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Abstract. Earthquake sequencing studies allow us to inves-

tigate empirical relationships among spatio-temporal param-

eters describing the complexity of earthquake properties. We

have recently studied the relevance of Markov chain mod-

els to draw information from global earthquake catalogues.

In these studies, we considered directed graphs as graph

theoretic representations of the Markov chain model and

analyzed their properties. Here, we look at earthquake se-

quencing itself as a directed graph. In general, earthquakes

are occurrences resulting from significant stress interactions

among faults. As a result, stress-field fluctuations evolve con-

tinuously. We propose that they are akin to the dynamics of

the collective behavior of weakly coupled non-linear oscil-

lators. Since mapping of global stress-field fluctuations in

real time at all scales is an impossible task, we consider an

earthquake zone as a proxy for a collection of weakly cou-

pled oscillators, the dynamics of which would be appropri-

ate for the ubiquitous Kuramoto model. In the present work,

we apply the Kuramoto model with phase lag to the non-

linear dynamics on a directed graph of a sequence of earth-

quakes. For directed graphs with certain properties, the Ku-

ramoto model yields synchronization, and inclusion of non-

local effects evokes the occurrence of chimera states or the

co-existence of synchronous and asynchronous behavior of

oscillators. In this paper, we show how we build the directed

graphs derived from global seismicity data. Then, we present

conditions under which chimera states could occur and, sub-

sequently, point out the role of the Kuramoto model in un-

derstanding the evolution of synchronous and asynchronous

regions. We surmise that one implication of the emergence

of chimera states will lead to investigation of the present

and other mathematical models in detail to generate global

chimera-state maps similar to global seismicity maps for

earthquake forecasting studies.

1 Introduction

Earthquakes of differing magnitudes occur at different loca-

tions and depths in many tectonically active regions of the

earth. The magnitude is the most widely used and theoret-

ically studied earthquake parameter (Kanamori and Ander-

son, 1975; Hanks and Kanamori, 1979). The moment magni-

tude scale, MW, provides an estimate for all medium to large

earthquake magnitudes. Continuous recording and analysis

of earthquakes that occur in different regions of the earth

have led to earthquake catalogues. These catalogues carry in-

formation about the epicenter and the estimated hypocenter,

the time and the magnitude of the earthquakes, leading to

a set of empirical rules for different earthquake regions and

the global seismicity (Omori, 1895; Gutenberg and Richter,

1954; Bath, 1965; Bufe and Varnes, 1993; Utsu et al., 1995;

Ogata, 2011). The empirical rules allow us to understand

and expand on the inter-relationships between the earthquake

magnitude and the frequency of occurrence of events, and the

main shocks and their aftershocks in space and in time.

The earthquake catalogues have recently become the ba-

sis for Markov chain models of earthquake sequencing to

explore probabilistic forecasting from the point of view of

seismic hazard analysis (Nava et al., 2005; Cavers and Va-

sudevan, 2015). Cavers and Vasudevan (2015) have incor-

porated the spatio-temporal complexity of the earthquake re-

currences (Davidsen et al., 2008; Vasudevan et al., 2010) into

their Markov chain model.
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Intrinsic to earthquake sequencing studies is the observa-

tion made on scaling behavior and earthquake cycles (Tur-

cotte, 1997; Rundle et al., 2002, 2003). In this regard, frac-

tal and fractal-rate stochastic point processes were found to

be useful (Thurner et al., 1997). Telesca et al. (2011) ap-

plied such models to earthquake sequencing. Vasudevan and

Cavers (2013) have recently extended the application of this

model to study time-correlative behavior in earthquake se-

quencing by carrying out Fano factor and Allan factor anal-

ysis of a time series of state-to-state transition frequencies of

a Markov chain.

One aspect of earthquake sequencing that requires a close

look is a model for the non-linear dynamics of earthquakes.

In this paper, we investigate the synchronization behavior

of weakly coupled “earthquake oscillations”. Such oscilla-

tions in the earth’s crust and the epileptic brain show cer-

tain commonalities in that the distributions of energies and

recurrence times exhibit similar power-law behavior (Herz

and Hopfield, 1995; Rundle et al., 2003; Osorio et al., 2010;

Chialvo, 2010). A growing interest in understanding the be-

havior of earthquakes and epileptic seizures with a view to

exploring possible forecasting methods is one reason for the

present study. In the case of epileptic seizures, the non-linear

dynamics of pulse-coupled neuronal oscillations as an alter-

native to the Kuramoto (1975) model are under close scrutiny

(Rothkegel and Lehnertz, 2014). To our knowledge, neither

a simple Kuramoto model nor a modification of it has been

worked out for earthquake sequencing studies. Mirollo and

Strogatz (1990), Kuramoto (1991) and Rothkegel and Lehn-

ertz (2014) considered the synchronization of pulse-coupled

oscillators in which single oscillators release energy rapidly

when they reach a trigger threshold and become quiescent

for some time until they reach the trigger threshold again.

Examples falling into this category are earthquakes and spik-

ing neuronal activities (Herz and Hopfield, 1995; Beggs and

Plenz, 2003; Rundle et al., 2002, 2003; Scholz, 2010; Karsai

et al., 2012; Rothkegel and Lehnertz, 2014). Herz and Hop-

field (1995) studied the collective oscillations with pulse-

coupled threshold elements on a fault system to capture the

earthquake processes. There are two timescales: the first is

given by the fault dynamics defining the duration of the earth-

quake, and the second timescale is given by the recurrence

time between “characteristic events”, the largest earthquakes

on a fault. The known recurrence times on several fault sys-

tems are 6 to 8 orders of magnitude longer than the dura-

tion of single events. Rundle et al. (2002) examined the self-

organization in “leaky” threshold systems such as networks

of earthquake faults. In their paper, they argued that on the

“macroscopic” scale of regional earthquake fault systems,

self-organization leads to the appearance of phase dynam-

ics and a state vector whose rotations would characterize the

evolution of earthquake activity in the system. Scholz (2010)

invoked the Kuramoto model to represent the fault interac-

tions, although no numerical synchronization–simulation re-

sults were presented. He postulated that the common oc-

currence of triggering of a large earthquake by other earth-

quakes on nearby faults and the observation of space–time

clustering of large earthquakes in the paleoseismic record

were both indicators of synchronization occurring between

faults. However, we need to bear in mind here that incorpo-

rating fault–fault interactions on a global scale involving all

the networks of earthquake faults is formidable and nearly

impossible. In this paper, we modify the simple non-linear

mathematical model, the Kuramoto model with a phase lag,

for the sequencing of global earthquake data. We show here

that the solutions to the Kuramoto model with phase lag and

with non-local coupling effects reveal the co-existence of

synchronized and asynchronized states or chimera states for

certain parameter values. We use this model as a precursor

to our planned studies on other mathematical models such as

integrate and fire models.

As alluded to earlier, there is a quiescence period be-

tween earthquakes in an earthquake zone, also known as

the recurrence times. Since the globally recorded earthquake

data are only available for a short time period, incorporat-

ing the recurrence times into the earthquake catalogue is im-

possible. Here, we consider the model proposed by David-

sen et al. (2008) to include the spatio-temporal complexity

of recurrences by identifying the earthquakes occurring in

close proximity to any occurred event in the record-breaking

sequence. In this paper, we also investigate the Kuramoto

model with a phase lag for the sequencing of global earth-

quake data influenced by the recurrences to point out the

emergence of chimera states under certain conditions.

2 Mathematical model of the earthquake sequencing

The Kuramoto (1975) model for a large number of weakly

coupled oscillators has become a standard template in non-

linear dynamical studies, pertinent to synchronization behav-

ior, following the ground-breaking study of Winfree (1967).

To apply this model to earthquake sequencing studies, we

need to make a few justifiable assumptions and to incorporate

certain essential features of earthquakes that we have come to

know. For example, plate motions and, hence, plate tectonics

(Stein, 1993; Kagan et al., 2010; DeMets et al., 2010) sug-

gest that most of the earthquakes occur in and around plate

boundaries because of the varying plate motions of the plates

that uniquely encompass the earth’s crust. In particular, dif-

ferent plates move at different rates and along different ori-

entations, resulting in stress-field changes at the plate bound-

aries. When stress-field accumulation reaches, at a particu-

lar location or in a zone, a certain critical threshold, energy

is released in the form of an earthquake. The relaxed sys-

tem goes through the stress-build-up process again, a similar

mechanism being operative in neuronal communication dy-

namics. We assume that there is a uniform stress increase

during the quiescent period. Collective synchronization of

threshold-coupled or pulse-coupled oscillators would be a
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candidate for such a study (Mirollo and Strogatz, 1990; Ku-

ramoto, 1991; Rothkegel and Lehnertz, 2014). However, we

defer the extension of their approach to earthquake sequenc-

ing studies to a future date. Since the quiescence period is

6 to 8 orders of magnitude longer than the event time du-

ration, it would be an ideal platform on which to carry out

this study. We surmise that the behavior of earthquake cycles

noted in earthquake sequencing does not lend support, how-

ever, to a full synchronization or full asynchronization as a

solution to this non-dynamics problem. One proven modifi-

cation is the inclusion of non-local effects of the geometry of

the system that has been shown to lead to a co-existence of

partially synchronized and partially asynchronized states of

oscillators as a steady-state solution. Such states, addressed

as chimera states, are the subject of recent theoretical and ex-

perimental studies (Kuramoto and Battogtokh, 2002; Abrams

and Strogatz, 2004; Abrams et al., 2008; Ko and Ermentrout,

2008; Omel’chenko et al., 2008; Sethia et al., 2008; Sheeba

et al., 2009; Laing, 2009a, b; Laing et al., 2012; Martens et

al., 2013; Yao et al., 2013; Rothkegel and Lehnertz, 2014;

Kapitaniak et al., 2014; Pazó and Montbrió, 2014; Panaggio

and Abrams, 2014; Zhu et al., 2014; Gupta et al., 2014; Va-

sudevan and Cavers, 2014a, b). We focus our present study

on defining a Kuramoto model with a phase lag that would

accommodate the existence of chimera states. The Kuramoto

model has been extensively studied for a system made up of

a large number of weakly coupled oscillators, where most of

the physical problems are finite and can be described as non-

linear dynamics on complex networks (Acebrón et al., 2005;

Arenas et al., 2008). In the realm of graph theory, complex

networks can be cast as either undirected or directed graphs.

In our studies on earthquake sequencing, we consider a di-

rected graph as a representation of an earthquake complex

network. The occurrence of chimera states as solutions to

non-linear dynamics on both undirected and directed graphs

has recently been investigated (Zhu et al., 2014; Vasudevan

and Cavers, 2014a). As a precursor to studying earthquake

sequencing with real data from the earthquake catalogues,

we investigated the Kuramoto model on synthetic networks

that mimic Erdös–Rényi random networks, small-world net-

works, and scale-free networks and directed graphs adapted

from them, and examined chimera-state solutions (Vasude-

van and Cavers, 2014a). For the earthquake sequencing stud-

ies here, we use the following Kuramoto model with a phase

lag, α, with non-local coupling effects terms added explic-

itly:

θ̇i = ωi −
1

N

N∑
j=1

Gij sin
(
θi − θj +α

)
. (1)

Here, θ̇i is the time derivative of the phase of the ith oscilla-

tor. The angle α (0≤α≤π/2) corresponds to the phase lag

between oscillators i and j . Gij is the non-local coupling

function that depends on the shortest path length, dij , be-

tween oscillators i and j in the complex network:

Gij =Ke
−κdij . (2)

K is the global coupling strength and κ is the strength of the

non-local coupling. For convenience, we use a constant nat-

ural frequency for all the oscillators, i.e. homogeneous case,

and, thus, we could use ωi = 0 for i= 1, . . . , N . Although

we have not investigated the influence of the global coupling

strength on the steady-state solution of the Kuramoto model,

we treat this term as constant, in particular K = 1, based on

observations made by Zhu et al. (2014).

We would like to stress that the model in Eq. (1) is not

a pulse-coupled or threshold-coupled oscillator model. Al-

though it would be appropriate to consider a variation of the

Kuramoto model such as the Shinomoto–Kuramoto model

(Shinomoto and Kuramoto, 1986; Sakaguchi et al., 1988;

Lindner et al., 2004), we limit ourselves to a simpler model

that does not include the excitable behavior of the model. We

intend to use this model as a precursor to our planned stud-

ies on other mathematical models such as integrate and fire

models.

A comment on the phase-lag parameter, α, in Eq. (1)

is also in order. Panaggio and Abrams (2014) interpret the

phase lag as an approximation for a time-delayed coupling

when the delay is small. The value of α used is (π/2)− 0.10.

In some ways, we treat the phase lag as a proxy for time

delay. As Panaggio and Abrams (2014) demonstrate in their

paper, the value of α determines a balance between order and

disorder. We have not done an exhaustive search on the α pa-

rameter for the cases discussed in this paper.

Here, we construct a directed graph of earthquake events

from the Incorporated Institutions for Seismology (IRIS)

earthquake catalogue for the time period between 1970 and

2014. We consider earthquake events with magnitudes ex-

ceeding or equal to MW= 5.5 observed to a depth of 70 km.

We partition the general latitude–longitude map of the earth-

quake events into a grid. We show two maps of such grid

matrices (Fig. 1). A cell in a smaller grid (128× 128) could

have higher multiplicity of earthquake events than that in a

large grid (1024× 1024). We consider the coordinates of the

topological center of each cell to represent the coordinates

of the earthquake events that fall into that cell. Thus, we ex-

plore the effect of hubs and community effects by looking at

transition probability matrices generated from grids of differ-

ent orders such as 128, 192, 256, 512, and 1024 representing

the seismicity map on a global longitude–latitude grid (Ta-

ble 1). We compute the transition probability matrix and the

shortest-path distance matrix for the directed graphs resulting

from the catalogue considered. To keep the Kuramoto model

simple, we assume a constant phase lag, α, in the phase of the

ensemble of oscillators. The value of α used is (π/2)− 0.10.

We relax this condition in subsequent simulations. The most

difficult parameter to deal with here is the period of qui-

escence after the energy release following a certain stress

threshold. We incorporate the build-up of the threshold effect

indirectly by positing the inclusion of earthquake recurrences
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Figure 1. Partitioning of the global seismicity map: (a) 128× 128 gridding of the latitude–longitude map. (b) 1024× 1024 gridding of the

latitude–longitude map. Earthquakes of magnitudes exceeding or equal to Mw= 5.5 and location depth not exceeding 70 km for the time

period from January 1970 to September 2014 constitute the glacial seismicity map. Earthquake information was downloaded from IRIS

(Incorporated Research Institutions for Seismology). The earthquake frequency used in the maps is plotted on a log(log) display scale, with

larger circles representing higher frequencies.

Table 1. Grid sizes and the number of oscillators corresponding to

non-zero cells.

Grid Number of

size oscillators

128× 128 1693

192× 192 2390

256× 256 3087

512× 512 5119

1024× 1024 7697

in transition probability matrices. Here, we use the spatio-

temporal recurrences based on the record-breaking model of

Davidsen et al. (2008). In all our initial simulations, we ig-

nore the influence of amplitude effects on the stability of the

chimera states. We carry out simulations on the Kuramoto

model for 200 000 time steps for the 128× 128 oscillator grid

matrices and for the 1024× 1024 oscillator grid matrices. We

report here the preliminary results of our simulations.

3 Results

We report the Kuramoto model experimental results for os-

cillators resulting from 128× 128, 192× 192, 256× 256,

512× 512, and 1024× 1024 grids of the latitude–longitude

map of the earthquakes. We consider a total of 13 190 earth-

quakes. We construct the transition probability and the

shortest-path distance matrices for the grids without (“non-

recurrence” results) and with the consideration of the spatio-

temporally complex recurrences (“recurrence” results), as

shown in Figs. 2 and 3.

To represent the results, we use snapshots of three at-

tributes (Zhu et al., 2014): (i) the phase profile, (ii) the ef-

fective angular velocities of oscillators and (iii) the fluctua-

tion of the instantaneous angular velocity of oscillators. The

effective angular velocity of oscillator i is defined as

〈ωi〉 = lim
τ→∞

1

T

t0+T∫
t0

θ̇idt. (3)

Here, we take T = 1000 so that the effective angular veloc-

ities of the oscillators are averaged over the last 1000 time

steps. We take t0= 199 001 for the 128× 128 grid and for

the 1024× 1024 grid.

The fluctuation of the instantaneous angular velocity, σi ,

of an oscillator i around its effective velocity is defined as

σ 2
i = lim

T→∞

1

T

t0+T∫
t0

(
θ̇i −〈ωi〉

)2
dt. (4)

If σi = 0, then oscillator i rotates at a constant angular ve-

locity. We show the non-recurrence and recurrence results

obtained from the behavior of the last 1000 time steps of the

simulations involving 200 000 time steps. We present the re-

sults for the 128× 128 grid without and with recurrences in

Figs. 4 and 5 for the three attributes using κ = 0.10. Figures 6

and 7 show these attributes for the 1024× 1024 grid without

and with recurrences, respectively, for κ = 0.1.

Whether or not the Kuramoto model reaches the steady

state, we examine the ratio of the number of coherent or

synchronous oscillators to the total number of oscillators

or “chimera index” as a function of the number of time

steps. Here, we carry out 200 000 time steps. After every

20 000 time steps, we look at the chimera index for the last

1000 time steps. As an example, in Fig. 8, we find the asymp-

totic behavior of the scatter of the chimera index for ten such

intervals for the 128× 128 grid for κ = 0.10, suggesting that

the Kuramoto model has reached the steady state.
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Figure 2. 128× 128 gridded map: (a) transition probability matrix without recurrences. (b) Transition probability matrix with recurrences.

(c) Shortest-path distance matrix without recurrences. (d) Shortest-path distance matrix with recurrences. In (a) and (b), the transition

frequencies used in the maps are plotted using a log(log) display scale, with larger circles representing higher frequencies.

We investigate the influence of the non-local coupling

coefficient, κ , on the chimera index for each grid and

summarize our results for the non-recurrent 128× 128 and

1024× 1024 grids in Fig. 9.

Most of the initial computations reported in this work

were on a HP C7000 chassis cluster system with dual-core

2.4 GHz AMD Opetron processors at the high-performance

computing facility at the University of Calgary. We carried

out a series of runs for 200 000 time steps on a Mac Pro

Six-Core Intel Xeon E5 3.5 GHz, 16 GB RAM desktop work

station and on a Dell PowerEdge R910 with Intel Xeon E7-

4870 2.40 GHz 256 GB RAM processors, and we used the

Matlab ODE113 solver to solve the Kuramoto model.

4 Discussion

4.1 Building the directed graph

Earthquake sequencing is a well-studied problem in earth-

quake seismological communities around the globe, and yet

it hides a suite of phenomenological mysteries that stand in

the way of successful earthquake forecasting. One of the first

steps in carrying out any investigative work on earthquake

sequencing is to look at the global seismicity map such as

the one posted by IRIS on a regular basis, with continuous

updating of the associated catalogue. In Fig. 1a and b, we

summarize the cumulative results of the catalogue for mag-

nitudes of earthquakes exceeding Mw= 5.5 and the depths

of occurrence not exceeding 70 km, recorded between Jan-

uary 1970 and September 2014. One difference in the two

figures lies in the coarseness of the gridding, with the first

one being coarser than the second. A cursory glance at the

figures immediately suggests the relevance of plate tectonics

in that most earthquakes seem to occur at and around plate

boundaries. A broad classification of these earthquakes could

consist of the following categories: strike-slip earthquakes,

subduction-zone seismicity, oceanic earthquakes, continental

extensional regimes, intraplate earthquakes, and slow earth-

quakes (Scholz, 2002). The interplay between these remains

a topic of research among seismologists. In general, fault

systems play an important role in understanding the cause

and recurrence of earthquakes. Scholz (2002) provides an

excellent account of the mechanics of earthquakes and fault-

ing. Ben-Zion and Sammis (2003) examined the continuum-

Euclidean, granular, and fractal views of the geometrical,

mechanical, and mathematical nature of faults and concluded

that many aspects of the observed spatio-temporal com-

plexity of earthquakes and faults might be explained us-

ing the continuum-Euclidean model. They contended that a

continuum-based description would provide a long-term at-

tractor for structural evolution of fault zones at all scales. The

underpinning point in these works is the importance of the
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Figure 3. A 1024× 1024 gridded map: (a) transition probability matrix without recurrences. (b) Transition probability matrix with recur-

rences. (c) Shortest-path distance matrix without recurrences. (d) Shortest-path distance matrix with recurrences. In (a) and (b), the transition

frequencies used in the maps are plotted using a log(log) display scale, with larger circles representing higher frequencies.

faulting in earthquake processes. Earthquakes are known to

occur at different depths. Excepting in instances where there

are surface ruptures as a result of earthquakes, fault zones

at seismogenic depths in kilometers cannot be directly ob-

served (Ben-Zion and Sammis, 2003). Continued geological

mapping and high-resolution geophysical measurements af-

ford a mechanism to improve our understanding of the fault

zones.

Rundle et al. (2003) took a statistical physics approach

in emphasizing the significance of faults and fault systems

as high-dimensional non-linear dynamical systems charac-

terized by a wide range of scales in both space and time,

from centimeters to thousands of kilometers, and from sec-

onds to many thousands of years. The signature of the resid-

ual behavior in these systems is chaotic and complex. Un-

derstanding the coupling between different space scales and

timescales to comprehend the non-linear dynamics of the

fault systems is not an easy problem. In this regard, any at-

tempt to explore the possibilities that accrue from non-linear

dynamics studies is welcome.

In earlier studies on model and theoretical seismicity (Bur-

ridge and Knopoff, 1967; Vieira, 1999), special attention was

paid to finding out whether chaos was present in the symmet-

ric non-linear two-block Burridge–Knopff model for earth-

quakes. Vieira (1999) demonstrated with a three-block sys-

tem the appearance of synchronized chaos. A consequence of

this study was the speculation that earthquake faults, which

are generally coupled through the elastic media in the earth’s

crust, could in principle synchronize even when they have

an irregular chaotic dynamics (Vieira, 1999). Going one step

further would be to suggest that the occurrence of earth-

quakes and the space–timescale patterns they leave behind

is a sound proxy for modeling and theoretical studies of the

fault systems. It is this point that is pursued in this work.

In this study, we focus on the non-linear dynamics of

weakly coupled oscillators. Each oscillator (corresponding

to the occurrence of an earthquake) is a proxy for a fault

system or network with known information on its location,

the time when the earthquake event occurred, and magnitude.

This defines an element in the earthquake sequence. A con-

tinued sequence of events is represented as a directed graph

(Vasudevan et al., 2010; Cavers and Vasudevan, 2014; Va-

sudevan and Cavers, 2014b) with the vertices representing

the earthquakes (and their attributes) and the arcs the con-

necting links between neighbors in a sequence. Figures 2a

and 3a show the transition matrices for the directed graphs

of the two grids, 128× 128 and 1024× 1024 grids. The os-

cillator index is determined by the grid partition with non-

zero cells labelled in row-by-row order. A log(log) display

scale is used to highlight the “clustering”. The level of clus-

tering along the first leading off-diagonal elements of the

transition matrix is highlighted and indicates the partition-

Nonlin. Processes Geophys., 22, 499–512, 2015 www.nonlin-processes-geophys.net/22/499/2015/
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Figure 4. Three attributes of a chimera state of the 1693 oscillators for a 128× 128 gridded map without recurrences using κ = 0.10.

(a) Stationary phase angle. (b) Effective angular velocity. (c) Fluctuations in instantaneous angular velocity.

Figure 5. Three attributes of a chimera state of the 1693 oscillators for a 128× 128 gridded map with recurrences using κ = 0.10. (a) Sta-

tionary phase angle. (b) Effective angular velocity. (c) Fluctuations in instantaneous angular velocity.

ing and the relative significance of the seismicity zones in

the globe. However, this does not invoke any causality argu-

ment. Since the multiplicity of the earthquakes in the cells of

the grids used varies from “zero” to a large number, for the

reason mentioned concerning the Euclidean geometry men-

tioned earlier, inter-cell and intra-cell transitions populate the

transition matrices. These transition matrices are not sym-

metric. The non-linear dynamics of weakly coupled oscilla-

tors on such matrices has not been fully understood.

As mentioned earlier, the quiescence period between

earthquakes in an earthquake zone is what we interpret here

as a recurrence period. Studies on plate-boundary motions

(Bird, 2003; DeMets et al., 2010; Stein, 1993) will provide

an insight into the recurrence period for earthquakes in cer-

tain major fault zones. Even in instances where knowledge of

the recurrence periods is known, it is usually punctuated by

random fluctuations, the statistics of which are not unknown.

The quiescence period is analogous to the process in hu-

man brains that precedes epileptic seizures (Berg et al., 2006;

Rothkegel and Lehnertz, 2014), the structure of which has

been modeled using pulse-coupled phase oscillators. Such

pulse coupling or threshold coupling remains to be quanti-

fied for earthquakes. We defer this aspect of the work to fu-

ture studies. Furthermore, the historical seismicity data set is

short and, therefore, any information to be drawn from global

records will be insufficient. However, the recurrence model

introduced by Davidsen et al. (2008) offers a simple remedy

to the problem identifying the earthquakes occurring in close

proximity to any occurred event in the record-breaking se-

quence. Incorporating this feature into the transition matrices

results in modified transition matrices, as shown in Figs. 2b

and 3b. We propose that accounting for the quiescence pe-

riod in this manner opens additional options such as feed-

back effects on the non-linear dynamics of weakly coupled

oscillators.

4.2 Synchronization

Scholz (2010) argued for the role of synchronization in fault

interactions and earthquake clustering and for the usefulness

of the Kuramoto model. Kuramoto (1975) proposed a mathe-

matical model of phase oscillators interacting at arbitrary in-

trinsic frequencies and coupled through a sine of their phase

differences. He suggested the following equations for each

oscillator in the system:

θ̇i = ωi +Ki

N∑
j=1

sin
[
θj (t)− θi(t)

]
(i = 1, . . .,N), (5)
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Figure 6. Three attributes of a chimera state of the 7697 oscillators for a 1024× 1024 gridded map without recurrences using κ = 0.10.

(a) Stationary phase angle. (b) Effective angular velocity. (c) Fluctuations in instantaneous angular velocity.

Figure 7. Three attributes of a chimera state of the 7697 oscillators for a 1024× 1024 gridded map with recurrences using κ = 0.10. (a) Sta-

tionary phase angle. (b) Effective angular velocity. (c) Fluctuations in instantaneous angular velocity.

where θi is the phase of the ith oscillator, θ̇i(t) is the first

derivative of the phase of the ith oscillator with time, ωi is

the natural frequency of the oscillator, Ki is the strength of

coupling of the ith oscillator to other oscillators and N is

the size of the population of the oscillators. The frequencies

ωi are chosen from a uniform distribution. Kuramoto (1975)

demonstrated that synchronization was accomplished in the

case of mean-field coupling with

Ki =
K

N
> 0(i = 1, . . .,N) (6)

in the above equation. We can describe the Kuramoto model

in a simpler form by introducing the complex-valued order

parameter r(t):

Z = r(t)eiψ(t) =
1

N

N∑
j=1

eiθj (t), (7)

where 9(t) is the average phase and r(t) honours

0≤ r(t)≤ 1. The expression of the Kuramoto model be-

comes

θ̇i(t)= ωi +Kr sin[ψ − θi(t)](i = 1, . . .,N). (8)

The collective behavior of all the oscillators is monitored by

examining the time evolution of the order parameter, r (Ku-

ramoto, 1975; Strogatz, 2000; Pikovsky et al., 2003; Stro-

gatz, 2003). The order parameter can assume values in the

range 0 to 1 including the limits. From this, it is obvious that

each oscillator is connected to the common average phase

with the coupling strength is given byKr . A value of “0” for

r corresponds to total incoherence, i.e. no phase locking of

the phases of the oscillators; a value of “1” for r corresponds

to full coherence, i.e. phase locking of all the phases of the

oscillators. The time evolution of the Kuramoto model can be

monitored either by looking at the polar plots of the phases

on a unit circle (Kuramoto, 1975) or by following the plot of

the order parameter, r , as a function of the coupling strength,

K . Acebrón et al. (2005) have provided a comprehensive re-

view of the Kuramoto model.

For the stability of the solution from the Kuramoto model,

use of a large population of oscillators for calculability in the

thermodynamic limit is a pre-requisite. Over the last decade,

efforts have gone into considering a finite number of os-

cillators satisfying the original conditions of the Kuramoto

model. Easing the restrictions on the interaction model can be

cast as an investigation of synchronization on complex net-

works. This would allow one to relate the complex topology
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and the heterogeneity of the network to the synchronization

behavior.

We rewrite the original Kuramoto model for a complex

network corresponding to undirected and directed graphs as

θ̇i(t)= ωi+

N∑
j=1

Kijaij sin
[
θj (t)− θi(t)

]
(i = 1, . . .,N), (9)

where Kij is the coupling strength between pairs of con-

nected oscillators and aij refers to the elements of the ad-

jacency or connectivity matrix. Much effort has gone into

understanding the role of the coupling strength (Hong et al.,

2002; Arenas et al., 2008; Dörfler et al., 2013) in the synchro-

nization behavior of small-world and scale-free graphs. Here,

we leave the coupling strength term a constant, unlike in the

model under the thermodynamic limit where the size of the

population, N , enters explicitly in the coupling strength term

as a divisor. The structure of the adjacency matrix decides

essentially the nature of the interaction term made up of the

sine coupling of the phases. Vasudevan and Cavers (2014a)

have investigated the synchronization behavior of the random

graphs under different rewiring probabilities and the scale-

free graphs from a spectral graph theory point of view. These

studies did not include a study on the effect of clustering on

the synchronization. In this regard, the work of McGraw and

Menzinger (2005) is quite appealing. They conclude that for

random networks and scale-free networks, increased clus-

tering promotes the synchronization of the most connected

nodes (hubs) even though it inhibits global synchronization.

We see the role of the effect of clustering on the nature of

synchronization behavior in earthquake sequencing studies

and will conduct a separate study. Whether or not we reach

similar conclusions for directed graphs, we have recently in-

vestigated synthetic networks that mimic real data structures

(Vasudevan and Cavers, 2014a). In this regard, it is worth

mentioning that synchronization of Kuramoto oscillators in

directed networks has been subjected to a detailed study (Re-

strepo et al., 2006).

4.3 Chimera states

While the synchronization and asynchronization studies on

earthquake sequencing are important in terms of the Ku-

ramoto model given in Eq. (9), very little attention has been

paid to the co-existence of synchronized and asynchronized

states or the chimera states. Kuramoto and Battogtokh (2002)

and Abrams and Strogatz (2004) paved the way for such

a study by including the non-local effects in the Kuramoto

model, as expressed in Eqs. (1) and (2). Non-local effects

mean simply the inclusion of geometry effects. For the global

seismicity map considered in this study, we generated the

shortest-path distance matrices with and without the inclu-

sion of recurrences (Figs. 2c, 3c, 2d, and 3d). The shortest-

path algorithm encapsulates both the cascading effects of

earthquakes and the negation of long-range distance effects.

In this study, we kept the global coupling strength constant

and allowed the non-local coupling strength, κ , to vary from

one simulation to the next one, similar to what was done in

the recent work of Zhu et al. (2014).

Symmetry-breaking phenomena like chimera states have

also been observed for two-cluster networks of oscillators

with a Lorentizian frequency distribution (Montbrió et al.,

2004) for all values of time delay. A crucial result by Laing

(2009a, 2009b) extends the previous observation to oscilla-

tors with heterogeneous frequencies. Also interesting to ob-

serve in this regard is that these heterogeneities can lead

to new bifurcations, allowing for alternating synchrony be-

tween the distinct populations over time. Ko and Ermen-

trout (2008) demonstrated the presence of chimera-like states

when the coupling strengths were heterogeneous. The last

study used coupled Morris–Lecar oscillators. Although there

is overwhelming evidence for the existence of chimera states

in the presence of time delay or phase lag, all of our initial

Kuramoto model simulations on the directed graph transition

matrices and the associated shortest-path distance matrices

included a constant phase lag only.

A postulation for the existence of evolving chimera states

in data from earthquake catalogues has certain implications.

For instance, it would pave the way to understanding the

evolving alterations in stress-field fluctuations in fault zones

frequented by earthquakes. Also, it would suggest a need to

consider steps to quantify partially or fully the ratio of the

number of synchronized oscillators to the total number of

oscillators. The steps would involve extensive testing of the

dependence of the parameters and additional mathematical

models. We interpret the zones with synchronized oscillators

as the ones being susceptible to earthquakes and the zones

with asynchronized oscillators as the ones going through a

quiescence period. The hope is that confirmation of chimera

states in earthquake sequencing would signal a possible use

for earthquake forecasting studies.

4.4 Simulation results and analysis

The Kuramoto model simulation with non-local coupling ef-

fects (κ = 0.10) with a phase lag, as expressed in Eq. (1) for

a 128× 128 grid transition probability, and the correspond-

ing shortest-path distance matrices, lead to snapshots of three

attributes: (i) the phase profile, (ii) the effective angular ve-

locities of oscillators, and (iii) the fluctuation of the instanta-

neous angular velocity of oscillators. We did not sort the re-

sults according to an increase in the values of the attributes.

Figure 4a–c show that, for a case of no recurrences, there

exists a chimera state. The ensemble averages from the last

1000 time steps of the 200 000 time steps in the numerical

simulations reveal the co-existence of synchronous and asyn-

chronous oscillators. This means that some of the cells in the

grid show a synchronous behavior and some others do not.

In this particular case of no recurrences (Fig. 4), the number

of synchronous oscillators to the number of asynchronous
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Figure 8. Chimera index as a function of time steps for the

128× 128 grid without recurrences for κ = 0.10.

oscillators is large. In the case of recurrences, as shown in

Fig. 5, this ratio is much larger. Also, the chimera pattern

of the synchronized and asynchronized components of the

oscillators is similar to what was observed by Abrams and

Strogatz (2004). Figures 4a and 5a are the first evidence of

the possible existence of a chimera state in earthquake se-

quencing. Figures 4b, c, 5b, and c confirm this.

Going from the 128× 128 grid to the 1024× 1024 grid,

there are more non-zero cells with multiplicity of earth-

quakes at least 1. The number of oscillators is substantially

larger, 1693 vs. 7697. Figures 6 and 7 reveal the chimera

state as the steady-state solution to the non-linear dynamics

on weakly coupled oscillators without and with recurrences

for the 1024× 1024 grid with the non-local coupling coef-

ficient, κ = 0.1. Figure 8 shows the behavior of the chimera

index as a function of the number of time steps for the non-

recurrent 128× 128 grid with the non-local coupling coeffi-

cient, κ , set at 0.10. The purpose of this figure is to demon-

strate that the asymptotic behavior of the chimera index with

an increase in the number of time steps could be used to look

at the steady-state solution of the Kuramoto model.

We looked at the influence of the non-local coupling coef-

ficient, κ , on the ratio of the number of coherent oscillators

to the total number of oscillators for both the 128× 128 and

1024× 1024 grids without recurrences in Fig. 9. A similar

observation is made for the case of recurrences. As the non-

local coupling coefficient, κ , increases from 0.01 to 1.0, the

ratio decreases. For values of κ approaching 0, the non-local

Kuramoto model acts as a simple Kuramoto model in that

there is full synchronization for the global coupling parame-

ter, A (or used as K in the literature), of 1.0. What is surpris-

ing to begin with is that, as κ approaches 1, the steady-state

solution becomes more asynchronized. Investigations on the

effect of the non-local coupling effect parameter, κ , on the

steady-state solution of the phase angle distribution in the

chimera state (Figs. 10a, b, 11a and b) suggest that for both

the 128× 128 grid and the 1024× 1024 grid, for larger κ

values, the number of asynchronous oscillators is larger, and

Figure 9. Influence of the non-local coupling coefficient parameter,

κ , on the ratio of the number of synchronized oscillators to the total

number of oscillators for both the 128× 128 and the 1024× 1024

grids without recurrences.

for smaller κ values, the presence of synchronous oscillators

becomes dominant. For in-between values, i.e. between 1.0

and 0.03, the nature of the chimera states changes.

The outcome of each one of the simulations described

for both the non-recurrence and recurrence cases contains

synchronous and asynchronous vectors. Mapping these vec-

tors on the respective grids (128× 128 or 1024× 1024 grids)

should reveal the “non-readiness or readiness” cells or zones

for earthquakes. One such map for a 128× 128 grid without

recurrences for κ = 0.10 is shown in Fig. 12. This qualitative

description of the evolutionary dynamics of the earthquake

sequencing is highly instructive.

5 Conclusions and future work

Earthquake sequencing is an intriguing research topic. The

dynamics involved in the evolution of earthquake sequenc-

ing are complex. Very much has been understood, and yet

the evolving picture is incomplete. In this regard, the work

of Scholz (2010) acted as a catalyst in us investigating the

synchronization aspect of earthquakes using the Kuramoto

model. To name a few, the works of Vieira (1999), Rundle et

al. (2002, 2003), Kuramoto and Battogtokh (2002), Abrams

and Strogatz (2004), and Laing (2009a, b) have helped us

take this step forward with this work. We summarize below

the main points of this paper and also point out the direction

in which we are going:

1. Earthquake sequencing from the IRIS earthquake cata-

logue browser can be expressed as a transition matrix of

a directed graph. Partitioning of the latitude–longitude

grid of the globe into grids of finite dimensions such

as 128× 128, 192× 192, 256× 256, 512× 512, and

1024× 1024 grids result in differing dimensions of

transition matrices of oscillators in increasing order.

Short-path distance matrices for the latter are generated
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Figure 10. (a) Effect of the non-local coupling coefficient param-

eter, κ , on the evolution and disappearance of the chimera states

for the 128× 128 grid without recurrence. Stationary phase angle

as a function of the oscillator index: kappa, κ = 1.0 (top left panel);

kappa, κ = 0.3 (top right panel); kappa, κ = 0.1 (bottom left panel);

kappa, κ = 0.03 (bottom right panel). (b) Effect of the non-local

coupling coefficient parameter, κ , on evolution and disappearance

of the chimera states for the 128× 128 grid with recurrence. Sta-

tionary phase angle as a function of the oscillator index: kappa,

κ = 1.0 (top left panel); kappa, κ = 0.3 (top right panel); kappa,

κ = 0.1 (bottom left panel); kappa, κ = 0.03 (bottom right panel).

concurrently to study the non-local effects used in the

Kuramoto model.

2. Inclusion of the non-local effects in the Kuramoto

model of the directed graphs is tested for different val-

ues of the non-local coupling coefficient, κ .

Figure 11. (a) Effect of the non-local coupling coefficient parame-

ter, κ , on the evolution and disappearance of the chimera states for

the 1024× 1024 grid without recurrence. Stationary phase angle as

a function of the oscillator index: kappa, κ = 1.0 (top left panel);

kappa, κ = 0.3 (top right panel); kappa, κ = 0.1 (bottom left panel);

kappa, κ = 0.03 (bottom right panel). (b) Effect of the non-local

coupling coefficient parameter, κ , on evolution and disappearance

of the chimera states for the 1024× 1024 grid with recurrence. Sta-

tionary phase angle as a function of the oscillator index: kappa,

κ = 1.0 (top left panel); kappa, κ = 0.3 (top right panel); kappa,

κ = 0.1 (bottom left panel); kappa, κ = 0.03 (bottom right panel).

3. For a non-local coupling strength, κ , of 0.10, the Ku-

ramoto model yields chimera states as a steady-state so-

lution, i.e. co-existence of synchronized and asynchro-

nized states. This is true for all the grid sizes considered.

Differences exist in the ratio of the number of coherent

oscillators to the number of incoherent oscillators.
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Figure 12. Chimera-state map of the synchronous and asyn-

chronous oscillators as a steady-state solution for a non-recurrence

case. The non-local coupling coefficient parameter, κ , is 0.1. Blue

dots refer to the asynchronous oscillators and red dots to the syn-

chronous oscillators.

4. As the non-local coupling strength, κ , is lowered

from 1.0 to 0.01, there is a general tendency towards an

increase in synchronization, as is expected. While this

general trend is observed for directed graphs generated

from grids of orders 128, 192, 256, and 512, the graph

from the 1024× 1024 grid reveals the presence of the

chimera state.

5. As the non-local coupling strength is increased from 0.1

to 1.0, there is a steady increase in the asynchronous

behavior.

6. The recurrence results support the presence of chimera

states for both 128× 128 and 1024× 1024 grids. How-

ever, it is quite intriguing to find out that the asyn-

chronous oscillators come from a sub-set of the oscil-

lators in both cases.

7. There is still a nagging question about which non-local

coupling coefficient would be an ideal candidate for un-

derstanding the global stress-field fluctuations.

Figure 12 illustrates an example of how a chimera state could

be displayed on the map grid. Imposing geophysical and

geodetic constraints on the earthquake zones in terms of het-

erogeneity of the natural frequencies would provide a quan-

titative answer to the above question.

1. In general, the hypothesis that all networks of earth-

quake faults around the globe go through full synchro-

nization still needs to be strongly tested. On the other

hand, the prevalence of chimera states or multi-chimera

states is an attractive option to understand the earth-

quake sequencing.

2. We believe that there is, now, a mechanism available

to us to explore and seek an answer to the non-linear

dynamics of earthquake oscillations.

Needless to say, the role of the parameters such as the het-

erogeneity of the oscillators as expressed in the natural fre-

quency of the oscillators, the variability of the time-delay

corrections instead of a constant time delay, and the hetero-

geneity of the non-local coupling strength and the global cou-

pling strength in the present Kuramoto model, remain to be

investigated. Work is currently in progress.
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