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Abstract. Singular spectrum analysis (SSA) is a powerful

technique for time series analysis. Based on the property that

the original time series can be reproduced from its princi-

pal components, this contribution develops an improved SSA

(ISSA) for processing the incomplete time series and the

modified SSA (SSAM) of Schoellhamer (2001) is its special

case. The approach is evaluated with the synthetic and real

incomplete time series data of suspended-sediment concen-

tration from San Francisco Bay. The result from the synthetic

time series with missing data shows that the relative errors of

the principal components reconstructed by ISSA are much

smaller than those reconstructed by SSAM. Moreover, when

the percentage of the missing data over the whole time se-

ries reaches 60 %, the improvements of relative errors are up

to 19.64, 41.34, 23.27 and 50.30 % for the first four princi-

pal components, respectively. Both the mean absolute error

and mean root mean squared error of the reconstructed time

series by ISSA are also smaller than those by SSAM. The re-

spective improvements are 34.45 and 33.91 % when the miss-

ing data accounts for 60 %. The results from real incomplete

time series also show that the standard deviation (SD) derived

by ISSA is 12.27 mg L−1, smaller than the 13.48 mg L−1 de-

rived by SSAM.

1 Introduction

Singular spectrum analysis (SSA) introduced by Broomhead

and King (1986) for studying dynamical systems is a pow-

erful toolkit for extracting short, noisy and chaotic signals

(Vautard et al., 1992). SSA first transfers a time series into

a trajectory matrix, and carries out the principal component

analysis to pick out the dominant components of the trajec-

tory matrix. Based on these dominant components, the time

series is reconstructed. Therefore the reconstructed time se-

ries improves the signal-to-noise ratio and reveals the charac-

teristics of the original time series. SSA has been widely used

in geosciences to analyse a variety of time series, such as

the stream flow and sea-surface temperature (Robertson and

Mechoso, 1998; Kondrashov and Ghil, 2006), the seismic to-

mography (Oropeza and Sacchi, 2011) and the monthly grav-

ity field (Zotova and Shum, 2010). Schoellhamer (2001) de-

veloped a modified SSA for time series with missing data

(SSAM), which was successfully applied to analyse the time

series of suspended-sediment concentration (SSC) in San

Francisco Bay (Schoellhamer, 2002). This SSAM approach

does not need to fill missing data. Instead, it computes each

principal component (PC) with observed data and a scale fac-

tor related to the number of missing data. Shen et al. (2014)

developed a new principal component analysis approach for

extracting common mode errors from the time series with

missing data of a regional station network. The other kind

of SSA approach process the time series with missing data

by filling the data gaps recursively or iteratively, such as the

“Caterpillar” SSA method (Golyandina and Osipov, 2007),

the imputation method (Rodrigues and Carvalho, 2013) or

the iterative method (Kondrashov and Ghil, 2006).

This paper is motivated by Schoellhamer (2001) and Shen

et al. (2014) and develops an improved SSA (ISSA) ap-

proach. In our ISSA, the lagged correlation matrix is com-

puted in the same way as by Schoellhamer (2001) – the PCs

are directly computed with both the eigenvalues and eigen-

vectors of the lagged correlation matrix. However, the PCs

in Schoellhamer (2001) were calculated with the eigenvec-
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tors and a scale factor to compensate for the missing value.

Moreover, we do not need to fill in the missing data recur-

sively and iteratively as in Golyandina and Osipov (2007).

The rest of this paper is organized as follows: the improve-

ment of SSA for time series with missing data follows in

Sect. 2, synthetic and real numerical examples are presented

in Sects. 3 and 4 respectively, and then conclusions are given

in Sect. 5.

2 Improved singular spectrum analysis for time series

with missing data

For a stationary time series xi (1≤ i ≤N ), we can construct

an L× (N −L+ 1) trajectory matrix with a window size L.

Its Toeplitz lagged correlation matrix C is formulated by

C=


c(0) c(1) · · · c(L− 1)

c(1) c(0)
. . .

...
...

...
. . . c(1)

c(L− 1) · · · · · · c(0)

 . (1)

Each element c(j) is computed by

c(j)=
1

N − j

N−j∑
i=1

xixi+j j = 0,1,2, . . .,L− 1. (2)

For matrix C, we can compute its eigenvalues λk and the

corresponding eigenvectors vk in descending order of λk
(1≤ k≤L). Then the ith element of the kth principal com-

ponent (PC) ak is computed by

ak,i =

L∑
j=1

xi+j−1vj,k 1≤ i ≤N −L+ 1, (3)

where vj,k is the j th element of vk . We compute the kth re-

constructed components (RCs) of the time series with the

kth PC as (Vautard et al., 1992)

xki =



1
i

i∑
j=1

ak,i−j+1vj,k 1≤ i ≤ L− 1

1
L

L∑
j=1

ak,i−j+1vj,k L≤ i ≤N −L+ 1

1
N−i+1

L∑
j=i−N+L

ak,i−j+1vj,k N −L+ 2≤ i ≤N.

(4)

Since λk , the variance of the kth RC, is sorted in descend-

ing order, the first several RCs contain most of the signals of

the time series, while the remaining RCs contain mainly the

noises of time series. Thus the original time series is recon-

structed with the first several RCs.

The SSAM approach developed by Schoellhamer (2001)

computes the elements c(j) of the lagged correlation matrix

by

c(j)=
1

Nj

∑
i≤N−j

xixi+j j = 0,1,2, . . .,L− 1, (5)

where both xi and xi+j must be observed rather than missed,

and Nj is the number of the products of xi and xi+j within

the sample index i ≤N − j . Then we compute the eigenval-

ues and eigenvectors from the lagged correlation matrix C.

The PCs are also calculated with observed data:

ak,i =
L

Li

∑
1≤j≤L

xi+j−1vj,k 1≤ i ≤N −L+ 1, (6)

where Li is the number of observed data within the sample

index from i to i+L− 1. The reconstruction procedure of

time series from PCs is the same as SSA. The scale factor

L/Li is used to compensate for the missing value.

In order to derive the expression of computing PCs for the

time series with missing data, Eq. (3) is reformulated as

ak,i =
∑

i+j−1∈Si

xi+j−1vj,k +
∑

i+j−1∈Si

xi+j−1vj,k, (7)

where 1≤ i ≤N −L+ 1, and Si and Si are the index sets of

sampling data and missing data respectively within the in-

teger interval [i, i+L− 1], i.e. Si ∩ Si = 0 and Si ∪ Si = [i,

i+L− 1]. If PCs are available, we can reproduce the miss-

ing values. Therefore, the missing values in Eq. (7) can be

substituted with PCs as

xi+j−1 =

L∑
m=1

am,ivj,m. (8)

Substituting Eq. (8) into the second term of the right-hand

side of Eq. (7) yields1−
∑

i+j−1∈Si

v2
j,k

ak,i − ∑
i+j−1∈Si

L∑
m=1,m6=k

vj,mvj,kam,i

=

∑
i+j−1∈Si

xi+j−1vj,k. (9)

Collecting all equations of Eq. (9) for k= 1, 2, . . . , L, we

have

Giξi = yi, (10)

where

Gi =



1−
∑

i+j−1∈Si

v2
j,1 −

∑
i+j−1∈Si

vj,1vj,2 · · · −
∑

i+j−1∈Si

vj,1vj,L

−
∑

i+j−1∈Si

vj,2vj,1 1−
∑

i+j−1∈Si

v2
j,2 · · · −

∑
i+j−1∈Si

vj,2vj,L

.

.

.

.

.

.

.
.
.

.

.

.

−
∑

i+j−1∈Si

vj,Lvj,1 −
∑

i+j−1∈Si

vj,Lvj,2 · · · 1−
∑

i+j−1∈Si

v2
j,L


, (11)
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ξi =


a1,i

a2,i

...

aL,i

 ,yi =


∑
i+j−1∈Si

xi+j−1vj,1∑
i+j−1∈Si

xi+j−1vj,2

...∑
i+j−1∈Si

xi+j−1vj,L


. (12)

Since Gi is a symmetric and rank-deficient matrix with the

number of rank deficiency equaling the number of miss-

ing data within the interval [xi , xi+L−1], the PCs ak,i
(k= 1, 2, . . . , L) are solved with Eq. (10) based on the fol-

lowing criterion (Shen et al. 2014):

min : ξTi 3−1ξi, (13)

where 3 is diagonal matrix of eigenvalues λk , which is the

covariance matrix of PCs. The solution of Eq. (10) is as fol-

lows:

ξi =3GT
i

(
GT
i 3Gi

)−
yi . (14)

The symbol “–” denotes the pseudo-inverse of a matrix.

If the non-diagonal elements of Gi are all set to zero,

Eq. (14) can be further simplified as

ak,i =
1

1−
∑

i+j−1∈Si

v2
j,k

∑
i+j−1∈Si

xi+j−1vj,k

1≤ k ≤ L, 1≤ i ≤N −L+ 1. (15)

Supposing that v1,k = v2,k = ·· ·= vL,k = 1/
√
L at the miss-

ing data points, the solution of Eq. (15) will be reduced to

Eq. (6). Therefore, the SSAM approach is a special case of

our ISSA approach. The first several PCs contain most vari-

ance; the element xi+j−1 can be approximately reproduced

with the first several PCs in Eq. (8).

The main difference of our ISSA approach from the SSAM

approach of Schoellhamer (2001) is in calculating the PCs.

We produce the PCs from observed data with Eq. (14) ac-

cording to the power spectrum (eigenvalues) and eigenvec-

tors of the PCs, while Schoellhamer (2001) calculates the

PCs from observed data with Eq. (6) only according to the

eigenvectors and uses the scale factor L/Li to compensate

the missing value. We have pointed out that this scale factor

can be derived from Eq. (15), which is the simplified version

of our ISSA approach, by supposing the missing data points

with the same eigenvector elements. Therefore the perfor-

mance of our ISSA approach is better than SSAM of Schoell-

hamer (2001). The only disadvantage of our method is that it

will cost more computational effort.

3 Performance of ISSA with synthetic time series

The same synthetic time series as in Schoellhamer (2001)

are used to analyse the performance of ISSA compared to

SSAM. The synthetic SSC time series is expressed as
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Figure 1. Periodic signal cs(t) (top panel) and Synthetic time series

(bottom panel).

c(t)= 0.2R(t)cs(t)+ cs(t), (16)

where R(t) is a time series of Gaussian white noise with zero

mean and unit standard deviation; cs(t) is the periodic signal

expressed as

cs(t)= 100− 25cosωst + 25(1− cos2ωst)sinωsnt

+ 25(1+ 0.25(1− cos2ωst)sinωsnt)sinωat. (17)

The periodic signal oscillates about the mean value

100 mg L−1 including the signals with seasonal fre-

quency ωs= 2π/365 day−1, spring/neap angular frequency

ωsn= 2π/14 day−1 and advection angular frequency

ωa= 2π/12.5/24 day−1. The 1 year of synthetic SSC time

series c(t), starting at 1 October with 15 min time step, is

presented at the bottom of Fig. 1, the corresponding periodic

signal cs(t) is shown at the top of Fig. 1.

Although the selection of window length is an important

issue for SSA (Hassani et al., 2012; Hassani and Mehmoud-

vand, 2013), this paper chooses the same window length

(L= 120) as that in Schoellhamer (2001) in order to com-

pare the performance of the proposed method with that of

Schoellhamer. Using the synthetic time series we compute

the lagged correlation matrix and the variances of each mode.

The first four modes contain the periodic components, which

account for 72.3 % of the total variance; in particular, the first

mode contains 50.2 % of the total variance. In order to eval-

uate the accuracies of reconstructed PCs from the time series

with different percentages of missing data, following the ap-

proach of Shen et al. (2014), we compute the relative errors

of the first four modes derived by ISSA and SSAM with the

following expression:

p =
1

N

N∑
i=1

√
(ai − a0)

T (ai − a0)

aT0 a0

× 100%, (18)

where the symbol “T ” denotes the transpose of a matrix, p

denotes relative error, N is the number of repeated exper-

iments, ai is the reconstructed PCs of the ith experiment
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Figure 2. Relative errors of first four PCs (ISSA: red line; SSAM:

black line).
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Figure 3. RMSE of 50 experiments, (1)–(6) represent percentage of

missing data ranging from 10 to 60 % in 10 % increments.

from data missing time series, and a0 denotes the PCs recon-

structed from the time series without missing data. We design

the experiment of missing data by randomly deleting the data

from the synthetic time series. The percentage of deleted data

is from 10 to 60 % with an increase of 10 % each time. Then,

we reconstruct the first four PCs from the data-deleted syn-

thetic time series using both SSAM and ISSA, and repeat the

experiments 50 times. The relative errors of the first four PCs

are presented in Fig. 2, from which we clearly see that the

accuracies of reconstructed PCs by our ISSA are obviously

higher than those by SSAM, especially for the second and

fourth PCs. In the case of 60 % missing data, the accuracy

improvements are up to 19.64, 41.34, 23.27 and 50.30 % for

the first four PCs, respectively.

We reconstruct the time series ĉ(t) using the first four PC

modes and then evaluate the quality of reconstructed series

by examining the error 1ĉ(t)= ĉ(t)− cs(t). For the cases

whose missing data are between 10 to 50 % over the whole

time series, the reconstructed component of the time series

Table 1. Mean absolute reconstruction error and mean root mean

squared error of simulated time series with different percentage of

missing data (mg L−1).

Percentage MARE MRMSE

of missing SSAM ISSA IMP SSAM ISSA IMP

data (%) (%) (%)

0 2.48 2.48 0 2.06 2.06 0 %

10 2.87 2.60 9.41 3.68 3.38 2.21

20 3.26 2.73 16.26 4.19 3.56 15.04

30 3.71 2.90 21.83 4.76 3.78 20.59

40 4.22 3.11 26.30 5.42 4.07 24.91

50 4.57 3.17 30.63 5.89 4.14 29.71

60 5.37 3.52 34.45 6.96 4.60 33.91

SF Bay 3.38 3.08 8.87 2.70 2.29 15.19

example
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Figure 4. Mid-depth SSC time series at San Mateo Bridge during

water year 1997.

is calculated only when the percentage of missing data in

the window size is less than 50 %; while for the cases whose

overall missing data already reach 60 %, 60 % missing data

is allowed in the window size. In Fig. 3, we demonstrate the

root mean squared errors (RMSEs) of each experiment of dif-

ferent percentages of missing data. The RMSE is computed

with 1ĉ(t) as

RMSE=

√√√√ M∑
j=1

1ĉ2
(
tj
)
/M (19)

where M is the number of data points involved in the exper-

iment.

As can be seen from the Fig. 3, the RMSEs of ISSA are

much smaller than those of SSAM for the same experiment

scenarios. In Table 1, we present the mean absolute recon-

struction error (MARE) and mean root mean squared error

(MRMSE) of 50 experiments with different percentages of

missing data.

Obviously, if there are no missing data, the ISSA coincides

with SSAM. If the percentage of missing data increases,

both MARE and MRMSE will become larger. In Table 1, all

the MARE and MRMSE of ISSA are smaller than those of

SSAM. When the percentage of missing data reaches 50 %,

the MARE and MRMSE are 3.17 and 4.14 mg L−1 for ISSA,

and 4.57 and 5.89 mg L−1 for SSAM, respectively. The im-
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Table 2. Maximum, minimum and mean absolute residuals of

SSAM and ISSA.

Residuals (mg L−1) SSAM ISSA

Maximum 145.05 126.61

Minimum −432.20 −227.70

Mean absolute residuals 8.19 8.00

SD 13.48 12.27

proved percentage (IMP) of ISSA with respect to SSAM is

also listed in Table 1. As the amount of missing data in-

creases, the IMPs of both MARE and MRMSE increase as

well. Moreover, when the synthetic time series with the miss-

ing data is same as the real SSC time series of Fig. 4, the

IMPs of MARE and MRMSE are 8.87 and 15.19 %, respec-

tively.

4 Performance of ISSA with real time series

The mid-depth SSC time series at San Mateo Bridge is pre-

sented in Fig. 4, which contains about 61 % missing data.

This time series was reported by Buchanan and Schoell-

hamer (1999) and Buchanan and Ruhl (2000), and analysed

by Schoellhamer (2001) using SSAM. We analyse this time

series using our ISSA with the window size of 30 h (L= 120)

comparing with SSAM. The first 10 modes represent domi-

nant periodic components as shown in Schoellhamer (2001)

which contain 89.1 % of the total variance. Therefore, we re-

construct the time series with the first 10 modes when the

missing data in a window size is less than 50 %.

The residual time series, e.g. the differences of observed

minus reconstructed data, are presented in Fig. 5. The max-

imum, minimum and mean absolute residuals as well as

the SD are presented in Table 2. It is clear that both max-

imum and minimum residuals are significantly reduced by

using ISSA approach. The SD of our ISSA is reduced by

8.6 %. The squared correlation coefficients between the ob-

servations and the reconstructed data from ISSA and SSAM

are 0.9178 and 0.9046, respectively, which reflect that the re-

constructed time series with our ISSA can indeed, to very

large extent, specify the real time series.

5 Conclusions

We have developed the ISSA approach in this paper for pro-

cessing the incomplete time series by using the principle

that a time series can be reproduced using its principal com-

ponents. We prove that the SSAM developed by Schoell-

hamer (2001) is a special case of our ISSA. The perfor-

mances of ISSA and SSAM are demonstrated with a syn-

thetic time series, and the results show that the relative er-

rors of the first four principal components by ISSA are sig-
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Figure 5. Residual series after removing reconstructed signals from

the first 10 modes (top panel: SSAM; bottom panel: ISSA).

nificantly smaller than those by SSAM. As the fraction of

missing data increases, the improvement of the relative er-

ror becomes greater. When the percentage of missing data

reaches 60 %, the improvements of the first four principal

components are up to 19.64, 41.34, 23.27 and 50.30 %, re-

spectively. Moreover, when the missing data account for

60 %, the MARE and MRMSE derived by ISSA are 3.52 and

4.60 mg L−1, and by SSAM are 5.37 and 6.96 mg L−1. The

corresponding improvements of ISSA with respect to SSAM

are 34.45 and 33.91 %. When the missing data of synthetic

time series is the same as the real SSC time series, the im-

provements of MARE and MRMSE are 8.87 and 15.19 %,

respectively. The SD derived from the real SSC time series

at San Mateo Bridge by ISSA and SSAM are 12.27 and

13.48 mg L−1, and the squared correlation coefficients be-

tween the observations and the reconstructed data from ISSA

and SSAM are 0.9178 and 0.9046, respectively. Therefore,

ISSA can indeed, to a great extent, retrieve the informative

signals from the original incomplete time series.

The Supplement related to this article is available online

at doi:10.5194/npg-22-371-2015-supplement.
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