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Abstract. Inversion of the magnetic field in a model of large-

scale α�-dynamo with α-effect with stochastic memory is

under investigation. The model allows us to reproduce the

main features of the geomagnetic field reversals. It was es-

tablished that the polarity intervals in the model are dis-

tributed according to the power law. Model magnetic polar-

ity timescale is fractal. Its dimension is consistent with the

dimension of the real geomagnetic polarity timescale.

1 Introduction

The existence of large-scale magnetic fields of planets, stars

and galaxies is usually attributed to the action of the dynamo

mechanism (Zeldovich et al., 1983). Magnetohydrodynamic

equations are symmetric with respect to the change of sign

of the magnetic field, which leads to a potential reversal in

the dynamo system. These reversals are observed in cosmic

dynamo systems. For example, the reversal of the magnetic

field of the Sun occurs approximately every 11 years (Stix

(1989). We get the information on the geomagnetic field re-

versals from palaeomagnetic records, on the basis of which

the geomagnetic polarity timescale is constructed. The se-

quence of moments of geomagnetic field reversals is a non-

periodic random sequence (Merril et al., 1996). Thus, the sta-

tistical reversals of magnetic fields of the Sun and Earth are

very different. However, concerning geomagnetic reversals,

we mean the transition between stable states of a geomag-

netic dipole, averaged over a few thousands of years (Merril

et al., 1996). Therefore, the difference in the reversals of the

magnetic fields of the Sun and the Earth is the difference in

the processes at absolutely different timescales.

It is known that different scales of geomagnetic polarity

form self-similar fractal structures (Ermushev et al., 1992;

Ivanov, 1993; Pechersky et al., 1997). Intervals between the

reversals (polarity intervals) differ by several orders of mag-

nitude; there are long intervals without reversals, superchrons

(Gaffin, 1989; Merril et al., 1996). A large scatter of the in-

terval lengths does not allow us to use such characteristics as

mean or variance correctly. It is known that the random vari-

ables with the properties such as self-similarity of the set of

realizations, the range, and the infinity of points may be well

described by power law distributions (Sornette, 2006).

Of course, one can not rely on the construction of a geo-

dynamo model, which would fully reproduce the real palaeo-

magnetic scale. It is only possible to get similar statistical

characteristics. Different models of geodynamo allow us to

obtain random sequence reversals, the properties of which

are very different. In some models the solutions are peri-

odic or quasiperiodic (Hejda and Anufriev, 2003; Rikitake,

1965); in others they exhibit fractal properties (Anufriev and

Sokoloff, 1994; Hollerbach et al., 1992).

In mean-field theory the α-effect and turbulent diffusion

are usually assumed to be instantaneous in time and local

in space. However, a proper description of turbulent trans-

port involves a convolution of an integral kernels with the

mean field (Moffat, 1978; Krause and Rädler, 1980). Hori

and Yoshida (1992) showed that the memory effect for mag-

netic Reynolds number Rm&4 strongly affects the dynamo

action. Brandenburg (2009) used the formalism of response

functions and showed that the effect of the integral kernels

can be significant for anisotropic flows.

In this paper, we consider the simple model of a large-scale

α�-dynamo in which there is the perturbation of α-effect of

a non-Markovian random pulse process. Physically, this pro-

cess may be interpreted as the effect of rejected modes of

mean field. According to the authors, non-Markov character

of the process is very important, because it can describe the
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“memory” (hereditarity) in the model in the simplest form

(without convolutions).

The mechanism of α�-dynamo was proposed by Parker

(1955). This kind of dynamo is typical for astrophysical ob-

jects (planets, stars, galactic disks) and suggests differential

rotation of the object and turbulence in the character of mo-

tion of a conducting medium in this object.

The essence of such a dynamo is as follows. During the

initial moment, the existence of a poloidal field of dipole type

is supposed. During the differential rotation, the magnetic

field lines of a highly conducting medium curl around the

axis of rotation; this leads to the appearance of the toroidal

field in the convective zone of a star or a planet liquid core.

To close the cycle, it is necessary to get a new poloidal

field from this toroidal one. It is assumed that this is due

to the breaking of mirror symmetry flows in the convection

zone. Turbulent mirror-asymmetric flow generates effective

the electromotive force in the direction of the toroidal field

(α-effect), which leads to the excitation of a new poloidal

field. The theory of α-effect was developed in Steenbek et

al. (1966) and Steenbek and Krause (1969). A detailed de-

scription of the mean-field theory is given in the works of

Krause and Rädler (1980), Moffat (1978), and Zeldovich et

al. (1983).

Induction equation for the magnetic field in a conducting

medium is the following:

∂B

∂t
=∇ × (v×B)+ νm4B,

∇ ·B = 0, (1)

where v is the velocity field of the medium, and νm is the

magnetic viscosity, which is assumed constant.

If the velocity field is defined, then Eq. (1) is linear and de-

fines the kinematic dynamo problem. However, the magnetic

field affects the flow of a medium by the Lorentz force. The

effect of this force in the equations of motion of the medium

is quadratic in the magnetic field, so in the case of small mag-

netic fields, we can be restricted to kinematic approximation.

The formal criterion of the non-applicability of the kinematic

approximation is the satisfaction of the ratio EK.EB, where

EK and EB are the kinetic energy of the moving medium and

the energy of the magnetic field, respectively.

In this case, it is necessary either to solve Eq. (1) together

with the equations of motion or to enter a modelling ap-

proach, where v is the given functional of B. In any case

the solved equations become nonlinear.

In the mean-field theory the expansion of fields v and B in

the mean U and B and fluctuations u and b are introduced.

We do not assume the smallness of fluctuations. Then from

Eq. (1) we obtain the equation for the mean-field generation

(Zeldovich et al., 1983):

∂B

∂t
=∇ ×

(
U ×B +αB

)
+β4B,

∇ ·B = 0. (2)

Here α and β are, in general, second-rank tensors, depend-

ing on the velocity and magnetic field. The determination of

the form of these curves is the main task of mean-field theory.

Convolution of αB determines the turbulent EMF (α-effect),

and β1B gives the diffusion of the magnetic field, which

consists of molecular and turbulent diffusions.

We will further consider the isotropic case of scalar α and

β; β is assumed to be the constant.

Let theB0 and the u0 be the characteristic value of the field

and the velocity, respectively. α0 is the maximum value of the

α-effect, and L is the linear dimension. We choose for length

scale, timescale, velocity scale, and field scale the value L,

L2/β, u0, and B0 respectively.

Then Eq. (2) takes the dimensionless form

∂B

∂t
= Rm∇ ×

(
U ×B

)
+Rα∇ ×

(
αB

)
+β4B,

∇ ·B = 0, (3)

where Rm = Lu0/β is the magnetic Reynolds number, and

Rα = Lα0/β is the measure of the α-effect.

2 The simplest equations of the large-scale α�-dynamo

In this paper we consider the simplest model of α�-dynamo.

The generation of the magnetic field of the planet can

be described using the α2-dynamo when the toroidal and

poloidal field are generated with α-effect. This dynamo may

work in a situation where the differential rotation is weak or

non-existent. It is known that α2-dynamo can lead to gener-

ation of the axisymmetric field with a dominant dipole struc-

ture. However, the possibility of oscillating solutions asso-

ciated with inversions is problematic (Krause and Rädler,

1980).

In this dynamo the toroidal field is generated from poloidal

by joined α-effect and �-effect. If the intensity of the α-

effect has a much smaller intensity of�-effect, the role of α-

effect in the generation of the toroidal field can be neglected.

For the core of the Earth, there is no single opinion about

the ratio of α-effect and �-effect (Glatzmaier and Roberts,

1995; Anufriev et al., 1997; Schrinner et al., 2007). However,

following Ruzmaikin and Starchenko (1991), we believe that

a strong dominance in the axisymmetric dipole in the mag-

netic field is the result of the predominant role of differential

rotation. In this regard, we completely have neglected the α-

effect in the generation of a toroidal field.

We believe that the spatial structure of the field is sim-

ple and can be described by one-poloidal and one-toroidal
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modes. Thus we consider only the largest-scale structure of

the mean field. This approximation has the form

B = BT (t)bT (r)+BP (t)bP (r) (4)

and does not necessarily imply an axial symmetry.

We also assume that the mean flow U is the toroidal shear

flow. In the simplest case, U is the differential rotation. Then

velocity scale u0 = LG, where G> 0 is the measure of the

differential rotation. If r is the distance to the rotation axis

and the � is the angular velocity, thenG∼ |r∂r�|. Then Rm

is a measure of �-effect; therefore, it is denoted R�.

Then, the evolution of field is determined by the behaviour

of scalar amplitudes BT (t) and BP (t) for which the follow-

ing equations are valid:

dBT

dt
= R�B

P
−BT , (5)

dBP

dt
= RαB

T
−BP . (6)

As mentioned earlier, we have neglected in Eq. (5) the α-

effect. These equations can be obtained from Eqs. (3) and (4)

using the Galerkin method and rescaling t , Rα , and R�. Here

for t with a rescaling factor∼ 1, therefore, timescale remains

the diffusion.

The first part of Eq. (5) describes the�-stage, and the sec-

ond is for the α-stage cycle.

In the assumption of the constancy of R� and Rα , field

generation (i.e. the growth of small fluctuations of B =√
|BT |2+ |BP |2) occurs at Rα >R

−1
� . The field increases

indefinitely at an exponential rate. If Rα <R
−1
� , the field is

attenuated. Limited-largest non-vanishing solution can occur

only if RαR� = 1. Thus, D = RαR� is the dynamo-number.

When D = 1, except for the zero steady-state solution, a lot

of stationary regimes of the form BT = R�B
P appear in

Eq. (5), forming a straight line in an asymptotically stable

phase plane.

Limited nonvanishing solutions of Eq. (2) are obtained by

taking into account the feedback that is the change of the

turbulent flow characteristics by the magnetic field in the re-

sult of the Lorentz force. In the models of Eq. (5) type, this

mechanism is implemented in the form of the prescribed de-

pendence Rα on B. In the simplest case, functional depen-

dencies of the form Rα = f (B(t)) are introduced. Such type

models are known as algebraic quenching models and the α-

effect value depends on the field current value, i.e. a response

to the changes in the field of turbulence instant. The simplest

version of this dependence is given in Zeldovich et al. (1983).

More complex variants, based on the representation of α as

the differences between the kinetic helicity and current helic-

ity, were studied, for example, in Field and Blackman (2002)

and Brandenburg and Sandin (2004).

In the Introduction we have already mentioned that the in-

clusion of non-locality and memory in the dynamo model

can have a significant effect. We mention also the results of

Frick et al. (2006). In this paper the model multi-scale dy-

namo was researched. The equations of mean field dynamo

and the equations of shell model of MHD turbulence were

integrated. In the large-scale part of the model, the authors

used the α2-dynamo. The α-effect values were calculated by

the variables of shell model. As we have already mentioned,

the behaviour of large-scale field was described of two scalar

time-dependent functions. Frick et al. (2006) found that si-

multaneous values of B and α are uncorrelated. Moreover,

if the response of B on the α is fast, the inverse response

occurs with a noticeable delay, and correlation decay is slow.

The authors came to the conclusion that the response ofRα to

B has dynamic character and may not be described in terms

of algebraic quenching. In our opinion, the slow decay of the

correlation is an indication of memory in this model.

We introduce memory in the Eq. (5) model too. This can

be done in two ways. In the first case,Rα is not a function, but

a functional of B (convolution of integral kernel and B). In

the second case, Rα is a function of B and a non-Markovian

randomly process ξ(t). Physically, this process may be inter-

preted as the effect of rejected modes of fields U and B. The

dependence of Rα on previous values B will be implemented

through the stochastic memory of the process ξ(t). These two

variants of hereditarity will be further called the dynamic and

random hereditarity, respectively. Of course, combination of

these two types of memory is also possible.

Further, the simplest variant of the algebraic quenching

will be used as the original form of the feedback

Rα(t)= R
−1
�

[
1+ ε

(
1−B2(t)

)]
, (7)

where ε > 0 is the model parameter, which determines the

efficiency of the feedback. A similar form of the dependence

was considered in Zeldovich et al. (1983).

For the model in Eqs. (5) and (7), there are three stationary

points. First and foremost is the zero point, which is unsta-

ble, which provides generation of the field. In addition, there

are rest points of the form BT =±R�
(
1+R2

�

)−1/2
, and

BP =±
(
1+R2

�

)−1/2
. It is easy to show that these points

are asymptotically stable. Thus, the model in Eqs. (5) and

(7) gives field generation with the output to the character-

istic value of B = 1. In this case, R� determines the ratio

of characteristic values of the toroidal and poloidal compo-

nents. Therefore, during model calculations we will always

assume that R� = 1.
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Introduction of hereditarity of dynamic type requires the

following modification of Eq. (7):

Rα = R
−1
�

1+ ε

1−
1

H(t)

t∫
0

h(t − τ)B2(τ )dτ

 ,
H(t)=

t∫
0

h(τ)dτ, (8)

where h(t)≥ 0 defines the “memory” of the system.

The model in Eqs. (5) and (8) has the same equilibrium

points as Eqs. (5) and (7), and the computational experiments

have shown that the nature of their stability remains the same.

The asymptotic stability of the points BT =

±R�
(
1+R2

�

)−1/2
, BP =±

(
1+R2

�

)−1/2
for this heredi-

tarity model gives no possibility to reversals.

We return to Eq. (5) with the constants Rα and R� and

consider their solutions more carefully. When RαR� > 1,

the solution increases indefinitely without oscillations, and

the characteristic time of the increase is
(
−1+

√
RαR�

)−1
.

When 0≤ RαR� < 1, the solution decays without oscilla-

tions for the characteristic time of ∼ 1. If RαR� < 0, the

solution oscillates with the frequency
√
|RαR�| and decays

for the characteristic time of ∼ 1.

Supposing now that Rα is a variable, we can say that neg-

ative peaks of this value are required for the occurrence of

reversals, since during negative Rα in the linear case oscilla-

tions appear. They must be strong enough so that the oscil-

lation period is less than the characteristic decay time, and

rare enough so that a feedback mechanism recovers the field,

decreasing during the reversal.

3 Model with random hereditarity

Peaks in the value of Rα , necessary for the formation of re-

versals, may be obtained by the introduction of a random

hereditarity into the model in the following form:

Rα(t)= R
−1
�

[
1+ ε

(
1−B2(t)

)
+ ξ(t)

]
, (9)

where ξ(t) is some non-Markov random pulse process with

zero mean value.

We define the random process ξ(t) by the following for-

mula:

ξ(t)=
∑
θk≤t

ηkexp {−λ(t − θk)} . (10)

Here θk is the increasing sequence of random instants of

exponential pulses, ηk is random pulse amplitude, and the

constant λ−1 > 0 determines the pulse width.

We assume that the time intervals between pulses τk =

θk − θk−1 are independent and identically distributed with

the probability density function (pdf) pτ (t). Amplitudes ηk

are assumed to be Gaussian random variables that are inde-

pendent between each other and with the times of the pulses

having zero mean and variance σ 2.

The important element of this model is the law of distribu-

tion of pτ (t). If it is exponential, the pulse sequence forms

a Poisson processes of events, and the process ξ(t) turns out

to be a Markov one. Any other kind of law pτ (t) leads to the

fact that the waiting time of the next pulse will depend on the

time from the previous pulse. Thus, ξ(t) will turn out to be a

non-Markov process.

We assume that the law pτ (t) has a power asymptotic

dependence ∼ 1/tγ ,γ > 1. We will give a number of argu-

ments in favour of this assumption.

Random intervals τk may be considered as the result of

the joint effect of a large number of independent factors. If

we suppose the additive character of the joint effect, then,

according to the generalized central limit theorem, pτ (t)

should refer to the class of stable laws (Samorodnitsky and

Taqqu, 1994). All such laws, except for the Gaussian one,

have the power asymptotic dependence. Note that for stable

power laws 1< γ < 3.

In addition, just the power distributions have the property

of self-similarity, manifesting themselves in the reversals of

geomagnetic field. Finally, the power of statistics is gener-

ally characteristic of turbulent phenomena, which include α-

effect.

The explicit form of the pdf for the unilateral power stable

laws is unknown, except for the distribution of Levi–Smirnov

(γ = 3/2). It causes difficulties in obtaining their computer

implementations.

Therefore, in the calculations we used the following ex-

pression for the pdf:

pτ (t)=
γ − 1

(1+ t)γ
, t ≥ 0, 1< γ < 3. (11)

This form of the distribution law allows us to obtain the

random variables τk easily.

The accepted distribution coincides with the stable one

only asymptotically; therefore for the distribution of polarity

intervals, we will further be interested only in its asymptotics.

4 Simulation results

In order to analyse the effect of pulses in ξ(t) on the field,

we first made some calculations in the model of Eqs. (5),

(9) and (10) for a case of non-random and regular process

ξ(t), which is a sequence of pulses with alternating signs of

the type ±Ae−t ,A≥ 0. The interval between the pulses was

50 time units; the value ε = 0.5. The initial conditions were

given as BT (0)= 0 and BP (0)= 10−2. The results of these

calculations are shown in Fig. 1.

It is seen that positive pulses cause a sharp rise in the field,

but they are not accompanied by reversals. Field response on

the negative peaks depends on the magnitude of these peaks.
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Figure 1. The response of the poloidal component BP (t) on the regular sequence of alternating pulses with different amplitudes A.

We see that for the small pulses the poloidal component does

not change the sign (A= 2); BP (t) changes the sign for a

short time and returns to its original value (A= 4.2). Such

behaviour of the field is well known in the palaeomagnetic

data and is called excursion (Merril et al., 1996). Then there

is the reversal (A= 10). During the subsequent growth, the

reversal is replaced by field excursion (A= 15) again. Then

excursion combination appears with the subsequent reversal

(A= 30), followed by two consecutive excursion (A= 50).

The trend shown in Fig. 1 continues further. For example,

when A= 100 the combination of two excursions and a re-

versal appears. However, such sharp peaks in Rα are difficult

to admit in a real system. It is also clear that there are critical

values of the amplitude A, separating the different types of

field reversal. In particular, the critical value of A, separating

the cases A= 4.2 and A= 10 from Fig. 1, is 4.455± 0.005.

We also see that for the chosen value of ε = 0.5 the time of

tB field transfer to a steady state is about 30 units. In general,

as the numerical experiments showed, this dependence has a

power law of tB ∼ ε
−0.9.

Now consider the results of simulation in the model of

Eqs. (5), (9) and (11) with random process ξ(t).

In the calculations, the values of the parameters R� = 1

and λ= 1 were applied. Standard deviation of random am-

plitudes ηk of pulses in Eq. (9) is σ = 6.6. For this value of

σ the reversal in the result of negative pulse in ξ(t) occurs

with the probability of 0.5. The initial values for the field

components were chosen as BT (0)= 0 and BP (0)= 10−2.

We suppose the characteristic size of the Earth is L=

3.48× 106 m (the radius of the liquid core) and the turbulent

magnetic diffusion is β = 10m2/s. Then our dimensionless

time 5×104 corresponds to the length of the longest scale of

geomagnetic polarity (Pechersky, 1997) in 1700 Myr. There-

fore, calculations in the model were carried out up to t =

5× 104.

Figure 2 shows an example of a segment of one of the mag-

netic field realizations and the toroidal and poloidal compo-

nents for ε = 5.

We calculated the different values of the parameters ε and

γ . For ε parameter, the values 0.1, 0.5, 1.0, and 5.0 were

used; for γ , the values from 1.1 to 2.9 with 0.2 step were

used. For each parameter combination, a histogram of the in-

terval lengths of polarity and the fractal dimension of polarity

model scale were estimated.
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|BT |2+ |BP |2 (log scale).

Table 1. The values δ in the distribution of polarity intervals ν ∼

1/ζ δ and correlation coefficients ρ between logν and log(1/ζ ). In

the format δ||ρ.

γ ε

0.1 0.5 1.0 5.0

2.1 1.05 || 0.97 0.97 || 0.99 1.04 || 0.98 1.12 || 0.92

2.3 1.11 || 0.94 1.28 || 0.98 1.36 || 0.97 1.49 || 0.99

2.5 1.53 || 0.99 1.63 || 0.99 1.51 || 0.99 1.93 || 0.98

2.7 1.93 || 0.98 1.67 || 0.98 1.91 || 0.99 2.04 || 0.99

2.9 2.22 || 0.99 2.12 || 0.98 1.91 || 0.99 3.53 || 0.99

First, the obtained distribution of interval lengths of polar-

ity ζ is considered. They are illustrated in Fig. 3.

It is clear that we may speak about the power asymptotic

dependence of distribution of these intervals ∼ 1/ζ δ . More

specifically, the power type for ε = 0.1 and ε = 0.5 appears

from ζ = 10, and for ε = 1 and ε = 5, from ζ = 30. Also

there is a deviation from the power law at large ζ (more then

103). They correspond to a single event. Therefore, these de-

viations may be explained by insufficient data.

We have calculated the value of the index δ on the straight

section of the chart shown in Fig. 3 The obtained values and

the correlation coefficients corresponding to the straight sec-

tions are shown in Table 1.

According to these values, it is easy to show that, for dif-

ferent ε, the correlation coefficient between γ and δ is more

than 0.92. It means that γ and δ are linear, the coefficients of

which depend on the parameter ε.

Integrability conditions of pdf for ζ imply that δ > 1.

These values are obtained from the above-mentioned linear

relations for γ > 2.1.

Also note that Fig. 3 does not show the distributions for

γ < 1. This is due to the fact that for such values of γ the

rectilinear sections, corresponding to the power laws, do not

occur on the graphs.

It may be concluded that the degree distribution of polarity

interval occurs in the model at γ > 2.1.

Now consider the fractal dimension of the derived polar-

ity scales. In the calculation, we followed the procedure pro-

posed in Pechersky et al. (1997) for real geomagnetic polarity

timescale.

The technique is as follows. On the scale of T length, some

interval of 1 length is distinguished. N(1) is the number of

intervals of 1 length on this scale, on which at least one re-

versal occurs. If 1� T and the reversal are distributed uni-

formly, then N(1)∼1−1. If 1� T and reversal are dis-

tributed unevenly, then we may expect the dependence of the

form N(1)∼1−d . In this case, d is the Hausdorff dimen-

sion of the scale reversals and for 0< d < 1 the reversal se-

ries is fractal.

We made calculations in the model for the above men-

tioned values of γ and ε. The value of 1 decreased in the

geometric progression from 5000 (1� 5× 104) to ∼ 10.

Graphs of the obtained dependencies are illustrated in

Fig. 4. The dependence of N(1) accurately follows the

power law. The figure legend shows the values of the Haus-
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Figure 3. Distribution of relative frequencies ν of polarity intervals with the length ζ .
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Figure 4. Number of N(1) intervals of 1 length, which contain at least one inversion.

dorff dimension d . It is clear that, in all the cases, 0< d < 1,

and the reversal series is fractal, although there is a tendency

to achieve the boundary of the fractal region when γ in-

creases.

Note that, according to the data of Pechersky et al.

(1997), Hausdorff dimensions for real geomagnetic polarity

timescales for 170 Myr, 560 Myr, and 1700 Myr are 0.88,

0.83, and 0.87, respectively.

5 Conclusions

The geomagnetic polarity scale is characterized by the ab-

sence of standard reversal wait time and by the self-similarity

on various timescales. The values of interval cover several

magnitude orders; the polarity scale is chaotic (Gaffin, 1989;

Ermushev et al., 1992; Ivanov, 1993; Merril et al., 1996;

Pechersky et al., 1997). One of the problems of the geody-

namo theory is the explanation of this phenomenon and re-
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producing a series with similar statistical properties in nu-

merical simulation.

Some stochastic properties of palaeomagnetic scale are

obtained by dynamical systems of low dimension (Shmitt et

al., 2001; Pétrélis et al., 2009; Rikitake, 1965; Melbourne

et al., 2001), models of mean field with noisy α-effect

(Giesecke et al., 2005; Stefani and Gerbeth, 2005; Stefani

et al., 2007), and direct number simulation (Takahashi et al.,

2005; Wicht, 2005; Glatzmaier and Roberts, 1995; Kutzner

and Christensen, 2002).

Direct simulation has shown that the structure of the mag-

netic field and its reversals may vary depending on the values

of the relevant dimensionless numbers (Kutzner and Chris-

tensen, 2002; Busse and Simitev, 2006). It can be concluded

that each inversion of the simulation has its own unique char-

acter, which can differ greatly in various aspects to the others

(Coe et al., 2000).

The above-mentioned models greatly differ in total simu-

lation time and reproduce reversals with exponentially dis-

tributed of polarity intervals. In the new preprint Wicht and

Meduri (2015) described results of an extremely long sim-

ulation in different models to study the statistical behaviour

of dipole variations and reversals. The distribution of polar-

ity intervals is also obtained by the exponential. They also

mentioned slower decreasing tails, but their statistical signif-

icance is very low.

Our main task was to simulate power law distribution of

the polarity intervals and self-similarity polarity scale.

We use a simple model of a dynamo, where the behaviour

of the toroidal and poloidal modes are described by two

scalar amplitudes. This allowed for multiple simulation of

the geomagnetic polarity scale for different values of the pa-

rameters. The total simulation time was always 5×104 times

of turbulent diffusion, which corresponds ∼ 1.5× 109 years.

The model uses an algebraic quenching and random per-

turbations in α-effect. The pulse process with a random in-

tensity of the pulses and a random waiting time realize these

perturbations. This perturbation is supposed to be interpreted

as the influence of rejected modes of mean fields.

The power law was applied as the distribution law of the

pulse waiting time. The reason for this was the power-law

character of stable distributions, limiting distributions in the

scheme of summation of independent random variables with

slowly decaying pdf.

The power law distribution of waiting time of the pulse

leads to the fact that perturbing processes is non-Markovian.

Therefore, the model has simplest form of memory, through

the memory of non-Markov perturbations.

It was discovered that the power law of polarity interval

distribution is asymptotically realized in this model, if the

exponent γ in the distribution of the pulse waiting time is not

less than 2.1. The exponent δ in the distribution of polarity

interval is linearly related to the γ . The coefficients of this

linear relation depend on the effectiveness of the feedback in

α-effect.

It is shown that the model scale of geomagnetic polarity

is a fractal set with Hausdorff dimension of &0.7. It is con-

sistent with the actual Hausdorff dimension of geomagnetic

scale according to the paper by Pechersky et al. (1997).

Thus, it was established that the proposed model large-

scale dynamo allows us to reproduce the main features of the

process of geomagnetic field reversals.
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