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Abstract. Directed graph representation of a Markov chain

model to study global earthquake sequencing leads to a time

series of state-to-state transition probabilities that includes

the spatio-temporally linked recurrent events in the record-

breaking sense. A state refers to a configuration comprised

of zones with either the occurrence or non-occurrence of an

earthquake in each zone in a pre-determined time interval.

Since the time series is derived from non-linear and non-

stationary earthquake sequencing, we use known analysis

methods to glean new information. We apply decomposition

procedures such as ensemble empirical mode decomposition

(EEMD) to study the state-to-state fluctuations in each of

the intrinsic mode functions. We subject the intrinsic mode

functions, derived from the time series using the EEMD, to

a detailed analysis to draw information content of the time

series. Also, we investigate the influence of random noise on

the data-driven state-to-state transition probabilities. We con-

sider a second aspect of earthquake sequencing that is closely

tied to its time-correlative behaviour. Here, we extend the

Fano factor and Allan factor analysis to the time series of

state-to-state transition frequencies of a Markov chain. Our

results support not only the usefulness of the intrinsic mode

functions in understanding the time series but also the pres-

ence of power-law behaviour exemplified by the Fano factor

and the Allan factor.

1 Introduction

Earthquake sequencing has been the subject of detailed re-

search (Nava et al., 2005; Ünal and Çelebioğlu, 2011; Ünal

et al., 2014; Telesca et al., 2001, 2009, 2011; Telesca and

Lovallo, 2008; Cavers and Vasudevan, 2013, 2015; Vasude-

van and Cavers, 2012, 2013) both in the regional and global

sense in recent years. Nava et al. (2005) have introduced the

Markov chain model to study the earthquake sequencing in a

seismogenically active region where the region is partitioned

into zones. The functionality of the method is determined by

the characteristics of the state-to-state transitions where each

state is described by the earthquake occupancy of the zones.

In particular, for a given number of zones, N , a state corre-

sponding to a time interval is expressed as a concatenation

of binary digits bN−1. . .b1b0, where bL = 1 (or bL = 0) in-

dicates there was (or was not) an earthquake occurrence in

zone L during the specified time interval. Thus, states can

fall into zones of no occupancy to full occupancy at the ex-

treme and into zones where some are occupied and some are

not. The approach of Nava et al. (2005) was immediately

extended to other regions (Herrera et al., 2006; Ünal and

Çelebioğlu, 2011; Ünal et al., 2014). Cavers and Vasudevan

(2013) adapted the method of Nava et al. (2005) to a global

catalogue which was partitioned into zones on the basis of the

tectonic boundaries (DeMets et al., 1990, 2010; Bird, 2003;

Kagan et al., 2010). The existing Markov chain model was

refined by incorporating the record-breaking recurring events

for each event in the catalogue under certain constraints. A

directed graph representation of the modified Markov chain

model was then subjected to detailed analysis for forecasting

purposes (Cavers and Vasudevan, 2015).

One consequence of the approach taken by Cavers and Va-

sudevan (2015) and Vasudevan and Cavers (2013) is that it

results in a time series of state-to-state transition frequencies

of the modified Markov chain model, xsstf(t). This time se-

ries is for an optimized time interval, 1t . The fluctuations in
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state-to-state transitions are 1t sampled. The time series is

a comprehensive representation of earthquake sequencing in

which interaction of seismic events within and among zones

are considered. Therefore, it can be subjected to a detailed

analysis.

Earthquake sequencing may be considered a non-linear

and non-stationary process (Kanamori, 2003; Telesca et

al., 2001, 2009, 2011; Telesca and Lovallo, 2008; Flores-

Marquez and Valverde-Esparza, 2012). In earthquake se-

quencing, earthquakes are viewed as part of a point process,

with earthquake events occurring at some random locations

in time. This means that the earthquake sequencing is dic-

tated by the set of event times, and can also be expressed by

the set of time intervals between events. The time series of

earthquakes for any time interval can be analysed in many

ways (Bohnenstiehl et al., 2001; Telesca et al., 2001, 2009,

2011; Telesca and Lovallo, 2008).

We postulate here that the non-linear and non-stationary

behaviour in the time series should also be present in the time

series of the state-to-state transition frequencies derived from

earthquake sequencing. Hence, we consider the approaches

of Telesca et al. (2001, 2009, 2011) and Telesca and Lovallo

(2008) to be appropriate for a study here.

Non-linear and non-stationary time series have been exam-

ined in recent years with a method known as empirical mode

decomposition (EMD) and the intrinsic mode functions de-

rived from this are useful in this regard (Huang et al., 1998).

The present time series of state-to-state transition frequencies

is suited for such a study.

In general, the time series has non-zero amplitudes for the

state-to-state transition frequencies (Cavers and Vasudevan,

2015). In this particular case, there are instances where there

are no earthquakes exceeding the magnitude of 5.6 in all

zones for one or more time steps. This introduces “intermit-

tency” in the time series.

However, because of the presence of intermittency in it,

an ensemble approach to empirical mode decomposition,

EEMD (Wu and Huang, 2004, 2009; Flandrin et al., 2004,

2005) is applied here. The intermittency problem is handled

with the addition of random noise to the time series before

carrying out the EEMD (Wu and Huang, 2009). We examine

the criteria used for the selection of the added noise and the

ensemble number for the EEMD.

Another aspect of the study here is to ask a question if

the time series resulting from a directed graph representa-

tion of the Markov chain model of earthquake sequences ex-

hibits power-law statistics similar to a description of fractal

stochastic point processes (Telesca et al., 2001, 2009, 2011)

to model the time-occurrence sequence of seismic events.

Quantifying the earthquake sequencing in terms of its fractal

properties was done by means of the Fano factor and the Al-

lan factor (Allan, 1966; Barnes and Allan, 1966; Lowen and

Teich, 1993, 1995; Thurner et al., 1997; Telesca et al., 2001,

2009, 2011; Flores-Marquez and Valverde-Esparza, 2012;

Serinaldi and Kilsby, 2013). Since the fractal properties of

the time series studied here has never been investigated, we

calculate the Fano factor and the Allan factor for the purpose

of quantitative analysis.

The remainder of the paper is divided into three sections.

In the next section, we show how the time series of the state-

to-state transition frequencies for a modified Markov chain

model as described in Cavers and Vasudevan (2015) is gener-

ated. In the following section, we describe the EEMD proce-

dure used and the analysis of the results that accrue from this

procedure. We extend the approaches of Telesca et al. (2001,

2009, 2011) and Telesca and Lovallo (2008) to calculate the

Fano factor and the Allan factor with a view to study the

fractal properties of the time series. In the last section, we

discuss the results of the analysis methods and draw certain

inferences about the state-to-state transition frequencies.

2 Directed graph representation of earthquake

sequencing

A Markov chain is a discrete-time stochastic process X =

{X0,X1,X2, . . .} with state space S where Pr{Xn+1 =

j |X0, . . .,Xn} = Pr{Xn+1 = j |Xn}, for all j in S and n in

{0,1,2, . . .}. For each n, the state of Xn+1 is independent

of X0,X1, . . .,Xn−1 given Xn, and furthermore, we assume

Pr{Xn+1 = j |Xn = i} is independent of n (Çınlar, 1975).

To build a Markov chain model we first partition the re-

gion, either local or global, into zones. Typically these zones

are made up of rectangles that divide the region (Nava et

al., 2005; Ünal and Çelebioğlu, 2011). Recently, other par-

titions have been used. In particular, Cavers and Vasude-

van (2015) used a simplified five-zone plate boundary tem-

plate as given by Kagan et al. (2010) to study global seis-

micity, while Ünal et al. (2014) used a seismic zones map

that uses geographic information system analysis to divide

Turkey into regions. For this particular study, we used the

five-zone model described in Cavers and Vasudevan (2015)

and give an overview of its construction here.

Kagan et al. (2010) partitioned the shallow (≤ 70 km

depth) events with moment magnitude, Mw > 5.6 from the

Global CMT catalogue (1 January 1982 – 31 March 2008)

into five-zone sub-catalogues using their grid-assignment

schemes (Table 1). The selected catalogue consists of

6752 earthquakes with 4407 from Zone 4 (Trenches), 723

from Zone 3 (Fast-spreading ridges), 487 from Zone 2 (Slow-

spreading ridges), 898 from Zone 1 (Active continent), and

237 from Zone 0 (Plate interior) respectively. For these five

zones, we express a state, corresponding to a time interval

1t , as a concatenation of binary digits b4b3b2b1b0, where

bL = 1 indicates an earthquake occurrence in zone L during

the specified time interval 1t , and bL = 0 indicates the lack

of an earthquake occurrence in zone L during the specified

time interval 1t . We use 2= [θij ] to denote the transition

frequency matrix, where θij is the number of occurrences of

transitions from state i to state j . Letting s(n) represent the

Nonlin. Processes Geophys., 22, 589–599, 2015 www.nonlin-processes-geophys.net/22/589/2015/



M. S. Cavers and K. Vasudevan: Earthquake sequencing: analysis from the Markov chain 591

Figure 1. A graph representation of earthquake sequencing with arcs (with weights wij ) representing transitions between states.

Table 1. Tectonic zone identifier, tectonic zone and the number

of earthquakes considered for Mw > 5.6 and depth < 70 km from

1 January 1982 to 31 March 2008.

Zone identifier Tectonic zone N N/Ntotal

0 Plate-interior 237 0.0351

1 Active continent 898 0.1330

2 Slow-spreading ridges 487 0.0721

3 Fast-spreading ridges 723 0.1071

4 Trenches 4407 0.6527

Global (or Ntotal) 6752 1.0000

state for interval number n, the probability transition matrix,

P= [pij ], consists of transition probabilities, pij , given as

pij = Pr

{
s(n+ 1)= j

∣∣s(n)= i}= Pr
{
j
∣∣ i}, (1)

pij = θij
/
ξij , where ξij =6j θij . (2)

A finite-state Markov chain can be depicted using a digraph

representation, G, where the set of possible states (binary

strings of length 5) are the nodes, and an arc (i,j) connects

two states i and j if and only if pij > 0 (Jarvis and Shier,

1996). Figure 1 shows an example of a digraph representing

a Markov chain with a three zone partition, hence, there are

23
= 8 states, {000,001,010,011,100,101,110,111}, that

we write in decimal format {0,1,2,3,4,5,6,7}, respectively.

In this figure, we do not show all of the possible transitions

between states and typically an arc (i, j ) is omitted when

pij = 0. We follow the same decimal state labelling format as

in Fig. 1 for our 25
= 32 states, that is, state “0” (representing

00000 in binary) corresponds to no earthquake occurrence in

all five zones in the chosen time interval, 1t , and state “31”

(representing 11111 in binary) points to earthquake occur-

rences in all five zones. Table 2 shows details for defining all

other states, “1” to “29”.

For a Markov chain structure given earlier for the five

zones, the computation of transition frequencies and hence,

transition probabilities, depend on the chosen time interval,

1t . We use the simple rules outlined by Nava et al. (2005) to

choose 1t :

1. 1t should be small enough such that the hazard estima-

tions are useful;

Table 2. Zone and state definition used in the construction of a di-

rected graph of a Markov chain. “0” and “1” refer to the no oc-

currence or occurrence of an earthquake for a given zone. For five

zones, there are 32 states.

State Zone 4 Zone 3 Zone 2 Zone 1 Zone 0

0 0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1

4 0 0 1 0 0

5 0 0 1 0 1

6 0 0 1 1 0

7 0 0 1 1 1

8 0 1 0 0 0

9 0 1 0 0 1

10 0 1 0 1 0

11 0 1 0 1 1

12 0 1 1 0 0

13 0 1 1 0 1

14 0 1 1 1 0

15 0 1 1 1 1

16 1 0 0 0 0

17 1 0 0 0 1

18 1 0 0 1 0

19 1 0 0 1 1

20 1 0 1 0 0

21 1 0 1 0 1

22 1 0 1 1 0

23 1 0 1 1 1

24 1 1 0 0 0

25 1 1 0 0 1

26 1 1 0 1 0

27 1 1 0 1 1

28 1 1 1 0 0

29 1 1 1 0 1

30 1 1 1 1 0

31 1 1 1 1 1

2. 1t should not be too small that the most frequently oc-

curring transition is from state 0 to state 0;

3. 1t should not be too large that state 31 to state 31 tran-

sitions are dominant.

So, for the threshold magnitudes chosen, 1t should be large

enough to allow interaction among regions and make esti-
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mates of Markov chain transition probabilities robust. Fol-

lowing the selection rules given elsewhere (Nava et al., 2005;

Ünal and Çelebioğlu, 2011; Cavers and Vasudevan, 2015),

we used a 1t value of 9 days for the construction of the

Markov chain of transition probabilities. The combinatorial

structure of a digraph representation of the Markov chain

model contains important information for earthquake se-

quencing (Cavers and Vasudevan, 2015). It is often useful

to use a weight, wij , for each arc (i,j) of the digraph to get

a weighted digraph. The weights have the form wij = θij ,

wij = pij , or can be empirically derived from the Markov

chain. To introduce spatial-temporal complexity into the

model so that transitions with earthquake occurrences at

large distances have less of an impact on our model than

transitions with earthquake occurrences at short distances,

we follow the approach by Cavers and Vasudevan (2015) to

modify the weights wij in the weighted digraph by consid-

ering recurrences. Each earthquake (event) in a zone may

have several recurring events in the record-breaking sense

(Davidsen et al., 2008). For example, an event j is treated

as a record with respect to an earthquake i if no event takes

place within the spatial distance, dij , between i and j around

i during the time interval [ti, tj ]with ti < tj . The next record-

breaking event, k, in the catalogue with reference to the orig-

inal event, i, during the time interval [ti, tk] with ti < tk will

have a spatial distance, dik , less than dij . The recurring events

for one event in a given zone may fall into other zones or

may be in the same zone. This flexibility adds to the possi-

bility of interactions among zones. We first form the network

of recurrences as described by Davidsen et al. (2008). The

weight applied to each arc in the network of recurrences is

derived empirically by using a total count of record breaking

events between the corresponding earthquake zones and the

distance involved (Cavers and Vasudevan, 2015; Vasudevan

and Cavers, 2013). Each recurrence from an earthquake a to

an earthquake b in the sequence is given a weight between 0

and 1, with a weight equal to 1 if the distance between a and

b is less than 50 km. If the distance is r with r > 50 km and

earthquakes a and b occur in Zones j and k respectively, a

weight of

[
Ljk(20 000)−Ljk(r)

]/[
Ljk(20 000)−Ljk(50)

]
(3)

is given, where Ljk(r) defined by Cavers and Vasudevan

(2015) is the number of record-breaking events from zone j

to zone k at distance at most r in the network of recurrences.

The function in Eq. (3) is a decreasing function in r giving a

weight close to 0 when the distance r is large. Note that for

r = 50 km, an output of 1 is given while for r = 20 000 km,

an output of 0 is given. As described by Cavers and Vasude-

van (2015), a Markov chain with the inclusion of spatio-

temporal complexity of recurring events is derived by sum-

ming the weights of the recurrence arcs corresponding to oc-

currences from state i to state j in consecutive time intervals.

Figure 2. (a) A time series of the state-to-state transition frequen-

cies of the modified Markov chain model of the earthquake sequenc-

ing. The sampling time (1t) of 9 days is used. (b) The state-to-state

transition frequencies of the modified Markov chain model of the

earthquake sequencing.

Here, we calculated the time series of the resulting state-

to-state sequence (Fig. 2a) and the corresponding transition

frequency matrix (Fig. 2b). There is one comment in order

here. Figures 2a and b provide different representations of the

same Markov chain. The first can be considered “dynamic”,

because it shows the time evolution of the transition from

one state to another in consecutive time intervals of 9 days

each. The second can be considered “static” because it shows

the transition probabilities from one state to another but con-

sidering the whole earthquake sequence occurred during the

whole observation period. However, they are not equivalent.

We can go from the time series data to transition-frequency

matrix. We cannot go from the transition-frequency matrix

Nonlin. Processes Geophys., 22, 589–599, 2015 www.nonlin-processes-geophys.net/22/589/2015/
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to time series without the additional information such as the

catalogue and the record-breaking statistics of recurrences.

Since it is obtained from the non-linear, non-stationary global

earthquake sequence, we consider it non-linear and non-

stationary as well, and hence, can be subjected to analysis

methods. Although it is not shown here, the approach equally

applies to earthquake catalogues from localized seismogenic

zones.

3 Analysis methods and results

Each sample in the time series shown in Fig. 2a represents

a “zone-configuration” state (Table 2). By definition, a zone-

configuration has no zone or some zones or all zones high-

lighted by an earthquake or more in the optimally chosen

time interval. Going from one sample to the next does not

only represent going from one state to the next but also

shows the amplitude fluctuation between them. The adjacent

states could represent the same zone-configuration or differ-

ent zone-configurations. The time series deduced from using

the present approach with the five-zones marks the state-to-

state fluctuations arising out of the fluctuations of oscillations

or earthquake occurrences in the five-zones. We present in

the following two analysis methods to glean an insight into

the characteristics of the time series.

3.1 Ensemble empirical mode decomposition as applied

to state-to-state transition frequency sequence

For non-linear and non-stationary time series, the method

of empirical mode decomposition (EMD) has been recently

proposed as an adaptive time-frequency analysis method

(Huang et al., 1998, 1999) to decompose the original data

into a basis set of intrinsic mode functions. Since the process

that leads to the state-to-state transition frequency sequence

or time series is inherently non-linear and non-stationary, it is

appropriate to apply the EMD to this data to understand the

behaviour of the intrinsic mode functions. The time series

(Fig. 2a) reveals the fluctuations in the state-to-state tran-

sition frequencies arising out of varying occupancy of the

zones from one time interval to the next. A situation would

easily arise when two or three successive state-to-state transi-

tions do not have earthquake occurrences in any of the zones

studied. This would translate into intermittency in the time

series. Recent studies (Flandrin et al., 2004, 2005; Gledhill,

2003; Wu and Huang, 2004, 2009) support the idea of car-

rying out noise-added analyses with the EMD. The noise-

added analyses involves multiple realizations of added noises

to the time series in question, leading to the ensemble EMD

(EEMD), as proposed by Wu and Huang (2004, 2009).

In the EEMD, the signal or the time series in question with

the added Gaussian white noise, denoted as one trial, would

populate the whole time-frequency space uniformly with the

constituting component of different scales. Since the noise

added in each trial is different, the ensemble mean of the

noise cancels out and, hence, the signal resides in the in-

trinsic mode functions generated from the EEMD (Wu and

Huang, 2009).

The time series of state-to-state transition frequencies of

the modified Markov chain model, xsstf(t), is taken as the sig-

nal. In each realization of the experiment, white noise, w(t),

is added to the signal. One might interpret the added Gaus-

sian white noise as the possible random noise that would be

encountered in the measurement process or in certain restric-

tions applied to the calculation of edge weights in the modi-

fied Markov chain. So, for the ith realization,

xsstf,i(t)= xsstf(t)+wi(t). (4)

For each realization, we decompose the data with the added

Gaussian white noise into intrinsic mode functions (IMFs).

We consider the ensemble means of the IMFs of the decom-

positions as the final result.

Wu and Huang (2009) recommended that the ensemble

size should be kept large and the amplitude of the added noise

should not be small. We set the ensemble number for the

number of realizations in EEMD large such that the noise se-

ries cancel each other in the final mean of the corresponding

IMFs. For the two parameters, we used an ensemble size of

1000 and added noise with an amplitude of 0.2 times the stan-

dard deviation of the original data. We assume that the IMFs

resulting from the EEMD represent a substantial improve-

ment over the IMFs of the original EMD in that it utilizes

the full advantage of the statistical characteristics of white

noise to perturb the signal in its true solution neighbourhood,

and to cancel itself after serving its purpose (Wu and Huang,

2009). EEMD results are summarized in Fig. 3a–t with in-

trinsic mode function followed by their state-to-state relative

weight matrix derived from the basis set of the intrinsic mode

functions of the time series in a fashion identical to the orig-

inal time series. By summing the weights of the recurrence

arcs corresponding to occurrences from state i to state j in

consecutive time intervals, we calculate the weighted matrix

for state-to-state transitions for each intrinsic mode function.

Since the intrinsic mode functions are the mathematical ba-

sis set of the original time series, their static displays or the

weighted matrices show negative values. Identical to the sum

of the intrinsic mode functions yielding the original time se-

ries, the sum of the weighted matrices yields its transition

frequency matrix. Similar to what Huang et al. (1998, Fig. 6

in their paper) have observed with the wind data, all of the in-

trinsic mode functions excluding the trend for the wind data

contain both positive and negative values. We observe the

same thing with the time series in that the transition proba-

bility values for the intrinsic mode functions show both pos-

itive and negative values except that the first two intrinsic

mode functions have negative values larger than the lowest

positive value of the trend. So, it is not surprising that the

transition frequency matrices of the intrinsic mode functions

www.nonlin-processes-geophys.net/22/589/2015/ Nonlin. Processes Geophys., 22, 589–599, 2015
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Figure 3. Ensemble empirical mode decomposition of the time series. (a–i) Intrinsic mode functions from the first to the ninth; (j) intrinsic

mode function of the trend; (k–s) state-to-state relative weight matrices for the intrinsic mode functions from the first to the ninth; (t) state-

to-state relative weight matrix of the trend. Time steps and the corresponding calendar dates: 01t – 1 January 1982; 2001t – 6 December

1986; 4001t – 10 November 1991; 6001t – 14 October 1996; 8001t – 18 September 2001; 10001t – 23 August 2006; 10241t – 27 March

2007. We provide this information here to avoid any cluttering of the plots.

contain the positive and negative numbers. However, view-

ing each intrinsic mode function with the trend starting with

the third IMF will obviate this difficulty in that the high- or

low-frequency fluctuations ride on the trend with no negative

values and the corresponding transition frequency matrices

are positive. A similar observation has been made by Huang

et al. (1998, Fig. 7) with their wind data. The observation

made with the first two intrinsic mode functions suggests a

limit on the proposed method, and it would require further

investigation.

The decomposition of the original time series into intrinsic

mode functions and the trend is dyadic in nature, as shown in

Fig. 3. This means that as we go from the first intrinsic mode

function to the second and so on, the interval increases by a

factor of 2 from1t = 9 days to1t = 18 days and so on. With

an increase in the time interval from one IMF to the next, we

observe the relative weights of the state-to-state transitions

to vary. We also find that the state-to-state transitions within

each IMF occur in packets, and the number of packets pro-

gressively decreases. The last packet of state-to-state transi-

tions is persistent over the first eight IMFs corresponding to a

time interval of 9–1152 days suggests the importance of the

zone 4 earthquakes in understanding the earthquake sequenc-

ing. Although zone 4 earthquakes persist in the state-to-state

transitions in the first few intrinsic mode functions, the par-

ticipation of other zones in state-to-state transitions becomes

significant in the higher intrinsic mode functions, IMFs 6–9.

In general, the intrinsic mode functions are characterized

by (1) a certain number of a pattern of rise and fall of the arc

weights and (2) by a systematic decrease in the frequency

of the number of such patterns as one goes intrinsic mode

function 1 to the intrinsic mode function 9. Since the rise and

fall of the arc weights covers the entire catalogue of data, the

periodicity that we notice could be intrinsic to earthquake

processes.

The Hilbert–Huang amplitude spectrum of the time se-

ries, shown in Fig. 4, reveals at least two important features:

(1) the temporal fluctuations in amplitudes occur in packets,

each packet containing a set of zone to zone interactions. The

oscillatory behaviour of packets contains certain periodicity

within the earthquake sequence. A periodic trend at low fre-

quencies suggests the role of zone 4 (Trenches) and zone 0

Nonlin. Processes Geophys., 22, 589–599, 2015 www.nonlin-processes-geophys.net/22/589/2015/
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Figure 4. Hilbert–Huang amplitude spectrum of the intrinsic func-

tions.

(Intraplate). A higher power at 900 and 950 time interval in-

dicates the importance of zone 4 with earthquakes of larger

magnitude prompting a cascade of aftershocks in zone 4 and

main shocks in zones that are in close proximity to zone 4.

(2) The frequency-dependence of amplitude packets encap-

sulates the relative importance of the interaction among mul-

tiple zones over different time intervals. We interpret them to

mean that certain state-to-state transitions involving zone 4

are important over a range of frequencies.

3.2 Evaluation of fractality in a state-to-state transition

frequency sequence

Earthquake occurrences have been modelled to be stochastic

point processes (Thurner et al., 1997; Telesca, 2005; Telesca

et al., 2001, 2009 and 2011; Flores-Marquez and Valverde-

Esparza, 2012). One representation of the point process is to

examine the inter-event time intervals. The resulting inter-

event interval probability density function says something

about the behaviour of the times between events. We do not

know anything about the information contained in the rela-

tionships among these items. Since successive events do not

occur in constant time intervals, another representation of a

point process is given by dividing the time axis into equally

spaced contiguous counting windows of duration τ , and pro-

ducing a sequence of counts that fall within each time win-

dow. For example, for the kth time window, the expression

for the number of counts, Nk(τ ), is given by

Nk (τ )=

tk∫
tk−1

∑n

j=1
δ
(
t − tj

)
dt, (5)

whereNk(τ ) is the number of earthquakes in the kth window

(Fig. 5a, b, c, d). The correlation in the process {Nk(τ )} is the

correlation in the underlying point process (Lowen and Te-

ich, 1993, 1995; Thurner et al., 1997; Telesca, 2005; Telesca

et al., 2001, 2009, 2011) have accessed such a representa-

tion of the point-processes to underscore the existence or

non-existence of fractality in them. They have two calculable

measures, Fano factor (FF) and Allan factor (AF), to quantify

the fractality of the process (Lowen and Teich, 1993, 1995;

Thurner et al., 1997; Telesca, 2005; Telesca et al., 2001,

2009, 2011; Flores-Marquez and Valverde-Esparza, 2012).

The Fano factor is a measure of correlation over different

timescales (Thurner et al., 1997). It is defined as the ratio of

the variance of the number of events in a specified counting

time τ to the mean number of events in the counting time, as

is given by

FF(τ )=

〈
N2
k (τ )−Nk(τ )

〉2
〈Nk(τ )〉

, (6)

where 〈 〉 denotes the expectation value. Lowen and Teich

(1995) point out that the FF of a fractal point process fol-

lows a power law with the power-law exponent, α, obeying

0< α < 1. In other words, the FF is always greater than 1.

For Poisson processes, the FF is always near unity for all

counting times, and the fractal exponent is approximately

equal to zero.

The Allan factor is a relation with the variability of suc-

cessive counts (Allan, 1996; Barnes and Allan, 1966). It is

the ratio of the variance of successive counts for a specified

counting time τ divided by twice the mean number of events

in the counting time. The expression of AF is given as

AF(τ )=
〈Nk+1(τ )−Nk(τ )〉

2

2〈Nk(τ )〉
. (7)

Similar to the FF, the AF assumes values near unity for

Poisson processes. Telesca et al. (2009, 2011; henceforth,

referred to as Telesca’s approach) and Flores-Marquez and

Valverde-Esparza (2012) have shown the power-law expo-

nent for the AF to be 0< α < 1.

In this paper, we examine both the results of Telesca’s ap-

proach to the initial catalogue of the data used and of the

new representation of the point process with a Markov chain

model. For the working model, we compute the state-to-state

transition frequencies as described by Nava et al. (2005) and

as applied to global seismicity (Vasudevan and Cavers, 2012;

Cavers and Vasudevan, 2013). Expressions similar to Eqs. (6)

and (7) can be derived if we know the optimal time inter-

val for the Markov chain model. Since we know the optimal

time interval, we introduce a sequence of state-to-state transi-

tion frequencies, {Nsstf,k(τ )}, with Nsstf,k(τ ) referring to the

weight of state-to-state transitions over the kth window for

the optimal time interval, as is shown in Fig. 5f. For an easy

understanding of Fig. 5f, we have included Fig. 5e.
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Figure 5. Representation of a point process (a–d) versus representation of a state-to-state transition (e and f). (Adapted from Thurner et

al., 1997.)

There are a few observations to be made. First, Nsstf,k(τ )

is not necessarily an integer number for any kth window.

Following the definition of a state, in the context of a di-

rected graph of a Markov chain model, a state-to-state tran-

sition refers to an edge of a graph. It is the weight associ-

ated with the edge of the directed graph that plays an im-

portant role. Since we have used a modified Markov chain

model which includes the influence of the event recurrences

in the record-breaking sense, the above expression includes

their weights as well in the computation of Nsstf,k(τ ). The

sequence of state-to-state transition frequencies, {Nsstf,k(τ )},

yields a time series. This time series is the new expression of

the point-process where the weighted edges of directed graph

of the modified Markov chain represent the significance of

the earthquakes between states. This new alternative repre-

sentation signifies the behaviour of the state-to-state transi-

tion frequencies over a large time window. Here, seeking to

find the time-correlative behaviour of the time series would

be of great importance since this would give us an opportu-

nity to see the interaction of zones considered in a collective

sense.

Here, we seek to understand the correlative behaviour by

looking at the two statistical measures, FFsstf and AFsstf, as

defined below:

FFsstf(τ )=

〈
N2

sstf,k(τ )−Nsstf,k(τ )
〉2

〈Nk(τ )〉
, (8)

AFsstf(τ )=
〈Nsstf,k+1(τ )−Nsstf,k(τ )〉

2

2〈Nsstf,k(τ )〉
. (9)

The behaviour of the two measures, FFsstf and AFsstf, with re-

spect to the optimal time interval should shed some light on

the correlative behaviour of the time series but also on the

selective clustering of the certain state-to-state transitions.

We consider this knowledge to be useful for forecasting pur-

poses.

In our adaptation of the sum of edge weights for the state-

to-state transition frequencies as a new representation of a

point-process embedded in the modified Markov chain here,

the arguments of Thurner et al. (1997), Telesca (2005) and

Telesca et al. (2001, 2009, 2011) would apply. This means

that the FF of the modified Markov chain sequence would

follow a power law with the power-law exponent, α, satisfy-

ing 0< α < 1.

Extending this to FFsstf and AFsstf, as is shown in Fig. 6c

and d, we find that the power law exponent calculated, cor-

responding to the least-squares fit of the data is greater than

zero (0.27 and 0.30 respectively). They suggest not only the

fractality of the modified Markov chain sequence for optimal

time interval but also the deviation from the Poissonian be-

haviour of earthquake sequencing considered in this present

study.

4 Discussion and conclusions

Thurner et al. (1997) pointed out that the sequence of counts,

generated by recording the number of events in successive

counting time-windows of certain length, contained infor-

mation about the point process depicted by the set of event

times. This idea was further tested in understanding the dy-

namics of earthquake sequencing (Telesca et al., 2009, 2011;

Flores-Marquez and Valverde-Esparza, 2012), and in particu-

lar, the fractal behaviour of the sequence of counts. We know

that this idea was initially restricted to the sequence of counts

for varying windows of interval times. However, for compar-

ison purposes, we calculated the Fano factor and the Alan

factor for the initial catalogue of data using Eq. (6) and (7).

We include their graphs in Fig. 6a and b. Similar to obser-

vations made by Telesca et al. (2009) with the earthquake

data from the Taiwan region, we find the presence of two dis-

tinctly different regions of scaling behaviour. For small time

intervals, we also observe the Poisson behaviour. Since very
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Figure 6. (a, b) The Fano and Allan factor graphs, respectively, derived from the earthquake catalogue data using the approach of Telesca

et al. (2001, 2009, 2011) and Telesca and Lovallo (2008); (c, d) the Fano and Allan factor graphs, respectively, for the time series of the

state-to-state transition frequencies of the modified Markov chain model of the earthquake sequencing.

poor statistics at time-scales larger than 108 s would influ-

ence the Fano factor and the Allan factor, we have restricted

our analysis to 3.17 years or roughly 108 s.

In our description of the directed graph of the Markov

chain model of any earthquake sequencing, regional or

global, we stress the significance of the state-to-state tran-

sition probabilities for multiple zones that span the sequence

of earthquakes over an optimal time window (Cavers and Va-

sudevan, 2013; Vasudevan and Cavers, 2013). In other words,

the edges of the directed graph carry weights. We conjec-

ture that these weights represent a new definition of the point

process. Furthermore, a consideration of the earthquake re-

currences within each zone and among zones, following the

concept of recurrences in the record-breaking sense (David-

sen et al., 2008), leads to an empirically determined distance-

dependent weights for the edges. Unlike extending the idea

of the sequence of counts where every event occurrence aug-

ments the counting value by unity (Thurner et al., 1997;

Telesca et al., 2009, 2011; Flores-Marquez and Valverde-

Esparza, 2012), we consider the summing of the weights for

each edge such that the sum represents a “pulse” for each

state-to-state transition. We analyse the resulting time series

from the point of view of its Fano factor and Allan factor.

There is evidence for fractality of the multi-state modified

Markov chain to represent the earthquake sequencing, as is

revealed by the power-law scaling behaviour present in the

Fano and Allan factors with their respective exponents of

0.27 and 0.30 (Fig. 6c, d). However, it is important to note

that the exponents of the power laws in both cases have a

smaller value than those observed for the initial catalogue.

Cavers and Vasudevan (2013) interpreted the Markov

chain of 32-states for five distinctly different zones to con-

tain the basic combinatoric structure superimposed by the

thumb-print of the undulatory structure of the recurrence

weights. Since the earthquake sequencing is in general non-

linear and non-stationary, we contend that the time series

representing the above Markov chain is also non-linear and

non-stationary, and is conducive to an ensemble empirical

mode decomposition (EEMD) procedure to understand its

intrinsic mode functions (IMFs). The ensemble empirical

model decomposition of the time series leads to nine in-

trinsic mode functions and a trend. Each one of the IMFs

reveals the amplitude fluctuation of the state-to-state transi-

tions. While there is a commonality in the relative dominance

of the subduction-style earthquakes, represented by the top

right corner grid of the relative weight matrices (Fig. 3), the
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presence or absence of certain state-to-state transitions in cer-

tain IMFs reveals the importance of integral multiples of the

optimal time interval.

A simple observation of the first six or seven IMFs stresses

the importance of multiple-zone approach to global seismic-

ity problem in that the earthquake sequencing for the time

period we considered has similar oscillatory behaviour of

the state-to-state transition probabilities from the point of

view of the amplitude scaling and the oscillating period. The

growth and decay of oscillations in easily identifiable pack-

ets in each IMF following certain periodicity is an intrinsic

signature of the role of multiple zones in earthquake sequenc-

ing.
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