In numerical
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simulations, the truncated wave train with the spatial exten-

sion that contains an integer number of carrier wavelengths

is often used as the initial condition (Slunyaev and Shrira,

2013). However, imposing a non-zero periodic boundary

condition on an essentially aperiodic function may affect sig-

nificantly the nature of the solution. It was thus decided in

the present study to follow the experimental approach of She-

mer and Alperovich (2013) and Shemer and Liberzon (2014).

The theoretical solution given by Eq. (6) was truncated and

tapered before being used to determine the initial condition

at the wavemaker. In order to mitigate the effect of trunca-

tion on the central part of the wave train, a sufficiently large

number of wave periods (about 70) was used in those ex-

periments. A similar approach was adopted in the present

study. As can be seen in both experimental and numerical

results (Figs. 1, 4 and 9), truncation and tapering, while in-

deed satisfying periodic boundary conditions in the compu-

tational domain, cause appearance of abnormally high waves

at the leading and trailing edges of the wave train. The ef-

fect of truncation is apparently limited to the edges of the

train, and does not affect the behavior of the central part of

the PB-like wave train with the gradually amplified, albeit

non-monotonically, hump in the envelope. These high waves

do not characterize the wave train proper and therefore were

disregarded in the present study.

The computational results indeed are in a good qualita-

tive and, to a large extent, quantitative agreement with the

current experiments, as well as with those of Shemer and

Liberzon (2014). This includes the behavior of the truncated

train edges, the amplification of the hump along the tank, the

asymmetric spectral widening, as well as the variation of the

envelope shape along the tank. Crest slowdown was noted by

Johannssen and Swan in fully nonlinear calculations (Johan-

nessen and Swan, 2001) and experiments (Johannessen and

Swan , 2003). The slowdown of crests in the PB-like wave

train as they grow in height was first observed by Shemer and

Liberzon (2014) in experiments and NLS solutions and is of

particular interest. More recently, this effect was also stressed

in the context of focusing of 2-D and 3-D nonlinear deep wa-

ter wave packets by Banner et al. (2014), and for 2-D non-

linear wave packets by Kurnia and Groesen (2014) as well

as by Fedele (2014), thus providing additional evidence of

the generic nature of the phenomenon. It was noticed in She-

mer and Liberzon (2014) that the increase in the maximum

crest height along the tank is not monotonic. As the maxi-

mum crest height increases, the water particles at the crest ac-

celerate to higher maximum velocities umax
h , while the crest

propagation speed vcr decreases. The equality umax
h = vcr was

thus suggested as the kinematic criterion for wave breaking.

A slightly different version of this criterion was offered by

Kurnia and Groesen (2014); they maintain that the maximum

liquid particle velocity umax
h exceeds about 0.8vcr at break-

ing. If only the simulations are considered, it seems that this

somewhat weaker version of the kinematic breaking criterion

is confirmed. However, the present experimental as well as

numerical results, combined with those obtained experimen-

tally by alternative methods in Shemer and Liberzon (2014),

provide strong, albeit not fully conclusive, support for the

conjecture that indeed the particle velocities at the inception

of breaking attain and exceed the crest propagation velocities

and thus for the kinematic breaking criterion in the formula-

tion suggested in that study. This conjecture is further cor-

roborated by visual evidence as seen in video clips presented

in Supplements to Shemer and Liberzon (2014) and to the

present study.1

This combined numerical and experimental study of non-

linear wave trains also clarifies the limitations of possible

agreement between fully nonlinear solution and experiment.

We note that while the periodicity in the time domain is pos-

sible for propagating and evolving unidirectional waves, they

are, strictly speaking, aperiodic in space. This point adds an

additional aspect to essential differences that exist between

the spatial and temporal formulations of the wave evolu-

tion problem, as discussed above. We therefore believe that

all nonlinear solutions based on spatially periodic boundary

conditions, as in the method adopted here, as well as in a

variety of alternative methods that employ spatial discrete

Fourier decomposition, contain intrinsic inaccuracy. These

numerical solutions thus can only provide approximate re-

sults and require careful experiments to verify their valid-

ity. The present study shows that the fully nonlinear solution,

although flawed, yields better agreement with experiments

than the application of the spatial version of the modified

nonlinear Schrödinger (Dysthe) equation limited to the third

order that does not require spatial periodicity (Shemer and

Alperovich (2013).

The Supplement related to this article is available online

at doi:10.5194/npg-22-737-2015-supplement.

Acknowledgements. The support of this study by a grant no.

20102019 from the US-Israel Binational Science Foundation

is gratefully acknowledged. The authors wish to thank Andrey

Zavadsky for his valuable assistance.

Edited by: V. Shrira

Reviewed by: two anonymous referees

References

Akhmediev, N. N., Eleonskii, V. M., and Kulagin, N. E.: Exact first-

order solutions of the nonlinear Schrödinger equation, Theor.

Math. Phys., 72, 809–818, 1987.

1A different approach was suggested by Saket et al.,

2015, ArXiv 1508.07702, and Barthelemy et al., 2015, ArXiv

1508.06002, after this manuscript was submitted.

Nonlin. Processes Geophys., 22, 737–747, 2015 www.nonlin-processes-geophys.net/22/737/2015/

http://dx.doi.org/10.5194/npg-22-737-2015-supplement


L. Shemer and B. K. Ee: Steep unidirectional wave groups – fully nonlinear simulations vs. experiments 747

Babanin, A., Chalikov, D., Young, I., and Savelyev, I.: Predicting

the breaking onset of surface water waves, Geophys. Res. Lett.,

34, L07605, doi:10.1029/2006GL029135, 2007.

Banner, M. L., Barthelemy, X., Fedele, F., Allis, M., Benetazzo, A.,

Dias, F., and Peirson, W. L.: Linking reduced breaking crest

speeds to unsteady nonlinear water wave group behavior, Phys.

Rev. Lett., 112, 114502, doi:10.1103/PhysRevLett.112.114502,

2014.

Bateman, W. J. D., Kasardi, V., and Swan, C.: Extreme ocean waves.

Part I. The practical application of fully nonlinear wave model-

ing, Appl. Ocean. Res., 34, 209–224, 2012.

Chabchoub, A., Hoffmann, N. P., and Akhmediev, N.: Rogue wave

observation in a water wave tank, Phys. Rev. Lett. 106, 204502,

2011.

Chabchoub, A. S., Neumann, S., Hoffmann, N. P., Akhme-

diev, N.: Spectral properties of the Peregrine soliton ob-

served in a water wave tank. J. Geophys. Res. 117, C00J03,

doi:10.1029/2011JC007671, 2012

Chalikov, D. and Sheinin, D.: Direct modeling of one-dimensional

nonlinear potential waves, Nonlinear Ocean Waves, edited by:

Perrie, W., Adv. Fluid Mech. Ser., 17, 207–258, 1998.

Chalikov, D. and Sheinin, D.: Modeling of extreme waves based on

equations of potential flow with a free surface, J. Comput. Phys.,

210, 247–273, 2005.

Dysthe, K. B.: Note on the modification of the nonlinear

Schrödinger equation for application to deep water waves,

P. Roy. Soc. Lon. A Mat., 369, 105–114, 1979.

Dysthe, K. B. and Trulsen, K.: Note on breather type solutions

of the NLS as models for freak-waves, Phys. Scripta, 82, 48,

doi:10.1238/Physica.Topical.082a00048, 1999.

Dysthe, K., Krogstad, H. E., and Müller, P.: Oceanic rogue waves,

Annu. Rev. Fluid Mech., 40, 287–310, 2008.

Fedele, F.: Geometric phases of water waves, EPL, 107, 69001,

doi:10.1209/0295-5075/107/69001, 2014.

Hasimoto, H. and Ono, H.: Nonlinear modulation of gravity

waves, J. Phys. Soc. Jpn., 33, 805–811, 1972.

Johannessen, T. B. and Swan, C.: A laboratory study of the focusing

of transient and directionally spread surface water waves, Proc.

R. Soc. A, 457, 971–1006, 2001.

Johannessen, T. B. and Swan, C.: On the nonlinear dynamics of

wave groups produced by the focusing of surface–water waves,

Proc. R. Soc. A, 459, 1021–1052, 2003.

Kharif, C., Pelinovsky, E., and Slunyaev, A.: Rogue Waves in the

Ocean, Springer Verlag, Germany, 216 pp., 2009.

Kit, E. and Shemer, L.: Spatial versions of the Zakharov and Dysthe

evolution equations for deep water gravity waves, J. Fluid Mech.,

450, 201–205, 2002.

Kurnia, R. and Groesen, E. V.: High order Hamiltonian water wave

models with wave-breaking mechanism, Coast. Eng., 93, 55–70,

2014.

Kuznetsov, E. A.: Solitons in a parametrically unstable plasma,

Akad. Nauk SSSR Dokl., 236, 575–577, 1977.

Lo, E. and Mei, C. C.: A numerical study of water-wave modulation

based on higher-order nonlinear Schrödinger equation, J. Fluid

Mech., 150, 395–416, 1985.

Ma, Y. C.: The perturbed plane-wave solutions of the cubic

Schrödinger equation, Stud. Appl. Math., 60, 43–58, 1979.

Mei, C. C.: The Applied Dynamics of Ocean Surface Waves, World

Scientific, Singapore, 740 pp., 1989.

Milewski, P. A., Vanden-Broeck, J. M., and Wang, Z.: Dynamics of

steep two-dimensional gravity-capillary solitary waves, J. Fluid

Mech., 664, 466–477, 2010.

Osborne, A., Onorato, M., and Serio, M.: The nonlinear dynamics

of rogue waves and holes in deep-water gravity wave train, Phys.

Lett. A, 275, 386–393, 2000.

Peregrine, D. H.: Water waves, nonlinear Schrödinger equations and

their solutions, J. Aust. Math. Soc. B, 25, 16–43, 1983.
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