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Abstract. In ensemble Kalman filtering (EnKF), the small

number of ensemble members that is feasible to use in a prac-

tical data assimilation application leads to sampling variabil-

ity of the estimates of the background error covariances. The

standard approach to reducing the effects of this sampling

variability, which has also been found to be highly efficient in

improving the performance of EnKF, is the localization of the

estimates of the covariances. One family of localization tech-

niques is based on taking the Schur (element-wise) product

of the ensemble-based sample covariance matrix and a cor-

relation matrix whose entries are obtained by the discretiza-

tion of a distance-dependent correlation function. While the

proper definition of the localization function for a single state

variable has been extensively investigated, a rigorous defini-

tion of the localization function for multiple state variables

that exist at the same locations has been seldom considered.

This paper introduces two strategies for the construction of

localization functions for multiple state variables. The pro-

posed localization functions are tested by assimilating simu-

lated observations experiments into the bivariate Lorenz 95

model with their help.

1 Introduction

The components of the finite-dimensional state vector of a

numerical model of the atmosphere are defined by the spatial

discretization of the state variables considered in the model.

An ensemble-based Kalman filter (EnKF) data assimilation

scheme treats the finite-dimensional state vector as a mul-

tivariate random variable and estimates its probability dis-

tribution by an ensemble of samples from the distribution.

To be precise, an EnKF scheme assumes that the probability

distribution of the state is described by a multivariate normal

distribution, and it estimates the mean and the covariance ma-

trix of that distribution by the ensemble (sample) mean and

the ensemble (sample) covariance matrix. The estimate of the

mean and the estimate of the covariance matrix of the analy-

sis distribution are obtained by updating the mean and the co-

variance matrix of a background (prior) distribution based on

the latest observations. The background distribution is repre-

sented by an ensemble of short-term forecasts from the pre-

vious analysis time. This ensemble is called the background

ensemble.

Because the number of background ensemble members

that is feasible to use in a realistic atmospheric model is

small, the estimates of weak covariances (the entries with

small absolute values in the background covariance matrix)

tend to have large relative estimation errors. These large rela-

tive errors have a strong negative effect on the accuracy of an

EnKF estimate of the analysis mean. The standard approach

to alleviating this problem is to apply a physical-distance-

dependent localization to the sample background covariances

before their use in the state update step of the EnKF. In

essence, localization is a method to introduce the empirical

understanding that the true background covariances tend to

rapidly decrease with distance into the state estimation pro-

cess.

Data assimilation schemes treat the spatially discretized

state vector, x, as a multivariate random variable. We use the

conventional notation xb and xa for the background and the

analysis state vectors, respectively. We also use the notation

y◦ for the vector of observations. In an EnKF scheme, the

analysis mean, xa, is computed from the background mean,

xb, by the update equation
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xa
= xb

+K
(
y◦−h

(
xb
))
. (1)

The function h(·) is the observation function, which maps the

finite-dimensional state vector into observables. Thus, h(xb)

is the ensemble mean of the prediction of the observations by

the background. The matrix

K= PbHT
(

HPbHT
+R

)−1

(2)

is the Kalman gain matrix, where Pb is the background co-

variance matrix, H is the linearization of h about xb, and

R is the observation error covariance matrix. EnKF schemes

usually avoid the explicit computation of the linearized ob-

servation operator H by using approximations to Pb HT and

HPbHT that involve only the computation of h(xb) and

h(xb) (e.g., Houtekamer and Mitchell, 1998). The entry Kij
of K determines the effect of the j th observation on the

ith component of the analysis mean, xa. Under the standard

assumption that the observation errors are uncorrelated, the

matrix, R, is diagonal. Hence, the way the effect of the ob-

servations is spread from the observations to the different lo-

cations and state variables is determined by Pb and H. The

sampling variability in the estimates of Pb affects the accu-

racy of the information propagated in space and between the

different state variables through the matrix products, PbHT

and HPb HT . The goal of localization is to reduce the related

effects of sampling variability on the estimates of K.

Over the years, many different localization methods

have been proposed. Hamill et al. (2001), Houtekamer and

Mitchell (1998, 2001), Hunt et al. (2007), Ott et al. (2004),

and Whitaker and Hamill (2002) used localization functions

which set the covariance to zero beyond a certain distance

(localization radius). Jun et al. (2011) proposed a nonpara-

metric statistical method to estimate the covariance. Ander-

son (2007) used a hierarchical ensemble filter which esti-

mates the covariance using an ensemble of ensemble filters.

Bishop and Hodyss (2007, 2009a, b) adaptively determined

the width of localization by computing powers of the sam-

ple correlations. Buehner and Charron (2007) examined the

spectral and spatial localization of error covariance. Ander-

son and Lei (2013) and Lei and Anderson (2014) proposed

an empirical localization function based on the output of an

observing system simulation experiment.

The focus of the present paper is on the family of schemes

that localize the covariances by taking the Schur (Hadamard)

product of the sample background covariance matrix and a

correlation matrix of the same size, whose entries are ob-

tained by the discretization of a distance-dependent corre-

lation function with local (compact) support (e.g., Hamill

et al., 2001; Houtekamer and Mitchell, 2001; Whitaker and

Hamill, 2002). Such a correlation function is usually called a

localization or taper function. The commonly used localiza-

tion functions were introduced by Gaspari and Cohn (1999).

Beyond a certain distance, all localization functions become

zero, forcing the filtered estimates of the background covari-

ance between state variables at locations that are far apart in

space to zero. This property of the filtered background co-

variances can also be exploited to increase the computational

efficiency of the EnKF schemes.

A realistic atmospheric model has multiple scalar state

variables (e.g., temperature, coordinates of the wind vector,

surface pressure, humidity). If a univariate localization func-

tion, such as that described by Gaspari and Cohn (1999), is

applied directly to a multivariate state vector (that is, the

same localization function with the same localization pa-

rameters is applied to each state variables) when the cross-

covariances of multiple state variables is not negligible, it

may introduce a new undesirable form of rank deficiency,

despite the general significant increase of rank. The resulting

localized background covariance matrix may not be positive

definite. Because Pb is symmetric, its eigenvalues are real

and non-negative, which implies that Pb is invertible only if

it is also positive definite. The matrix Pb has non-negative

eigenvalues and is invertible if it is positive definite. (An

n× n symmetric matrix A is defined to be positive definite

if xT Ax > 0 for all nonzero vectors x ∈ Rn.) Because the

computation of the right-hand side of Eq. (2) does not re-

quire the invertibility of Pb, the singularity of the localized

Pb usually does not lead to a breakdown of the computations

in practice. An ill-conditioned estimate of Pb, however, can

degrade the conditioning (increase the condition number) of

HPb HT
+R, making the numerical computation of the right-

hand side of Eq. (2) less stable. This motivates us to seek

rigorously derived multivariate localization functions for en-

semble Kalman filtering. As will be demonstrated, such rig-

orously derived multivariate localization functions often pro-

duce more accurate analyses than those that apply the same

univariate localization functions to each scalar component of

the state vector. Kang et al. (2011) also introduced a mul-

tivariate localization method that zeros out covariances be-

tween physically unrelated variables. Their primary motiva-

tion for zeroing out such covariances, however, was to fil-

ter apparent spurious covariances, rather than to preserve the

positive definiteness of the background error covariance ma-

trix.

In our search for proper multivariate localization func-

tions, we take advantage of recent developments in the statis-

tics literature. In particular, we use the localization functions

developed in Porcu et al. (2013), who studied the radial basis

functions to construct multivariate correlation functions with

compact support. Note that Sect. 5 in Zhang and Du (2008)

described a general methodology for covariance tapering in

the case of multiple state variables. Du and Ma (2013) used

a convolution approach and a mixture approach to derive

covariance matrix functions with compactly supported co-

variances. Kleiber and Porcu (2015) constructed nonstation-

ary correlation functions with compact support for multivari-

ate random fields. Genton and Kleiber (2015) reviewed ap-

proaches to building models for covariances between two
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different variables such as compactly supported correlation

functions for multivariate Gaussian random fields.

The rest of the paper is organized as follows. Section 2

briefly describes EnKF and localization for the special case

of two state variables. Section 3 describes the bivariate

Lorenz 95 model we use to test our ideas. Section 4 sum-

marizes the main results of the paper.

2 Methodology

2.1 Univariate localization

In principle, localization can be implemented by using fil-

tered estimates of the background covariances rather than the

raw sample covariances to define the matrix, Pb, used in the

computation of K by Eq. (2). The filtered (localized) version

of covariance matrix, P̃b, is obtained by computing the Schur

(element-wise) product:

P̃b
= P̂b

◦ C, (3)

where C is a correlation matrix, which has the same dimen-

sions as the sample covariance matrix, P̂b. In practice, how-

ever, the localization is often done by taking advantage of the

fact that localization affects the analysis through Pb HT and

HPb HT , or, ultimately, through K. In particular – because a

distance, d, can be defined for each entry, Kij , of K by the

distance between the ith analyzed variable and the j th obser-

vation – the simplest localization strategy is to set all entries,

Kij , that are associated with a distance longer than a pre-

scribed localization radius, R (d > R), to zero, while leav-

ing the remaining entries unchanged (e.g., Houtekamer and

Mitchell, 1998; Ott et al., 2004; Hunt et al., 2007).

Another approach is to localize Pb HT and HPb HT by a

tapering function (e.g., Hamill et al., 2001; Houtekamer and

Mitchell, 2001). The usual justification for this approach is

that the localized matrix products provide good approxima-

tions of the products computed by using localized estimates

of Pb. Note that Pb HT is the matrix of background covari-

ances between the state variables at the model grid points

and at the observation locations, while HPb HT is the ma-

trix of background covariances between the state variables at

the observation locations. Thus, a distance can be associated

with each entry of the two matrix products, which makes the

distance-dependent localization of the two products possible.

The approach becomes problematic, however, when h(·) is

not a local function, which is the typical case for remotely

sensed observations (Campbell et al., 2010).

We consider the situation where localization is applied di-

rectly to the background error covariance matrix, P̂b. Recall

that the localized covariance matrix is expressed as in Eq. (3).

In particular, C is a positive-definite matrix with strictly pos-

itive eigenvalues, while the sample covariance matrix, P̂b,

may have zero eigenvalues (as it is only non-negative defi-

nite). The localization in Eq. (3) helps to eliminate those zero

eigenvalues of P̂b and alleviates the related large relative es-

timation errors. The positive definiteness of C ensures that

localization does not introduce new zero eigenvalues in the

process of eliminating the zero eigenvalues of P̂b. The proper

definition of the localization function that ensures that C is

positive definite has been thoroughly investigated for the uni-

variate case (N = 1) in the literature (e.g. Gaspari and Cohn,

1999).

2.2 Multivariate localization

We now consider a model with multiple state variables (N >

1). For instance, we take a simple model based on the hydro-

static primitive equations. This model solves the equations

for the two horizontal components of wind, the surface pres-

sure, the virtual temperature and a couple of atmospheric

constituents. The state of the model is represented by the

state vector, x = (x1, x2, . . . , xN ), where xi , i = 1, 2, . . . ,N ,

represents the spatially discretized state of the ith state vari-

able in the model.

The sample background covariance matrix, P̂b, can be par-

titioned as

P̂b
=


P̂b

11 P̂b
12 · · · P̂b

1N

P̂b
21 P̂b

22 · · · P̂b
2N

...
...

. . .
...

P̂b
N1 P̂b

N2 · · · P̂b
NN

 . (4)

The entries of the submatrices, P̂b
ii , i = 1, . . . , N , are called

the marginal covariances for the ith state variable. In prac-

tical terms if the ith state variable is the virtual tempera-

ture, for instance, each diagonal entry of P̂b
ii represents the

sample variance for the virtual temperature at a given model

grid point, while each off-diagonal entry of P̂b
ii represents

the sample covariances between the virtual temperatures at

a pair of grid points. Likewise, the entries of P̂b
ij , i 6= j , are

called the sample cross-covariances between the grid point

values of the ith and the j th state variables at pairs of loca-

tions, where the two locations for an entry can be the same

grid point.

We thus consider matrix-valued localization functions,

ρ(d)= {ρij (d)}i,j=1,...,N , which are continuous functions of

d . The component ρij (d) of ρ(d) is the localization function

used for the calculation of the covariances included in the

submatrix Pb
ij of Pb. Each entry of the localization matrix

C is computed by considering the value of the appropriate

component of ρ(d) for a particular pair of state variables and

the separation distance, d , associated with the related entry

of P̂b.

In order to get a proper matrix-valued localization func-

tion, ρ, a seemingly obvious approach to extend the results

of Gaspari and Cohn (1999) would be to compute the entries

of C based on a univariate correlation function for a multi-

variate variable. That is, for the pair of state variables i and

j , we localize the corresponding sample background covari-
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ance matrix, P̂b
ij , by multiplying a localization matrix from

the same correlation function for all i and j . Formally, this

would be possible because the distance d is uniquely defined

for each entry of P̂b the same way in the multivariate case as

in the univariate case. This approach, however, cannot guar-

antee the positive definiteness of the resulting matrix, C. As

a simple illustrative example, consider the situation where

the discretized state vector has only two components that are

defined by two different scalar state variables at the same lo-

cation (e.g., the temperature and the pressure). In this case, if

n is the number of locations, the localization matrix for the

two state variables together can be written as

C=

(
C0 C0

C0 C0

)
(5)

independently of the particular choice of the localization

function. Here C0 is an n× n localization matrix from a uni-

variate localization function. From Eq. (5), it is clear that

n eigenvalues of C are zero and the rank of C is n, while

its dimensions are 2n× 2n.

As in Eq. (2), although C is rank-deficient and thus so

is the localized covariance matrix P̃b (and thus P̃b may be

rank-deficient as well), we may still be able to calculate the

inverse of HP̃b HT
+R, as R is a diagonal matrix. The small-

est eigenvalue of H P̃b HT
+R is the smallest (positive) value

of R, and thus the matrix, HP̃b HT
+R, is still invertible and

has positive eigenvalues. However, unless the diagonal ele-

ments of R are large (which implies large observation error

variance), the matrix HP̃b HT
+R is seriously ill-conditioned

and the computation of its inverse may be numerically unsta-

ble. Therefore, the numerical stability of the computation of

the inverse of the matrix heavily relies on the observation er-

ror variance, which is an undesirable property.

We therefore propose two approaches to construct

positive-definite (full rank) matrix-valued localization func-

tions, ρ(d). The first proposed method takes advantage of

the knowledge of a proper univariate localization function,

ρ̃. Instead of using the same correlation function to local-

ize multiple state variables, for a certain distance lag, we let

ρ = ρ̃ ·B, where B is an N ×N symmetric, positive-definite

matrix whose diagonal entries are 1. It can be easily verified

that ρ is a matrix-valued positive-definite function, which

makes it a valid multivariate localization function. For in-

stance, in the hypothetical case where the two components of

the state vector are two different state variables at the same

location, making the choice

B=

(
1 β

β 1

)
(6)

for β, with |β|< 1, leads to

C=

(
C0 βC0

βC0 C0

)
(7)

rather than what is given in Eq. (5). Since the eigenvalues

of the matrix B are 1±β > 0, it can be easily verified that

the matrix in Eq. (7) is positive definite. For the case with

more than two state variables (N ≥ 3), the matrix B can be

parametrized as B= LLT , where

L=


`1,1 0 · · · 0

`2,1 `2,2 · · · 0
...

...
. . . 0

`N,1 `N,2 · · · `N,N

 (8)

is a lower triangular matrix with the constraints that
i∑

j=1

`2
i,j = 1 and `i,i > 0 for all i = 1, . . . ,N . The constraints

are used to have the diagonal entries of B be 1. Other than

these constraints, the elements of L can vary freely in order

to guarantee the positive definiteness of B.

An attractive feature of this approach is that we can take

advantage of any known univariate localization function to

produce a multivariate localization function. However, the

multivariate localization function from this approach is sep-

arable in the sense that the multivariate component (i.e., B)

and the localization function (i.e., ρ̃) are factored. Another

limitation of the approach is that the localization radius and

decay rate are the same for each pair of state variables, leav-

ing no flexibility to account for the potential differences in

the correlation lengths and decay rate for the different state

vector components.

The second proposed method takes advantage of the avail-

ability of multivariate compactly supported functions from

the spatial statistics literature. To the best of our knowledge,

only a few papers have been published on this subject; one

of them is Porcu et al. (2013). The function class they con-

sidered was essentially a multivariate extension of the Askey

function (Askey, 1973), f (d; ν, c)= (1− d
c
)ν+, with c, ν > 0.

Here, x+ =max(x, 0) for x ∈ R. For instance, a bivariate

Askey function, which is a special case of the results of Porcu

et al. (2013), is given by (i, j = 1, 2)

ρij (d;ν,c)= βij

(
1−

d

c

)ν+µij
+

, (9)

where c > 0, µ12 = µ21 ≤
1
2
(µ11+µ22), ν ≥ [

1
2
s]+2, βii =

1 (i = 1, 2), β12 = β21, and

|β12| ≤
0(1+µ12)

0 (1+ ν+µ12)

√
0(1+ ν+µ11)0 (1+ ν+µ22)

0 (1+µ11)0 (1+µ22)
.

(10)

Here, 0(·) is the gamma function (e.g., Wilks, 2006) and s

is the dimension of the Euclidean space where the state vari-

able is defined. If the state is defined at a particular instant on

a grid formed by latitude, longitude, and height, then s = 3.

Here, [x] is the largest integer that is equal to or smaller than

x. The Askey function in Eq. (9) has the support c because it

sets covariances beyond a distance c to zero. It can be seen
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Figure 1. The Gaspari–Cohn covariance function with a localiza-

tion constant c = 25 (support of 50) and the Askey covariance func-

tion f (d; ν, c)= (1− d
c )
ν
+

, with a support parameter c = 50 and

various shape parameters.

from Eq. (10) that, if the scalars, µij , are chosen to be the

same for all values of i and j , the condition on β12 for ρ to

be valid is |β12| ≤ 1. (Note that the case of equality here, with

the same µij ’s, reduces to the rank-deficient case where the

multivariate localization matrix has zero eigenvalues, simi-

larly to the case of β = 1 in Eq. 7.) For this choice, the second

method is essentially the same as the first method with the

Askey function set to ρ̃. The localization function given by

Eq. (9) is more flexible than the functions of the first method

with the Askey function set to ρ̃ becauseµij can be chosen to

be different for each pair of indexes, i and j . The localization

length, however, is still the same for the different pairs of the

state variables. The multivariate Askey function is formed by

ρij (d;ν,c)=c
ν+1B

(
µij + 1,ν+ 1

)(
1−
|d|

c

)ν+µij+1

,

|d|< c (11)

and 0 otherwise, where ν ≥ (s+ 1)/2, µij = (µi +µj )/2,

and µi > 0 for all i = 1, . . . , N . Here, B is the beta function

(Porcu et al., 2013; Genton and Kleiber, 2015).

To illustrate the differences between the shape of the

Gaspari–Cohn and the Askey functions, we show the

Gaspari–Cohn function for c = 25 and the univariate Askey

function for c = 50 and ν = 1, . . . , 4 (Fig. 1). This figure

shows that, for a given support, the Askey functions are nar-

rower.

3 Experiments

3.1 The EnKF scheme

There are many different formulations of the EnKF update

equations, which produce not only an updated estimate of

the mean but also the ensemble of analysis perturbations that

are added to the mean to obtain an ensemble of analyses.

This ensemble of analyses serves as the ensemble of initial

conditions for the model integration that produce the back-

ground ensemble. In our experiments, we use the method of

perturbed observations. It obtains the analysis mean and the

ensemble of analysis perturbations by the equations

xa
= xb

+K
(
y−Hxb

)
, (12)

x′
a
k = x

′b
k +K

(
y′

o
k −Hx′

b
k

)
, (13)

where x′k , k = 1, 2, . . . , M , are the ensemble perturbations

and y′
o
k , k = 1, 2, . . . , M , are random draws from the proba-

bility distribution of observation errors. As the notation sug-

gests, we consider a linear observation function in our exper-

iments. This choice is made for the sake of simplicity and

limits the generality of our findings much less than the use of

an idealized model of atmospheric dynamics.

For the case of multiple state variables, the ensemble

members are considered to be in a single ensemble, that is,

not being grouped into distinct subensembles.

3.2 The bivariate Lorenz model

Lorenz (1995) discussed the bivariate Lorenz 95 model,

which mimics the nonlinear dynamics of two linearly cou-

pled atmospheric state variables, X and Y , on a latitude cir-

cle. This model provides a simple and conceptually satis-

fying representation of basic atmospheric processes but is

not suitable for some atmospheric processes. The model 3 in

Lorenz (2005) made it more realistic and suitable with sacri-

fice of simplicity, by producing a rapidly varying small-scale

activity superposed on the smooth large-scale waves. We use

the Lorenz 95 model for simplicity in our following experi-

ments.

In the bivariate Lorenz 95 model, the variable X is a

“slow” variable represented by K discrete values, Xk , and

Y is a “fast” variable represented by J ×K discrete values.

The governing equations are

dXk

dt
=−Xk−1 (Xk−2−Xk+1)−Xk − (ha/b)

J∑
j=1

Yj,k +F,

(14)

dYj,k

dt
=−abYj+1,k

(
Yj+2,k −Yj−1,k

)
− aYj,k + (ha/b)Xk,

(15)

where Yj−J,k = Yj,k−1 and Yj+J,k = Yj,k+1 for k = 1, . . . ,K

and j = 1, . . . , J . The “boundary condition” is periodic;

www.nonlin-processes-geophys.net/22/723/2015/ Nonlin. Processes Geophys., 22, 723–735, 2015
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Figure 2. A snapshot of the variables X and Y from a numerical

integration of the system of Eqs. (14) and (15) withK = 36, J = 10,

F = 10, a = 10, b = 10, and h= 2.

that is, Xk−K =Xk+K =Xk , and Yj,k−K = Yj,k+K = Yj,k .

In our experiments, K = 36 and J = 10. The parameter h

controls the strength of the coupling between X and Y , a is

the ratio of the characteristic timescales of the slow motion

ofX to the fast motion of Y , b is the ratio of the characteristic

amplitudes ofX to Y , and F is a forcing term. We choose the

parameters to be a = 10, b = 10, F = 10, and h= 2. These

values of the model parameters are equal to those originally

suggested by Lorenz (1995), except for the value of the cou-

pling coefficient h, which is twice as large in our case. We

made this change in h to increase the covariances between

the errors in the estimates of X and Y , which makes the

model more sensitive to the choices of the localization pa-

rameters. We use a fourth-order Runge–Kutta time integra-

tion scheme with a time step of 0.005 nondimensional units,

as Lorenz (1995) did. We define the physical distances be-

tween Xk1
and Xk2

, between Yj1,k1
and Yj2,k2

, and between

Xk1
and Yj1,k2

by |10(k1− k2)|, |10(k1− k2)+ j1− j2|, and

|10(k1−k2)−j1|, respectively. Figure 2 shows a typical state

of the model for the selected parameters. The figure shows

thatX tends to drive the evolution of Y : the hypothetical pro-

cess represented by Y is more active (its variability is higher)

with higher values of X.

3.3 Experimental design

Since the estimates of the cross-covariances play a particu-

larly important role at locations where one of the variables is

unobserved, we expect an improved treatment of the cross-

covariances to lead to analysis improvements at locations

where only one of the state variables is observed. This moti-

vates us to consider an observation scenario in which X and

Y are partially observed. The variable X is observed at 20 %

of all locations, and Y is observed at 90 % of the locations
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Y

Figure 3. For the partially observed case, locations of observations

of X and Y are indicated by the black dots and grey circles, respec-

tively.

where X is not observed. These observation locations for

variables X and Y are randomly chosen. Spatial locations

of the partially observed X and Y are illustrated in Fig. 3.

The results from this experiment are compared to those from

a control experiment, in which both X and Y are fully ob-

served.

We first generate a time series of “true” model states by

a 2000-time-step integration of the model. We initialize an

ensemble by adding the standard Gaussian noise to the true

state; then we discard the first 3000 time steps. We then gen-

erate simulated observations by adding random observation

noise of mean 0 and variance 0.02 to the the appropriate com-

ponents of the true state of X at each time step. We use the

same procedure to generate simulated observations of Y , ex-

cept that the variance of the observation noise is 0.005. Ob-

servations are assimilated at every time step by first using

a 20-member ensemble with a constant covariance inflation

factor of 1.015. The error in the analysis at a given verifica-

tion time is measured by the root-mean-square distance be-

tween the analysis mean and the true state. We refer to the re-

sulting measure as the root-mean-square error (RMSE). The

probability distribution of the RMSE for the last 1000 time

steps of 50 different realizations of each experiment is shown

by a box plot. The box plot is an effective way of displaying a

summary of the distribution of numbers. The lower and upper

bounds of the box respectively give the 25th and 75th per-

centiles. The thick line going across the interior of the box

gives the median. The whisker depends on the interquartile

range (IQR), which is precisely equal to the vertical length

of the box. The whiskers extend to the extreme values, which

are no more than 1.5 IQR from the box. Any values that fall

outside of the end points of whiskers are considered outliers,

and they are displayed as circles.
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In the box plot figures in the next section, we compare the

RMSE for four different localization schemes. We use the

following notation to distinguish between them in the figures:

1. S1 – the bivariate sample background covariance is used

without localization;

2. S2 – same as S1 except that the cross-covariances be-

tween X and Y are replaced by zeros;

3. S3 – a univariate localization function is used to filter

the marginal covariances within X and Y , respectively,

while the cross-covariances between X and Y are re-

placed by zeros;

4. S4 – one of the bivariate localization methods described

in Sect. 2.2 is used to filter both the marginal and the

cross-covariances.

In the experiments identified by S4, we consider two

different bivariate localization functions: the first one is

ρ(1)(·)= {βijρ
(1)(·)}i,j=1,2, with βii = 1 (i = 1, 2) and

βij = β (i 6= j ), for some β such that |β|< 1. We use the

fifth-order piecewise-rational function of Gaspari and Cohn

(1999) to define the univariate correlation function, ρ(1), in

the following form:

ρ(1)(d;c)=
−

1

4
(|d|/c)5 +

1

2
(d/c)4 +

5

8
(|d|/c)3 −

5

3
(d/c)2 + 1, 0≤ |d| ≤ c,

1

12
(|d|/c)5 −

1

2
(d/c)4 +

5

8
(|d|/c)3 +

5

3
(d/c)2 − 5(|d|/c)+ 4−

2

3
c/|d|, c ≤ |d| ≤ 2c,

0, 2c ≤ |d|.

(16)

This correlation function attenuates the covariances with in-

creasing distance, setting all the covariances to zero beyond

distance 2c. So this function has the support 2c. If |β|< 1

and c is the same for both the marginal and the cross-

covariances, the matrix-valued function, ρ(1), is positive def-

inite and of full rank. We test various values of the localiza-

tion parameters c and β, and present the test results in the

next section.

The second multivariate correlation function we consider,

ρ(2), is the bivariate Askey function described in Sect. 2.2.

In particular, we use µ11 = 0, µ22 = 2, µ12 = 1, and ν = 3.

According to Eq. (10), for these choices of parameters, the

one remaining parameter, β12, must be chosen such that

|β12| ≤ 0.79.

3.4 Results

Figure 4 shows the distribution of RMSE for variable X for

different configurations of the localization scheme in the case

where the state is only partially observed. This figure com-

pares the Askey function and Gaspari–Cohn function which

have the same support (localization radius), so setting all the

covariances to zero beyond the same distance. We recall that,

becauseX is much more sparsely observed than Y , we expect

to see some sensitivity of the analyses of X to the treatment

of the cross-covariance terms. The figure confirms this ex-

pectation. A comparison of the results for configurations S1

and S2 suggests that ignoring the cross-covariances is a better

strategy than using them without localization. This conclu-

sion does not hold once a univariate localization is applied to

the marginal covariances, as using configuration S3 produces

worse results than applying no localization at all (S1).

Figure 4 also shows that the distribution of the state es-

timation error is less sensitive to the choice of localization

strategy for the larger values of support. Of all localization

schemes, S4 with β = 0.1 performs best regardless of the lo-

calization radius: the distribution of the state estimation er-

ror is narrow with a mean value that is lower than those for

the other configurations of the localization scheme. For this

choice of localization scheme and β, the Askey function pro-

duces smaller errors than the Gaspari–Cohn function, partic-

ularly for smaller localization radii.

Figure 5 is the same as Fig. 4 but for variable Y rather than

for variable X. A striking feature of the results shown in this

figure is that the Askey function clearly performs better than

the Gaspari–Cohn function. Another obvious conclusion is

that using a smaller localization radius (a lower value of sup-

port) is clearly advantageous for the estimation of Y . This re-

sult is not surprising, considering that Y is densely observed

and its spatial variability is much higher than that of X. In

contrast to the results for variable X, configuration S3 pro-

duces much more accurate estimates of variable Y than do

configurations S1 and S2. In addition, configuration S4 per-

forms only slightly better, and only for the lowest value of

support, than does configuration S3. The latter observations

indicate that the marginal covariances play a more impor-

tant role than do the cross-covariances in the estimation of

the densely observed Y . The proper filtering of the marginal

covariances can thus greatly increase the accuracy of the es-

timates of Y . In other words, the densely observed Y is pri-

marily estimated based on observations of Y . Hence, the low

signal-to-noise ratio for the sample estimate of the marginal

covariances for Y greatly limits the value of the observations

of Y at longer distances.

Figure 6 is the same as Fig. 4 but for the case of a fully

observed state. By comparing the two figures, we see that the

analysis is far less sensitive to the localization radius in the

fully observed case than in the partially observed case. As

can be expected, the state estimates are also more accurate

in the fully observed case. In the fully observed case, local-

ization strategy S3 performs much better than do strategies

S1 and S2 and similarly to S4. This result indicates that, in

the fully observed case,X is primarily analyzed based on ob-

servations of X, making the analysis of X more sensitive to

the localization of the marginal covariances than to the local-

ization of the cross-covariances. Similar to the partially ob-

served case, the Askey function tends to perform better than

the Gaspari–Cohn function, but the differences between the

accuracy of the state estimates for the two filter functions are

negligible, except for the shortest localization radius.
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Figure 4. The box plot of RMSE for variable X in the case when the system is only partially observed. Results are shown for different

localization strategies. For the definitions of localization strategies S1, S2, S3 and S4, see the text. The title of each panel indicates the

localization radius (length of support). The lower and upper bounds of the box respectively give the 25th and 75th percentiles. The thick line

going across the interior of the box gives the median. The whisker depends on the interquartile range (IQR), which is precisely equal to the

vertical length of the box. The whiskers extend to the extreme values, which are no more than 1.5 IQR from the box. Any values that fall

outside of the end points of whiskers are considered outliers, and they are displayed as circles. The numbers below S4 indicate the value

of β. There is no box plot for β = 1 for the S4 with the Askey function, since the Askey function is not defined with β = 1 (|β| ≤ 0.79; see

Sect. 3.3).

Figure 7 shows the distribution of the errors for variable

Y in the fully observed case. The best results are obtained

by using a short localization radius with the Askey function,

even though the variability of the error is relatively large in

that case. The fact that localization strategies S3 and S4 per-

form similarly well shows that the estimates of the cross-

covariances do not play an important role in this case; that

is, X is primarily estimated based on observations of X, and

Y is dominantly estimated based on observations of Y .

We also investigated the performance of EnKF with a 500-

member ensemble. The results for the 500-member ensemble

are shown in Figs. 8 to 11. We use an inflation factor of 1.005

for 500 ensembles, because the optimal value of the inflation

factor is typically smaller for a larger ensemble. The rank of

the 500-member ensemble covariance matrix is significantly

larger than that of the 20-member ensemble covariance ma-

trix, as expected.

Figures 8 to 11 show that, overall, S4 still performs better

than the other localization schemes regardless of the choice

of localization radius, as in the case of the 20-member en-

semble. In particular, when observations are partially ob-

served, S4 with β = 0.01 provides the smallest RMSE. The

cross-correlation between X and Y , calculated using 500-

member ensembles without assimilating any observation,

varies from −0.4 to 0.4, which indicates that the cross-

correlation between the two variables are not negligible.

Therefore, improved treatment of cross-covariance tends to

lead to an improved accuracy in the state estimation.

The results with the 500-member ensemble also show that

the distribution of the state estimation error is in general less

sensitive to the choice of the localization function or the

localization radius, compared to the 20-member-ensemble

case. Figure 8, however, shows that, for the estimation of

sparsely observedX, the localization scheme S3 with smaller

localization radius performs worse than that with larger lo-

calization radius. For variable Y in the partially observed

case (Fig. 8) and both variablesX and Y in the fully observed

case (Figs. 10 and 11), the best results are obtained with S3

and S4 regardless of the localization radius. They also show
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Figure 5. Same as Fig. 4 but for variable Y .
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Figure 6. Same as Fig. 4 but for the case when the system is fully observed.
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Figure 7. Same as Fig. 6 but for variable Y .
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Figure 8. Same as Fig. 4 but for 500 ensemble members.

Nonlin. Processes Geophys., 22, 723–735, 2015 www.nonlin-processes-geophys.net/22/723/2015/



S. Roh et al.: Multivariate localization methods for ensemble Kalman filtering 733

●
●
●●●●●
●●●

● ● ● ● ●

S1 S2 S3 S4 S4 S4 S4 S4 S4

0.
0

0.
1

0.
2

0.
3

0.
4

Support 50

R
M

S
E

●
●● ●●

5e−3 1e−2 0.1 0.4 0.7 1

●
●
●●●●●
●●●

●●●
●

S1 S2 S3 S4 S4 S4 S4 S4 S4

0.
0

0.
1

0.
2

0.
3

0.
4

Support 70

R
M

S
E

● ●

5e−3 1e−2 0.1 0.4 0.7 1

●
●
●●●●●
●●●

●●●●●●● ●

S1 S2 S3 S4 S4 S4 S4 S4 S4

0.
0

0.
1

0.
2

0.
3

0.
4

Support 100

R
M

S
E

●

5e−3 1e−2 0.1 0.4 0.7 1

●
●
●●●●●
●●●

● ● ● ●

S1 S2 S3 S4 S4 S4 S4 S4 S4

0.
0

0.
1

0.
2

0.
3

0.
4

Support 160

R
M

S
E

●

5e−3 1e−2 0.1 0.4 0.7 1

Gaspari−Cohn
Askey

Figure 9. Same as Fig. 5 but for 500 ensemble members.
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Figure 10. Same as Fig. 6 but for 500 ensemble members.
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Figure 11. Same as Fig. 7 but for 500 ensemble members.

that the state estimation error is not sensitive but stable to the

choice of localization radius.

Figures 10 and 11 show that the localization schemes S3

and S4 perform in a similar way, and obviously perform bet-

ter than the other two localization schemes. This might imply

that the cross-covariances do not have much influence on the

state estimation in the fully observed case, once the covari-

ances within each state variable are localized.

4 Discussion

The central argument of this paper is that applying a single

localization function for the localization of covariances be-

tween multiple state variables in an EnKF scheme may not

sufficiently increase the rank of the estimate of the back-

ground covariance matrix. In the light of this, we suggested

two different approaches for the construction of positive-

definite filtered estimates of the background covariance ma-

trix. One of them takes advantage of the knowledge of a

proper univariate localization function, whereas the other

uses a multivariate extension of the Askey function. The re-

sults of our numerical experiments show that a mathemat-

ically proper localization function often leads to improved

state estimates. The results of the numerical experiments also

suggest that, of the two approaches we introduced, the one

based on the Askey function produces more accurate state es-

timates than that based on the Gaspari–Cohn function. This

fact, however, does not mean that the Askey function is al-

ways superior to the Gaspari–Cohn function in other chaotic

models or observation networks. Which correlation function

is superior depends on what the true error correlation looks

like.
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