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Abstract. Computerized ionospheric tomography (CIT) is a

technique that allows reconstructing the state of the iono-

sphere in terms of electron content from a set of slant total

electron content (STEC) measurements. It is usually denoted

as an inverse problem. In this experiment, the measurements

are considered coming from the phase of the GPS signal and,

therefore, affected by bias. For this reason the STEC cannot

be considered in absolute terms but rather in relative terms.

Measurements are collected from receivers not evenly dis-

tributed in space and together with limitations such as angle

and density of the observations, they are the cause of insta-

bility in the operation of inversion. Furthermore, the iono-

sphere is a dynamic medium whose processes are continu-

ously changing in time and space. This can affect CIT by lim-

iting the accuracy in resolving structures and the processes

that describe the ionosphere. Some inversion techniques are

based on `2 minimization algorithms (i.e. Tikhonov regular-

ization) and a standard approach is implemented here us-

ing spherical harmonics as a reference to compare the new

method. A new approach is proposed for CIT that aims to

permit sparsity in the reconstruction coefficients by using

wavelet basis functions. It is based on the `1 minimization

technique and wavelet basis functions due to their properties

of compact representation. The `1 minimization is selected

because it can optimize the result with an uneven distribu-

tion of observations by exploiting the localization property

of wavelets. Also illustrated is how the inter-frequency bi-

ases on the STEC are calibrated within the operation of in-

version, and this is used as a way for evaluating the accuracy

of the method. The technique is demonstrated using a simu-

lation, showing the advantage of `1 minimization to estimate

the coefficients over the `2 minimization. This is in particular

true for an uneven observation geometry and especially for

multi-resolution CIT.

1 Introduction

Tomographic imaging is an important tool for understand-

ing the ionosphere, its behaviour and its effects on radio

propagation. Ionospheric disturbances can persist for days in

particular conditions. The electron density is the main mea-

sure that can tell us about the state of the ionosphere. En-

hancements or depletions in the electron density produce ir-

regularities or structures that are present in the ionosphere

with different scales and vary with geographical location,

time and sun activity. The correct localization of the irreg-

ularities can therefore play an important role. The spatial

and temporal variability of ionospheric structures justifies the

wavelet approach that we will describe in this paper.

CIT (computerized ionospheric tomography) is mainly an

underdetermined inverse problem. The goal is to find the spa-

tial and temporal distribution of electron density from a se-

ries of relative observations that are collected in the form of

slant total electron content (STEC) measured from ground re-

ceivers along the signal path. The term relative is introduced

because the observations are uncalibrated, hence the calibra-

tion becomes part of the inverse problem. Receivers are gen-

erally unevenly distributed on the Earth and together with the

limited angle geometry of the rays the problem is difficult

to solve (Yeh and Raymund, 1991; Na and Lee, 1992) and

potentially unstable. Even with increasing observations from

new constellations of satellites there is always the problem of

the movement of the ionospheric medium in the time taken
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for the Global Navigation Satellite System (GNSS) satellites

to cross the sky.

In this type of mathematical problem a functional cost is

minimized (Geophysical Inverse Theory and Regularization

Problems). A conventional approach is based on Tikhonov

regularization (Tikhonov and Arsenin, 1977) and aims to bal-

ance the solution for good data agreement and to compen-

sate (regularize) where no data are available. In general a

proper regularization is needed to ensure stability, and to re-

duce artefacts and therefore noise in the reconstruction due

to lack of data.

Another recent approach uses the `1 norm as the met-

ric to regularize the solution. An implementation of this

is given by the Fast Iterative Shrinkage-Thresholding Al-

gorithm (FISTA) (Beck and Teboulle, 2009; Daubechies et

al., 2004). This algorithm is tailored with wavelets and, un-

der certain conditions, aims to minimize the number of basis

functions that can be used to represent the structures in the

ionosphere. The efficacy of the algorithm depends on the as-

sumption that the horizontal variation in the ionosphere can

be compactly represented with wavelets. It can be a difficult

task to prove as we cannot have a real global picture of the

ionosphere, but through simulation of the process with a re-

alistic ionospheric model, we can demonstrate that the algo-

rithm works efficiently.

The advantage of having a compact representation is not

only in terms of data. It also allows the removal of noise

terms (Tsaig and Donoho, 2006), and in the case of iono-

spheric tomography it can also potentially better handle the

uneven data distribution (Schmidt, 2007).

Sparse regularization techniques which minimize the `1

norm have not been used before in ionospheric tomogra-

phy and this is what we believe is the first implementation

in CIT. The sparse minimization should allow us to exploit

more effectively the potential of wavelets to produce a com-

pact reconstruction of the ionosphere. Results from other

fields make this technique particularly interesting (see for

example, Simons et al., 2011; Loris et al., 2010). Wavelet

basis functions have been used in CIT like Haar (Amerian

et al., 2010) and B-spline (Durmaz and Karslioğlu, 2011;

Schmidt et al., 2008; Zeilhofer et al., 2009) basis functions

but they were not used in stabilizing the inversion by means

of sparse regularization.

This paper describes an alternative method based on the

`1 norm, using wavelet basis functions, in relation to the `2

norm, using spherical harmonics, for CIT. The paper will fo-

cus on comparing the accuracy of the reconstructions from

a simulated ionosphere both quantitatively and qualitatively.

The `1 norm is expected to deal better with the uneven distri-

bution of the observations that we usually encounter in CIT.

The properties of wavelets allow the optimizer to select the

best combination at different scales and positions according

to the data coverage. Small-scale wavelets will be used only

where there is good data coverage; this will allow small-scale

structures in the ionosphere to be revealed. We used a modi-

fied version of the MIDAS (Multi-Instrument Data Analysis

System) (Mitchell and Spencer, 2003).

Section 2 gives the definition and the mathematical nota-

tions of the problem including biases and basis functions. It

also gives an overview of the `1 and `2 regularizations that

will be used in the paper. Results and conclusions are given

in Sects. 4 and 5.

2 Ionospheric observations

As in most geophysical applications of tomography, CIT is

an undetermined problem. The receiver-satellite geometry

and the uneven distribution of the receivers make the inver-

sion a difficult operation. While the vertical sensitivity can

be partially improved by means of Empirical Orthonormal

Functions (EOFs) (Fremouw et al., 1992; Sutton and Na,

1994), the estimation of horizontal structures can be lim-

ited by the presence of artefacts especially when the num-

ber of coefficients to estimate increases considerably (e.g. for

global or high-resolution maps).

In this section we will firstly define the observations and

biases that are involved in the forward problem notation.

Then we will describe the inverse problem in terms of ba-

sis functions and the regularization techniques.

2.1 Forward problem

In CIT observations are collected from ground-based re-

ceivers. The measurement z is in the form of Slant Total

Electron Content (STEC) defined as the integrated electron

content n along the receiver-satellite path

z= STEC=

stx∫
srx

n(s)ds. (1)

Observations of differential phase can be generally con-

sidered noise free from the point of view of the instruments

which inherently smooth over noise, but the measurement arc

between a single receiver and satellite is uncalibrated or bi-

ased. In this section we will discuss the nature of the biases

and the mathematical notation we will use to include them in

the inversion algorithm.

Equation (1) relates the observation (STEC) with the elec-

tron density n, which is what is estimated using CIT. In prac-

tice, the STEC is obtained by means of dual frequency differ-

ences from either the carrier phase of the signal or the pseu-

doranges of the C/A code (or if available P-code).

Following the Mannucci (Mannucci et al., 1999) notation

the recorded pseudorange Pi at the frequency fi (i = 1, 2)

can be written as

Pi = ρ+ I/f
2
i + τ

r
i + τ

s
i , (2)

where the non-dispersive term ρ includes the geometric dis-

tance, troposphere delays, clock errors and non-dispersive
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delays in the hardware signal path. The other dispersive de-

lays are frequency-dependent and include the ionospheric de-

lay I/f 2
i and the dispersive components of the satellite τ s

i

and receiver τ r
i hardware delays. The ionospheric delay can

be separated by differencing Eq. (2) at the two frequencies

L1 and L2

PI = (P2−P1)= I
(

1/f 2
1 + 1/f 2

2

)
+ br+ bs, (3)

where br and bs represent the residual frequency-differenced

dispersive biases for the receiver and the satellite. Equa-

tion (3) has a dependency with the frequency fi of the signal.

The relationship between PI and STEC z can be retrieved

by substituting a simplified approximation of the Appleton–

Hartree equation (Davies, 1990) and therefore

I = 40.3z. (4)

Hence, the STEC can be extracted from Eq. (3) and this can

be considered to be in absolute terms where no calibration

is required. Unfortunately the multipath–residual biases still

contribute as a significant noise component (Jakowski, 1996)

which makes the STEC estimations less accurate.

It is possible to use a more accurate estimation of the

STEC from the carrier phase but unfortunately with the dis-

advantage that calibration is required. To explain, and con-

trasting with the pseudorange in Eq. (2), the carrier phase of

the signal Li can be written as

Li = ρ− I/f
2
i + λiNi + ε

r
i + ε

s
i . (5)

The term Ni is the integer ambiguity in the phase cycle mea-

surement, and introduces a delay proportional to the wave-

length λi of the signal. The ionospheric term I contributes

with a negative sign. For this reason it is referred to as phase-

advance. Also in this case, εr
i and εs

i are the dispersive com-

ponents of the satellite and receiver hardware delays. As for

the code, it is possible to remove the dispersive component ρ

by differencing Eq. (5) at the two frequencies L1 and L2

LI = (L1−L2)= I
(

1/f 2
1 + 1/f 2

2

)
+ (λ1N1− λ2N2)

+ b′r+ b
′
s, (6)

where b′r and b′s represent the residual frequency-differenced

dispersive biases for the receiver and the satellite, and N1

and N2 are the integer ambiguities in the phase cycle mea-

surements for the frequencies L1 and L2 respectively. The

term (λ1N1− λ2N2) is generally unknown and introduces a

bias that makes the estimated STEC from Eq. (5) a relative

measurement. A possible solution to calibrate the GPS-based

ionospheric measurements is discussed in different publica-

tions (e.g. Mannucci et al., 1999 and Jakowski, 1996) based

on a combination of both PI and LI . Note that within a short

time interval and until the signal loses its lock, the integer

ambiguity and the residual terms can be considered constant.

This can be used to help calibrate STEC as described before.

However, it is also possible to calibrate the observations di-

rectly in the inversion process and this has been shown to

have advantages (Dear and Mitchell, 2006), particularly in

cases where the hardware biases vary over time. This cali-

bration method will be discussed in the next section.

Measurements for each receiver-satellite pair are con-

tained in the z vector, which is related with the electron con-

tent n by the following relationship

z= An+Bb. (7)

The problem of Eq. (7) is defined on a 3-D grid spacing in

altitude, latitude and longitude and it is known as a forward-

problem where A is the projection matrix that maps the elec-

tron content into measurements z, and depends on the geom-

etry of the problem. We also included the offset b that takes

into account the biases of Eq. (6). The projection matrix B,

instead, maps the offset of each ray (observation) into a sin-

gle offset for each receiver-satellite pair and is defined as

Bij =

{
1 if bj is the offset of zi

0 otherwise
(8)

2.2 Inverse problem

The quantity we want to estimate is represented in Eq. (7)

in terms of electron content n and is obtained through the

operation of the inversion. This defines an inverse problem

that is generally solved by minimizing the functional F (n,b)(
n̂, b̂

)
= min

(
n̂, b̂

)
F (n,b) (9)

F (n,b)= ‖z−An−Bb‖2+αP (n) . (10)

The function P (n) defines the regularization (or penalty)

term that we need to add to make the inversion a well-posed

problem. Equation (10) would not necessarily give a unique

solution withoutP (n) because of the limited-angle geometry

and the uneven distribution of the receivers, making the prob-

lem ill-conditioned. We are supposing that P (n) operates on

the model n only and not on the offsets b, which will not be

constrained by any assumption coming from the regulariza-

tion. The parameter α sets a trade-off between the best fitting

and the most reasonable stabilization (Zhdanov, 2002). This

justifies the different notation of n̂ in order to distinguish the

approximation from the true n.

The functional F (n,b) is more computationally expensive

and, therefore, is not practically useful. By expanding Eq. (9)

with Eq. (10) and after some algebra, Eq. (10) can be rewrit-

ten as

F (n)= ‖z−An‖2C +αP (n) , (11)

where C is formed from Laplacian matrices and is defined as

C= I−B
(
BTB

)−1
BT . (12)
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Spencer and Mitchell (2011) described an approach similar

to ours; the differences are that in our case an explicit rela-

tionship between the estimated biases b̂ and the reconstruc-

tion n̂ is also provided and is given in Eq. (14).

The solution n̂ is obtained by minimizing Eq. (14) over n,

supposing that P (n) is differentiable

n̂=
(
ATCA+α

1

2

∂P (n)
∂n

)−1

ATCz. (13)

The solution of Eq. (13) is coincident with the solution we

would obtain from Eq. (10). The offsets b̂ can then be recov-

ered as

b̂ =
(
BTB

)−1
BT
(
z−An̂

)
. (14)

The observations z have generally a negligible noise term,

but in presence of ionospheric structures and because the

ionosphere is not a static medium, there could be small vari-

ations in STEC even between nearby ray paths. Therefore,

the discretization of the ionosphere into a grid is important,

which causes the measure ‖z−An‖2 to never reach zero.

Therefore a representativity error due to the complexity of

the medium is acceptable. What we actually aim for is the

minimization of Eq. (11) in order to have the reconstruc-

tion matching the observations where data are available up to

a residual noisy variation. Therefore the regularization term

P (n) becomes the main important term and will be described

in Sect. 2.4.

2.3 Basis functions

In this section the mathematical notation used to decompose

the ionosphere through basis functions is provided. Basis

functions are used to extract the information and to empha-

size some properties in the reconstructed ionosphere, in this

case wave number for spherical harmonics and spatial local-

ization and scale for wavelets. In particular, the vertical pro-

file of electron density is described in terms of basis functions

(EOFs) while the horizontal distribution with spherical har-

monics and wavelet basis functions. EOFs are obtained from

Chapman profiles (Chapman, 1931) and are used to constrain

the vertical profile (Hargreaves, 1995). These are taken di-

rectly from the standard MIDAS approach as published in

2003.

The inverse problem of Eq. (11) is now expressed, in terms

of associated functional, as

F (x)= ‖z−AKx‖2C+αP (x) (15)

and solves for the coefficients x of the basis functions, which

are contained in the columns of the matrix K. The regular-

ization term P (x) reminds us that the x coefficients are con-

sidered regularised instead of the electron density values n.

The solution becomes the following

x̂ =

(
ATKTCAK+α

1

2

∂P (x)
∂x

)−1

KTATCz (16)

Figure 1. (a) Discretized Meyer basis function for a particular scale

and translation; (b) Daubechies (4 tap) basis function with the same

scale and translation as (a); (c) a Fourier sinusoid component of

the spherical harmonic basis functions. Basis functions are shown

normalized to one and are interpolated for ease of viewing.

and the offsets b̂ can then be recovered as

b̂ =
(
BTB

)−1
BT
(
z−AKx̂

)
. (17)

The choice of K has been limited to orthogonal basis func-

tions for this paper.

Figure 1 shows a one-dimensional example of the basis

functions (normalized to one) that will be used in the ex-

periment. Figure 1a and b illustrate two wavelets at the same

scale and position for discrete Meyer (DM) and Daubechies 4

(DB4). They have a spatial compact support that makes them

particularly useful to resolve localized structures. Figure 1c

shows a single harmonic (normalized to one) that has to be

multiplied with the Lagrange polynomial (along latitude) to

produce a spherical harmonic (SH). They have a longer spa-

tial support and work well to describe periodicities in the

ionosphere.

2.4 Regularization

Different regularizations exist to stabilize Eq. (15) and make

the solution unique and physically meaningful. In this sec-

tion the two regularizations based on the `1 and `2 norm,

which are both used for the reconstructions in Sec. 3.1, will

be described.

The main goal of regularization is finding the best repre-

sentation of the ionosphere that matches the observations and

at the same time obviates the lack of data we usually face

(e.g. in the oceans between continents).

Regularization techniques exploit the fact that Eq. (15) can

be convex, i.e. that by minimizing it a global minimum is

guaranteed, but it does not mean that different regularizations

may have the same minima. The minimizer becomes the best
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representation we can have, and its properties will strongly

depend on the chosen regularization term.

The `1 and `2 regularizations used in this work both aim

to create a sufficiently detailed solution by maintaining as

much information as possible from the observations. The dif-

ference lies in the information that can be extracted from the

observations through basis functions and, therefore, on the

efficiency on resolving different scale structures. For exam-

ple, wavelets are good to localize structures, while spherical

harmonics works well with periodicities. Therefore, we are

expecting wavelets to resolve better localized structures than

spherical harmonics.

The regularization term of Eq. (15) can be expressed in

different ways. The classical approach is by using an `2 norm

(or Tikhonov regularization)

P (x)= ‖PKx‖22, (18)

where the matrix P is used to select only a subspace of the

possible solutions and stabilize the problem of Eq. (15) to-

ward a physically acceptable solution, and the `2 norm is

defined as ‖a‖2 = 2

√∑
i

|ai |
2. In the implementation of this

paper P is set to the identity matrix and the minimization of

Eq. (15) with Eq. (18) is solved with the LU decomposition

similarly to the framework in Mitchell and Spencer (2003).

Another suitable choice of P can be the Laplacian matrix.

A different measure comes from the sparsity which in-

volves the number of nonzero coefficients in x (Bruckstein

et al., 2009) and is obtained with

P (x)= ‖Kx‖0, (19)

where ‖a‖0 stands for the number of coefficients ai that are

not zero. This approach is particularly suitable for wavelets

as it exploits their ability for compact representation. By min-

imizing Eq. (15) with Eq. (19) we are looking for the solu-

tion which produces the best agreement with the observations

but that at the same time is also the sparsest one. The min-

imization with Eq. (19) is unfortunately not convex, which

means that it may have local minima. The complexity of this

problem was also proven to be in general not practical as the

solution requires to exhaustively search for all the possible

combinations of basis functions (the columns in K) that min-

imize the functional of Eq. (15) (Natarajan, 1995).

A more feasible solution is obtained with the `1 norm,

which in some sense is half way between Eq. (18) and

Eq. (19)

P (x)= ‖PKx‖1, (20)

where ‖a‖1 =
∑
i

|ai |. The regularization term of Eq. (20)

makes the functional Eq. (15) convex and therefore makes

it possible to have a unique solution. The solution may differ

from the one obtained by Eq. (19), but there are mathematical

conditions that ensure Eq. (20) to be equivalent to Eq. (19)

producing an identical solution up to an error term that is

proportional to the input noise level (Donoho et al., 2006;

Donoho, 2006). The whole theory requires that x is suffi-

ciently sparse, i.e. that the ionosphere can be represented

with few basis functions. According to this, sparsity becomes

the main goal, allowing better noise removal (i.e. false arte-

facts in the reconstruction) but also better compression (e.g.

for storing data) in respect to the non-sparse solution (Tsaig

and Donoho, 2006; Schmidt, 2007).

The minimization of Eq. (15) with Eq. (20) is implemented

with the Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA, see Beck and Teboulle, 2009). It applies a non-linear

thresholding (or soft-thresholding) (Donoho and Johnstone,

1994) to the estimated coefficients x̂i at the ith iteration

η
(
x̂i
)
=

{
0 if

∣∣x̂i∣∣≤ αξ
sgn

(
x̂i
)(∣∣x̂i∣∣−αξ) if

∣∣x̂i∣∣> αξ , (21)

where ξ is set to the reciprocal of the maximum eigenvalue

of KTATAK and together with α sets the threshold. Then the

estimation at the next iteration is x̂i+1 = η
(
x̂i
)
.

A similar stabilization can be introduced by selecting a

subset of K by means of a similar thresholding or a greedy

subset selection directly applied to Eqs. (15) and (18). This

was shown to be not optimal in a general case (Donoho,

2006).

3 Simulation

We selected a grid that spans from North America to Europe.

This is a good example to show the limitation imposed, in

this case by the ocean, on the density of the receivers. We

selected a grid of dimension 64× 64 voxels in longitude and

latitude, and 22 voxels in altitude. It produces a voxel of di-

mension around 1× 2◦ in latitude and longitude and 50 km

in altitude.

Data were simulated with the international reference iono-

sphere (IRI) model. Some structures were then added in or-

der to test the efficiency of the algorithm to resolve them. We

considered uncalibrated observations that were obtained by

adding a constant bias to each receiver-satellite pair and we

collected observations within a time window of 8 min with

a sample rate of 30 s. Although the inversion method is not

time-dependent, there is the necessity to collect data within

a relatively short time window (in our case 8 min long). The

reason for the time window was to increase the data coverage

otherwise there would be insufficient data for a reliable in-

version. Effectively this assumes the ionosphere is static over

8 min, which can be considered more valid during quiet iono-

spheric conditions. However, with the anticipated increase in

GNSS satellite numbers the size of the time window could

be reduced. Representativity error was taken into account by

adding a term to the observations distributed as a Gaussian

noise. This term also takes into account any non-dispersive

residual term described in Eq. (6).

www.nonlin-processes-geophys.net/22/613/2015/ Nonlin. Processes Geophys., 22, 613–624, 2015
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Figure 2. Simulated ionosphere with structures added to IRI2012.

Values are in TECU (1016 electronsperm−2).

Figure 2 shows the Vertical Total Electron Content

(VTEC) map that was used as truth while Fig. 3 illustrates

the number of rays that was used in the reconstruction (black

dots are the ground stations). The number of rays is obtained

by summing the intersections along the altitude within voxels

of the grid. The VTEC is calculated by integrating the elec-

tron content in a certain latitude and longitude location along

the altitude. The ray coverage strictly depends on the density

of ground stations, data (STEC) sampling rate and, in our

case, the time window within which we run the reconstruc-

tion. The selection of the grid is also important as a finer grid

will increase the number of voxels that are not intercepted by

a ray and the number of coefficients to estimate.

Some structures were located where data coverage is par-

ticularly low. In those locations the reconstruction will strug-

gle to recover the actual value independently from the reg-

ularization that has been used. The behaviour of the algo-

rithm in those zones will strongly depend on the regulariza-

tion term.

We used EOFs obtained from Chapman profiles (Harg-

reaves, 1995), and wavelets (DB4 and DM) and Spherical

Harmonics (SH) to represent the horizontal distribution of

structures in the ionosphere. By selecting a subset of larger

horizontal basis functions we also limited the resolution in

the reconstruction, i.e. the smallest scale structures that can

be resolved.

For the aim of this paper it will be considered a standard

implementation of Eqs. (18) and (20), i.e. the matrix P will

be set to the identity matrix.

3.1 Inversion

The reconstructions are shown in Fig. 4 for low resolution

and Fig. 5 for high resolution. Each figure shows the be-

haviour of the algorithm using different basis functions: SH

(top), DM (middle) and DB4 (bottom). In order to high-

light the regularization effects where only data coverage was

present, we applied a mask (left) to the reconstruction (right).

In fact, each regularization technique will handle the absence

Figure 3. Number of rays with ground stations (black dots).

of data in different ways but we want to compare their ability

to resolve structures where data are available.

At low resolution the reconstruction looks reasonable for

both methods. The structures appear smoothed and with little

detail (Fig. 4a, b, c). SH seems to produce some oscillations

outside the data coverage (Fig. 4d), mainly in the Atlantic

Ocean. This is due to the sinusoidal nature of SH that makes

it problematic to represent localized structures. Wavelets do

not produce oscillations and the reconstruction looks reason-

ably smoothed for this resolution, but there are some edge

effects, especially for DM, between Canada and Greenland.

Furthermore, DB4 unlike DM tends to fill the data gap in the

ocean (Fig. 4f).

As the resolution increases (and therefore the number of

coefficients to estimate) the inversion needs in general a

stronger regularization. This is shown in Fig. 5. With SH the

regularization damps many coefficients down but it seems to

resolve some of the structures well (north UK and US) where

good data coverage is present (Fig. 5a, b, c). However the re-

construction presents the ring oscillation phenomenon that

is an indication of the limitation of the method when a high

number of basis functions are used (Fig. 5d). The stronger

regularization has reduced most of the coefficients, and the

VTEC is in general underestimated. In fact, we are expecting

a VTEC of 40 in central Europe but the reconstruction shows

a VTEC less than 30. Where data are not available the reg-

ularization forces the VTEC to go rapidly toward zero. With

wavelets the regularization aims to minimize the number of

non-zero coefficients. Therefore the smallest basis functions

are contributing with the largest (smoother) ones to add de-

tail to the reconstruction only where good data coverage is

available (this concept is regarded as multi-resolution, which

will be explained later). Where data are not enough to re-

solve a small structure the solution will be approximated with

a bigger and smoothed one. By looking at the VTEC values,

wavelets are perfectly recovering the value of 40 VTEC units

in Europe (Fig. 5b, c). This is mainly due to the fact that the

regularization term, by exploiting the localization properties

of wavelets, is adding the smallest basis only if they detect a

significant enhancement over the threshold αξ of Eq. (21). In
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Figure 4. Reconstructions obtained at low resolution with masked out VTEC values where there is no ray coverage for (a) spherical harmon-

ics; (b) discrete Meyer; (c) Daubechies 4; and without the mask for (d) spherical harmonics; (e) discrete Meyer; (f) Daubechies 4. Values are

in TECU (1016 electronsperm−2).

Figure 5. Reconstructions obtained at high resolution with masked out VTEC values where there is no ray coverage for (a) spherical

harmonics; (b) discrete Meyer; (c) Daubechies 4; and without the mask for (d) spherical harmonics; (e) discrete Meyer; (f) Daubechies 4.

Values are in TECU (1016 electronsperm−2).

general the VTEC variation is well recovered with wavelets and they seem to produce the best estimation of the iono-

sphere.
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Table 1. RMS error (values are in TECU) of the VTEC map obtained with spherical harmonics and wavelets at two different resolutions.

Only the VTEC coefficients where there is ray coverage were considered. The percentage of basis functions with non-zero coefficients is

also shown and, within brackets, the number in absolute value.

Low resolution High resolution

RMS error Number of basis RMS error Number of basis

(TECU) functions (TECU) functions

Spherical harmonics 10.87 100 % (1089) 19.32 100 % (16 641)

Discrete Meyer 6.66 36 % (92) 8.5 8 % (317)

Daubechies 4 7.48 41 % (106) 8.59 11 % (467)

For each reconstruction the root mean square (RMS) error

of the VTEC between the true and the reconstructed iono-

sphere was calculated. The RMS error is taking into account

only the VTEC values where there is ray coverage. Values

where there is no ray are, in fact, less meaningful for this

statistic.

Table 1 shows the RMS error and the number of basis

functions for each reconstruction at the two different resolu-

tions. The number of basis functions is shown in percentage

and in absolute values within the brackets. The increasing of

RMS error with resolution is caused by the attempt of the

basis functions to describe the small variations in STEC due

to non-uniform data coverage (especially in north Norway).

Wavelets need less than 50 % of basis functions at low reso-

lution and even less at high resolution. The small number of

basis functions help to stabilize the inversion as only fewer

coefficients have to be estimated.

The offsets, obtained from Eq. (14) and averaged for each

receiver, are also very well recovered at low resolution by SH

(Fig. 6a) and DM (Fig. 6b). Figure 7a and b show the scat-

ter plot of the original offsets (x axis) and the estimated ones

(y axis) for each receiver, obtained from the high resolution

reconstruction using SH and DM basis functions. At high

resolution the offsets are still well estimated from wavelets

(Fig. 7b) while they seem to be biased with SH (Fig. 7a).

There is in general an overestimation of the offsets that in-

creases as the regularization coefficient α increases. This is

due to the fact that when α increases, the difference between

the observations and the estimation in Eq. (14) increases as

well as making the offsets bigger.

3.2 Multi-resolution map

As introduced earlier, another concept that can be exploited

with wavelets is multi-resolution analysis. A similar concept

was already used in (Schmidt, 2007). Wavelets allow the de-

tection of structures according to their scale and position.

Small-scale basis functions are therefore selected to repre-

sent small variations, otherwise only the basis functions with

bigger scales are used. The ability of the algorithm to rec-

ognize small variations depends on the data availability and,

therefore, the resolution (here intended as the smallest scale

Figure 6. Scatter plot of the estimated offsets (y axis) versus the

true offsets (x axis) with (a) spherical harmonics and (b) discrete

Meyer at low resolution.

Figure 7. Scatter plot of the estimated offsets (y axis) versus the

true offsets (x axis) with (a) spherical harmonics and (b) discrete

Meyer at high resolution.

we can resolve in a certain position in the map) will depend

on data.

Figure 8 aims to explain multi-resolution with DM basis

functions. Each square box indicates where the wavelet is

centered in the map and the size that the wavelet is contribut-

ing with (i.e. the scale of the wavelet, which we selected the

same level for each box). This is valid only in principle as a

wavelet can be defined in a longer domain than the one de-

fined by the square. The algorithm selects smaller scale basis

functions where data coverage is good, trying, as a conse-

quence, to match better the observations. In regions where

data are not available or not enough, only the biggest scale

wavelets are selected and therefore the solution will look

smoother. This is not possible to obtain with SH as they are

longer functions and are defined over the whole globe. It is

interesting to notice how small-scale wavelets are not used
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Figure 8. Multi-Resolution (MR) Map for the high-resolution case

with discrete Meyer basis functions. Each box represents the scale

of the basis function and its position.

if there is not a comparable (to the scale of the wavelet) en-

hancement from the data. This is the case in east and south

Europe where, even if good data coverage is provided, only

large-scale wavelets are used.

3.3 Noise sensitivity

We stated at the beginning that wavelets allow the better re-

moval of noisy terms in the reconstruction. Actually ground

stations produce observations that can be considered gener-

ally noiseless. The noise term that we intended comes from

the fact that the ionosphere is a dynamic medium, where dif-

ferent scale structures evolve with time according to compli-

cated physics laws in a complex environment.

In order to test the effect of variability in the observations,

we decided to add a zero mean Gaussian noise to each ob-

servation with a standard deviation of 1 TEC unit. A similar

approach was used by Chartier et al. (2012, 2014).

Figure 9a and b show the reconstruction obtained with SH

and DM. SH reconstruction (Fig. 9a) is quite sensitive to the

noise, which causes additional oscillations and artefacts. DM

reconstruction (Fig. 9b) shows a better robustness to noise,

and the reconstruction is similar to the ones in Fig. 5e–f.

This is mainly due to the sparse regularization which aims

to minimize the number of nonzero coefficients. When the

soft-thresholding of Eq. (20) is applied with FISTA, a subset

of the most significant coefficients is selected. Those coef-

ficients will contain the most important part of the energy

(or information) (Donoho and Johnstone, 1994). In general,

it would not be possible to make the same considerations if

the energy was evenly distributed among all the coefficients,

like in the case of SH.

The RMS error obtained from Fig. 9a and b is shown also

in this case in Table 2 together with the percentage of number

of basis functions with non-zero coefficients. The number of

basis functions used with DM is slightly decreased compared

to the case without noise. This is due to the higher threshold

αξ (see Eq. 21) that we used to remove the noise. In the case

Table 2. RMS error (values are in TECU) of the VTEC map ob-

tained with spherical harmonics and discrete Meyer with a noise

term added to the observations. Only the VTEC coefficients where

there is ray coverage were considered. The percentage of basis func-

tions with non-zero coefficients is also shown and, within brackets,

the number in absolute value.

RMS Number

error of basis

(TECU) functions

Spherical harmonics 24.45 100 % (16 641)

Discrete Meyer 9.35 7 % (282)

of SH all the basis functions are still used although a higher

regularization parameter α was used too.

3.4 Model-aided inversion

We implemented a model-aided inversion by imaging the

residual after removing from the observations a background

model of the ionosphere. This is called three-dimensional

variational (3DVar) data assimilation and assumes the knowl-

edge of a priori information about the state of the iono-

sphere. This is generally obtained with an empirical model

(like IRI2012) or a first principle physics model. For the sake

of this paper we wanted to test the algorithms with Eqs. (18)

and (20) under these conditions. Therefore, we considered

there was almost perfect knowledge of the ionosphere, i.e. we

set the background model n0 to IRI2012 (without the added

structures) and considered the residual δn

δn= n−n0. (22)

This residual is associated with a residual δz in the measure-

ments z calculated as

δz= z−An0. (23)

Therefore, the problem in Eq. (15) becomes

F (δx)= ‖δz−AKδx‖2C +αP (δx) , (24)

where δx =
(
KTK

)−1
KTδn. Hence, the inverse problem is

applied to Eq. (24), which will calculate the residual informa-

tion that the a priori model could not reproduce (in this case

the structures added to IRI2012). The final reconstruction is

obtained by summing the estimated δn̂ to the background

model n0. To make the problem more difficult we also added

the noise term into the data z as in the previous section. The

reconstruction (plus background model) is shown in Fig. 10a

and b for SH and DM.

As we expected both methods work well. The only re-

markable difference is that SH basis functions are picking

up some noisy coefficients which result in a noisier recon-

struction than with DM. Table 3 summarizes the RMS error

obtained for these reconstructions.
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Figure 9. Reconstruction with (a) spherical harmonics and (b) discrete Meyer at high resolution with Gaussian noise added to the observa-

tions. The Gaussian noise has zero mean and a standard deviation of 1 TEC unit.

Figure 10. Model-aided reconstruction obtained with (a) spherical harmonics and (b) discrete Meyer at high resolution. A noise term (zero-

mean Gaussian with 1 TEC unit of standard deviation) was added to the observations.

Table 3. RMS error (values are in TECU) of the VTEC map ob-

tained with a 3DVar scheme using spherical harmonics and discrete

Meyer with a noise term added to the observations. Only the VTEC

coefficients where there is ray coverage were considered. The per-

centage of basis functions with non-zero coefficients is also shown

and within brackets the number in absolute value.

RMS Number

error of basis

(TECU) functions

Spherical harmonics 9.26 100 % (16 641)

Discrete Meyer 8.66 7.3 % (300)

By perfectly removing the background the algorithm

needs to resolve only few relatively smooth structures at a

different scale. This scenario can be considered as the best

case, where we had background knowledge of the iono-

sphere, in comparison with the worst case of the previous

subsection where such knowledge was lacking. Actually, we

will never have a perfect knowledge of the ionosphere and,

therefore, a background model cannot aid the reconstruction

as in the above example. This mismatching with the truth

means that the algorithm with an approximated background

model will have performances between the worst and best

case.

4 Conclusions

Sparse regularization has been shown to be a valid alternative

to standard method based on Tikhonov regularization and is

particularly suitable with wavelets.

The method has been tested to estimate the offsets of the

observations and, even though it was applied to the specific

case of the computerized ionospheric tomography (CIT), it

can be used for general inverse problems where unknown off-

sets must be estimated. The method gave good performances

in recovering the offsets, but a useful remark is that there is

a tendency to overestimate them as α increases. When α in-

creases the difference between the estimation and the obser-

vations increases, making the offsets bigger (Eq. 17). This is

probably due to the absence of regularization into the esti-

mated offsets (Eq. 11). Previous works (Dear and Mitchell,

2006; Chartier et al., 2012) used a calibration matrix sim-

ilar to the one defined in Eq. (12) to estimate the offsets

from regional ionospheric reconstructions. They compared

estimated offsets from tomographic reconstructions using an

independent data set from the Center for Orbit Determina-

tion in Europe (CODE). Both the previous works showed a

good match of the estimated offsets with CODE and did not

exhibit any bias. The main objective here is, instead, to repro-

duce high-resolution maps from global ionospheric recon-

structions. This involves the estimation of a higher number

of coefficients and dealing with more uneven data distribu-

tion and data gaps (e.g. oceans). Under those conditions the

choice of the regularization becomes of primary importance.

Sparsity allows a better noise removal and a more stable

regularization when the number of coefficients to estimate
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increases considerably. We have shown tomographic recon-

structions obtained with Spherical Harmonics (SH) and two

different wavelets, Daubechies 4 (DB4) and Discrete Meyer

(DM) in a worst and best case. The best case was obtained

by selecting a background model which exactly represented

the smoothed ionosphere, whilst the worst case was without

any background model. In both cases wavelets were shown

to produce the best reconstruction in terms of the root mean

square (RMS) error and oscillations (artefacts). An important

characteristic in this new approach is the ability of wavelets

to handle the uneven distribution of the observations. We

have explained this ability through the multi-resolution map

showing how the resolution is adapted to the data cover-

age and the ionospheric structures observed by the measure-

ments.

It is noted that CIT is actually a time-dependent inversion

problem and in this paper it has been simplified in the simula-

tion to a case where the ionosphere does not change in time.

The work in this paper has shown the potential of the method

when the ionosphere does not considerably change within a

short time window, e.g. under quiet geomagnetic conditions.

For more active conditions a full 4-D imaging would be re-

quired. This factor will be studied in further research.

In conclusion sparse regularization techniques can pro-

duce significant improvements to CIT and to inverse prob-

lems in general. They demonstrate properties of noise ro-

bustness and adaptability to data coverage. The choice of

wavelet basis functions is not critical, but we believe that

other wavelet constructions could lead to further improve-

ments.
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