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Abstract. An analytical weakly nonlinear model of the

Benjamin–Feir instability of a Stokes wave on nonuniform

unidirectional current is presented. The model describes evo-

lution of a Stokes wave and its two main sidebands propa-

gating on a slowly varying steady current. In contrast to the

models based on versions of the cubic Schrödinger equation,

the current variations could be strong, which allows us to

examine the blockage and consider substantial variations of

the wave numbers and frequencies of interacting waves. The

spatial scale of the current variation is assumed to have the

same order as the spatial scale of the Benjamin–Feir (BF)

instability. The model includes wave action conservation law

and nonlinear dispersion relation for each of the wave’s triad.

The effect of nonuniform current, apart from linear transfor-

mation, is in the detuning of the resonant interactions, which

strongly affects the nonlinear evolution of the system.

The modulation instability of Stokes waves in nonuniform

moving media has special properties. Interaction with coun-

tercurrent accelerates the growth of sideband modes on a

short spatial scale. An increase in initial wave steepness in-

tensifies the wave energy exchange accompanied by wave

breaking dissipation, resulting in asymmetry of sideband

modes and a frequency downshift with an energy transfer

jump to the lower sideband mode, and depresses the higher

sideband and carrier wave. Nonlinear waves may even over-

pass the blocking barrier produced by strong adverse current.

The frequency downshift of the energy peak is permanent

and the system does not revert to its initial state. We find rea-

sonable correspondence between the results of model simu-

lations and available experimental results for wave interac-

tion with blocking opposing current. Large transient or freak

waves with amplitude and steepness several times those of

normal waves may form during temporal nonlinear focus-

ing of the waves accompanied by energy income from suf-

ficiently strong opposing current. We employ the model for

the estimation of the maximum amplification of wave am-

plitudes as a function of opposing current value and com-

pare the result obtained with recently published experimen-

tal results and modeling results obtained with the nonlinear

Schrödinger equation.

1 Introduction

The problem of the interaction of a nonlinear wave with

slowly varying current remains an enormous challenge in

physical oceanography. In spite of numerous papers devoted

to the analysis of the phenomenon, some of the relatively

strong effects still await a clear description. The phenomenon

can be considered the discrete evolution of the spectrum of

the surface wave under the influence of nonuniform adverse

current. Experiments conducted by Chavla and Kirby (1998,

2002) and Ma et al. (2010) revealed that sufficiently steep

surface waves overpass the barrier of strong opposing cur-

rent on the lower resonant Benjamin–Feir sideband. These

reports highlight that the frequency step of a discrete down-

shift coincides with the frequency step of modulation insta-

bility; i.e., after some distance of wave run, the maximum

of the wave spectrum shifts in frequency to the lower side-

band. The intensive exchange of wave energy produces a

peak spectrum transfer jump, which is accompanied by es-

sential wave breaking dissipation. The spectral characteris-

tics of the initially narrowband nonlinear surface wave packet
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dramatically change and the spectral width is increased by

dispersion induced by the strong nonuniform current.

This paper presents a weakly nonlinear model of the

Benjamin–Feir (BF) instability on nonuniform slowly vary-

ing current.

The stationary nonlinear Stokes wave is unstable in re-

sponse to perturbation of two small neighboring sidebands.

The initial exponential growth of the two dominant sidebands

at the expense of the primary wave gives rise to an intriguing

Fermi–Pasta–Ulam recurring phenomenon of the initial state

of wave trains. This phenomenon is characterized by a series

of modulation–demodulation cycles in which initially uni-

form wave trains become modulated and then demodulated

until they are again uniform (Lake and Yuen, 1978). How-

ever, when the initial slope is sufficiently steep, the longtime

evolution of the wave train is different. The evolving wave

trains experience strong modulations followed by demodu-

lation, but the dominant component is the component at the

frequency of the lower sideband of the original carrier. This is

the temporary frequency downshift phenomenon. In system-

atic well-controlled experiments, Tulin and Waseda (1999)

analyzed the effect of wave breaking on downshifting, high-

frequency discretized energy, and the generation of continu-

ous spectra. Experimental data clearly show that the active

breaking process increases the permanent frequency down-

shift in the latter stages of wave propagation.

The BF instability of Stokes waves and its physical appli-

cations have been studied in depth over the last few decades;

a long but incomplete list of research is Lo and Mei (1985),

Duin (1999), Landrini et al., 1998; Osborne et al. (2000),

Trulsen et al. (2000), Janssen (2003), Segur et al. (2005),

Shemer et al. (2002), Zakharov et al. (2006), Bridges and

Dias (2007), Hwung, Chiang and Hsiao (2007), Chiang and

Hwung (2010), Shemer (2010), and Hwung et al. (2011). The

latter stages of one cycle of the modulation process have been

much less investigated, and many physical phenomena that

have been observed experimentally still require extended the-

oretical analysis.

Modulation instability and the nonlinear interactions of

waves are strongly affected by variable horizontal currents.

Here, we face another fundamental problem of the mechan-

ics of water waves–interactions with slowly varying current.

The effect of opposing current on waves is a problem of prac-

tical importance at tidal inlets and river mouths.

Even linear refraction of waves on currents can affect the

wave field structure in terms of the direction and magnitude

of waves. Waves propagating against an opposing current

may have reduced wavelength and increased wave height and

steepness.

If the opposing current is sufficiently strong, then the abso-

lute group wave velocity in the stationary frame will become

zero, resulting in the waves being blocked. This is the most

intriguing phenomenon in the problem of wave–current in-

teraction (Phillips, 1977). The kinematic condition for wave

blocking can be written as

Cg+U(X)→ 0,

where Cg is the intrinsic group velocity of waves in a mov-

ing frame and U(X) is slowly varying horizontal current,

with X being the horizontal coordinate in the direction of

wave propagation. Waves propagating against opposing cur-

rent are stopped if the magnitude of the current, in the direc-

tion of wave propagation, exceeds the group velocity of the

oncoming waves. This characteristic feature of wave block-

ing has drawn the interest of oceanographers and coastal en-

gineers alike for its ability to be used as signature patterns

of underlying large-scale motion (e.g., fresh water plumes

and internal waves) and for the navigational hazard it poses.

Smith (1975), Peregrine (1976), and Lavrenov (1998) ana-

lyzed refraction/reflection around a blocking region and ob-

tained a uniformly valid linearized solution, including a short

reflecting wave.

The linear modulation model has a few serious limitations.

The most important is that the model predicts the blocking

point according to the linear dispersion relation and can-

not account for nonlinear dispersive effects. Amplitude dis-

persion effects can considerably alter the location of wave

blocking predicted by linear theory, and nonlinear processes

can adversely affect the dynamics of the wave field beyond

the blocking point.

Donato et al. (1999), Stocker and Peregrine (1999), and

Moreira and Peregrine (2012) conducted fully nonlinear

computations to analyze the behavior of a train of water

waves in deep water when meeting nonuniform currents, es-

pecially in the region where linear solutions become singu-

lar. The authors employed spatially periodic domains in nu-

merical study and showed that adverse currents induce wave

steepening and breaking. A strong increase in wave steep-

ness is observed within the blocking region, leading to wave

breaking, while wave amplitudes decrease beyond this re-

gion. The nonlinear wave properties reveal that at least some

of the wave energy that builds up within the blocking re-

gion can be released in the form of partial reflection (which

applies to very gentle waves) and wave breaking (even for

small-amplitude waves).

The enhanced nonlinear nature of sideband instabili-

ties in the presence of strong opposing current has also

been confirmed by experimental observations. Chavla and

Kirbi (2002) experimentally showed that the blockage phe-

nomenon strongly depends on the initial wave steepness; i.e.,

waves are blocked when the initial slope is small (ak < 0.16,

where a and k are the wave amplitude and wave number, re-

spectively). When the slope is sufficiently steep (ak > 0.22),

the behavior of waves is principally different; i.e., waves are

blocked only partly and frequency-downshifted waves over-

pass the blocking barrier. The lower sideband mode may

dramatically increase; i.e., the amplitude rises several times

within a distance of a few wavelengths.
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Wave propagation against nonuniform opposing currents

was recently investigated in experiments conducted by Ma et

al. (2010). Results confirm that opposing current not only in-

creases the wave steepness but also shortens the wave energy

transfer time and accelerates the development of sideband in-

stability. A frequency downshift, even for very small initial

steepness, was identified. Because of the frequency down-

shift, waves are more stable and have the potential to grow

higher and propagate more quickly. The ultimate frequency

downshift increases with an increase in initial steepness.

The wave modulation instability with coexisting variable

current is commonly described theoretically by employing

different forms of the modified nonlinear Schrödinger (NLS)

equation. Gerber (1987) used the variational principle to de-

rive a cubic Schrödinger equation for a nonuniform medium,

limiting to potential theory in one horizontal dimension.

Stocker and Peregrine (1999) extended the modified nonlin-

ear NLS equation of Dysthe (1979) to include a prescribed

potential current. Hjelmervik and Trulsen (2009) derived an

NLS equation that includes waves and currents in two hori-

zontal dimensions allowing weak horizontal shear. The hor-

izontal current velocities are assumed just small enough to

avoid collinear blocking and reflection of the waves.

Even though the frequency downshift and other nonlin-

ear phenomena were observed in previous experimental stud-

ies on wave–current interactions, the theoretical description

of the modulation instability of waves on opposing cur-

rents is not yet complete. An interaction of an initially rel-

atively steep wave train with strong current nevertheless may

abruptly transfer energy between the resonantly interacting

harmonics. Such wave phenomena are beyond the applicabil-

ity of NLS-type models and await a theoretical description.

Another topic of practical interest in wave–current inter-

action problems is the appearance of large transient or freak

waves with great amplitude and steepness owing to the fo-

cusing mechanism (e.g., Peregrine, 1976; Lavrenov, 1998;

White and Fornberg, 1998; Kharif and Pelinovsky, 2006;

Janssen and Herbers, 2009; Ruban, 2012; Osborne, 2001).

Both nonlinear instability and refractive focusing have been

identified as mechanisms for extreme-wave generation and

these processes are generally concomitant in oceans and po-

tentially act together to create giant waves.

Toffoli et al. (2013) showed experimentally that an initially

stable surface wave can become modulationally unstable and

even produce freak or giant waves when meeting negative

horizontal current. Onorato et al. (2011) suggested an equa-

tion for predicting the maximum amplitude Amax during the

wave evolution of currents in deep water. Their numerical re-

sults revealed that the maximum amplitude of the freak wave

depends on U/Cg, where U is the velocity of the current and

Cg is the group velocity of the wave packet.

Recently, Ma et al. (2013) experimentally investigated the

maximum amplification of the amplitude of a wave on oppos-

ing current having variable strength at an intermediate water

depth. They mentioned that theoretical values of amplifica-

tion (Onorato et al., 2011; Toffoli et al., 2013) are essentially

overestimated, probably owing to the effects of finite depth

and wave breaking.

To address the above-mentioned problems, we present the

model of BF instability in the presence of horizontal slowly

varying current of variable strength. We analyze the interac-

tions of a nonlinear surface wave with sufficiently strong op-

posing blocking current and the frequency downshifting phe-

nomenon. The maximum amplification of the amplitude of

surface waves is estimated in dependence on relative strength

of opposing current. We take into account the dissipation ef-

fects due to wave breaking by utilizing the Tulin wave break-

ing model (Tulin, 1996; Hwung et al., 2011). The results of

model simulations are compared with available experimental

results and theoretical estimations.

We employ simplified 3-wave model in the presence of

significant opposite current. In the meanwhile, the evolution

of the wave spectrum in the absence of breaking includes

energy exchange between the carrier wave and two main res-

onant sidebands and spreading of the energy to higher fre-

quencies. Inclusion of higher frequency free waves in the

Zakharov, modified Schrödinger or Dysthe equations is cru-

cial, since the asymmetry of the lower and the upper side-

band amplitudes at peak modulation in non-breaking case

results from that. The temporal spectral downshift has been

predicted by computations made by the Dysthe equations (Lo

and Mei, 1985; Trulsen and Dysthe, 1990; Hara and Mei,

1991; Dias and Kharif, 1999) for a much higher number of

excited waves, the same prediction was also made by simu-

lations of fully nonlinear equations (Tanaka, 1990; Slunyaev

and Shrira, 2013). Such a conclusion can be made regarding

to developing of modulation instability in calm water.

Nevertheless, the experimental results of Chavla and

Kirby (2002) and Ma et al. (2010) on the modulation in-

stability under the influence of adverse current show that

energy spectrum is mostly concentrated in the main triad

of waves and high-frequency discretized energy spread-

ing is depressed due to the short-wave blocking by the

strong enough adverse current. Higher side band modes

have also prevailed energy loss during wave breaking (Tulin

and Waseda, 1999). That is why we hope that our simpli-

fied model still has potentiality to adequately describe some

prominent features of wave dynamics on the adverse current.

The paper consists of five sections. General modulation

equations are derived in Sect. 2. Section 3 is devoted to sta-

tionary nondissipative solutions for adverse and following

nonuniform currents and various initial steepness of the sur-

face wave train. We calculate the maximum amplitude am-

plification in dependence from relative strength of opposing

current and compared it with available experimental and the-

oretical results (Toffoli et al., 2013; Ma et al., 2013). The

interaction of steep surface waves with strong adverse cur-

rent under wave-blocking conditions including wave break-

ing effects is presented in Sect. 4. Modeling results are com-

pared with the results of a series of experiments conducted
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by Chavla and Kirby (2002) and Ma et al. (2010). Section 5

summarizes our final conclusions and discussion.

2 Modulation equations for one-dimensional

interaction

The first set of complete equations that describe short waves

propagating over nonuniform currents of much larger scale

were given by Longuet-Higgins and Stewart (1964). Wave

energy is not conserved, and the concept of “radiation stress”

was introduced to describe the average momentum flux in

terms that govern the interchange of momentum with the cur-

rent. In this model, it is also justifiable to neglect the effect

of momentum transfer on the form of the surface current be-

cause it is an effect of the highest order (Stocker and Pere-

grine, 1999).

We construct a model of the current effect on the modu-

lation instability of a nonlinear Stokes wave by making the

following assumptions:

i. Surface waves and current propagate along a common

x-direction.

ii. By ac, kc, and ωc we denote the characteristic ampli-

tude, wave number, and angular frequency of the sur-

face waves. We use a small conventional average wave

steepness parameter; ε = ackc� 1.

iii. The characteristic spatial scale used in developing the

BF instability of the Stokes wave is lc/ε
2, where lc =

2π/kc is the typical wavelength of surface waves (Ben-

jamin and Feir, 1967). We consider slowly varying cur-

rent U(x) with horizontal length scale L of the same

order: L=O(lc/ε
2).

iv. It is assumed that the U(x) dependence is due to the

inhomogeneity of the bottom profile h(x), which is suf-

ficiently deep so that the deep-water regime for surface

waves is ensured; i.e., exp(−2kch)� 1. The character-

istic current length L at which the function U(x) varies

noticeably is assumed to be much larger than the depth

of the fluid, h(x)� L. Under these conditions, shallow

water model for the current description may be adopted:

U(x)h(x) is assumed to be approximately constant, and

the vertical component of the steady velocity field on the

surface z= η(x) can be neglected. Correspondingly, it

follows from the Bernoulli time-independent equation

that the surface displacement induced by the current is

small (Ruban, 2012). Such a situation can occur, for ex-

ample, near river mouths or in tidal/ebb currents.

In all following equations, variables and sizes are scaled ac-

cording to the above assumptions, and made dimensionless

using the characteristic length and timescales of the wave

field.

The dimensionless set of equations for potential motion of

an ideal incompressible deep-depth fluid with a free surface

in the presence of current U(x)is given by the Laplace equa-

tion

ϕxx +ϕzz = 0,−h(x) < z < εη(x, t). (1)

The boundary conditions at the free surface are

−η = ϕt +Uϕx + ε
1

2
(ϕ2
x +ϕ

2
z ),z= εη(x, t), (2)

ηt +Uηx + εϕxηx = ϕz,z= εη(x, t), (3)

and those at the bottom are

ϕ→ 0,z=−h(x). (4)

Here, ϕ(x,z, t) is the velocity potential, η(x, t) is the free-

surface displacement, z is the vertical coordinate directed up-

ward and t is time.

The variables are normalized as

ϕ = ac

√
g

kc

ϕ′ = ε

√
g

k3
c

ϕ′,η = acη
′
=
ε

kc

η′,

t =
1
√
gkc

t ′,z=
z′

kc

,x =
x′

kc

,

U(Kx)= U ′(K/kcx
′)cp = U

′(ε2x′)cp,

(5)

where g is acceleration due to gravity, K = 2π/L, and cp

is the phase speed of the carrier wave, but the primes are

omitted in Eqs. (1)–(4). Note that normalization (5) explicitly

specifies the principal scales of sought functions ϕ and η.

The weakly nonlinear surface wave train is described by

a solution to Eqs. (1)–(4), expanded into a Stokes series in

terms of ε.

We will analyze the surface wave train of a particular form,

which describes the development of modulation instability in

the presence of current.

For calm water, the initially constant nonlinear Stokes

wave with amplitude, wave number and frequency (a1, k1,

σ1) is unstable in response to a perturbation in the form of a

pair of small waves with similar frequencies and wavenum-

bers: a superharmonic wave (a2, k2 = k1+1k, σ2 = σ1+1σ )

and subharmonic wave (a0, k0 = k1−1k, σ0 = σ1−1σ ). For

most unstable modes, 1σ/σ1 = ε and 1k/k1 = 2ε, where

ε = a1k1 is the initial steepness of the Stokes wave (Ben-

jamin and Feir, 1967). This is the BF or modulation instabil-

ity of the Stokes wave. Kinematic resonance conditions for

waves in the presence of slowly varying current are the same,

with one important particularity that intrinsic wave numbers

and frequencies of waves in the moving frame are variable

and modulated by the current.

We analyze the problem assuming the wave motion phase

θi = θi(x, t) exists for each wave in the presence of a slowly
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varying current U(x), and we define the local wave number

ki and absolute observed frequency ωi as

ki = (θi)x,ωi = σi + kiU =−(θi)t ,

i = 0,1,2.
(6)

For stationary modulation, the intrinsic frequency σi and

wave number ki for each wave slowly change in the presence

of variable current, but the resonance condition

2ω1 ≈ ω0+ω2 (7)

remains valid throughout the region of wave propagation ow-

ing to the stationary value of the absolute frequency for each

harmonic.

The main kinematic wave parameters (σi,ki) together with

the first-order velocity potential amplitudes, ϕi , are consid-

ered further as slowly varying functions with typical scale,

O(ε−1), longer than the primary wavelength and period

(Whitham, 1974):

ϕi = ϕi(εx,εt),ki = ki(εx,εt),σi = σi(εx,εt). (8)

On this basis, we attempt to recover the effects of slowly

varying current and nonlinear wave dispersion (having the

same order) additional to the Stokes term with the order of

wave steepness squared.

The solution to the problem, uniformly valid for O(ε3), is

found by a two-scale expansion with the differentiation:

∂

∂t
=−

∑
(σi + kiU)

∂

∂θi
+ ε

∂

∂T
,

∂

∂x
=

∑
ki
∂

∂θi
+ ε

∂

∂X
,T = εt,X = εx.

(9)

Substitution of the wave velocity potential in its linear form,

ϕ =

i=2∑
i=0

ϕie
kiz sinθi, (10)

satisfies the Laplace Eq. (1) to the first order of ε owing to Eq.

(8) and gives the additional terms of the second orderO(ε2):

ε(2kiϕiX + kiXϕi + 2kikiXϕiz)e
kiz cosθi + . . .= 0.

To satisfy the Laplace equation to second order, Yuen and

Lake (1982), Shugan and Voliak (1998), and Hwung et

al. (2009) suggested an additional phase-shifted term with a

linear and quadratic z correction in the representation of the

potential function ϕ:

ϕ =

i=2∑
i=0

(
ϕie

kiz sinθi − ε

(
ϕiXz+

kiXϕi

2
z2

)
ekiz cosθi

)
+ . . .. (11)

Exponential decaying of the wave’s amplitude with increas-

ing −z is accompanied by a second-order subsurface jet ow-

ing to slow horizontal variations in the wave number and am-

plitude of the wave packet.

The free-surface displacement η = η(x, t) is also sought

as an asymptotic series:

η = η0+ εη1+ ε
2η2+ . . ., (12)

where η0, η1, and η2 are O(1) functions to be determined.

Using Eqs. (10) and (11) subject to the dynamic boundary

condition (Eq. 2), we find the components of the free-surface

displacement:

η0 =

i=2∑
i=0

σiϕi cosθi, (13)

η1 =−

i=2∑
i=0

(ϕiT sinθi +UϕiX sinθi)

+

i=2∑
i=0

ϕ2
i k

2
i cos[2θi]/2 (14)

+

i=2∑
i=0

j=2∑
j 6=i

(σi − σj )
2σiσjϕiϕj cos[θi − θj ]/2

+

i=2∑
i=0

j=2∑
j 6=i

(σi + σj )
2σiσjϕiϕj cos[θi + θj ]/2,

−8η2 =

∑2
i=0ϕiσ

2
i (3ϕ

2
i σ

5
i +

∑
j 6=i

(2σ 2
j + σ

2
i )

(2σj − σi))cos[θi]−

ϕ0ϕ
2
1σ0σ

2
1 (σ

2
0 + 2σ 2

1 )(σ
2
0 − 4σ0σ1+ 2σ 2

1 )
cos[θ2+φ]−

ϕ2
1ϕ2σ

2
1 σ2(σ

2
2 + 2σ 2

1 )(σ
2
2 − 4σ2σ1+ 2σ 2

1 )
cos[θ0+φ]−

2ϕ0ϕ1ϕ2σ0σ1σ2(σ
2
0 + σ

2
1 + σ

2
2 )

(σ 2
0 − 2σ0σ1+ σ

2
1 − 2σ1σ2+ σ

2
2 )cos[θ1−φ]


, (15)

where φ is a slowly varying phase-shift difference: φ = 2θ1−

θ0− θ2.

Only the resonance terms for all three wave modes are in-

cluded in the third-order displacement (Eq. 15).

Substitution of the velocity potential (Eq. 11) and dis-

placement (Eqs. 13–15) into the kinematics boundary con-

dition (Eq. 3) gives, after much routine algebra, relationships

between the modulation characteristics of the resonant wave:

σ 2
0
= k0+ ε

2σ 3
0
(ϕ2

0
σ 5

0
+ϕ2

1
σ 3

1
(2σ 2

1
− σ0σ1+ σ

2
0
)

+ϕ2
2
σ 3

2
(2σ 2

2
− σ0σ2+ σ

2
0
))+

ε2ϕ2
1ϕ2σ

3
1 σ

2
2

ϕ0
(2σ 3

1
− 2σ 2

1
σ2+ 2σ1σ

2
2
− σ 3

2
)cos[φ];

σ 2
2
= k2+ ε

2σ 3
2
(ϕ2

2
σ 5

2
+ϕ2

0
σ 3

0
(2σ 2

0
− σ0σ2+ σ

2
2
)

+ϕ2
1
σ 3

1
(2σ 2

1
− σ1σ2+ σ

2
2
))+

ε2ϕ2
1ϕ0σ

3
1 σ

2
0

ϕ2
(2σ 3

1
− 2σ0σ

2
1
+ 2σ 2

0
σ1− σ

3
0
)cos[φ];

σ 2
1
= k1+ ε

2σ 3
1
(ϕ2

1
σ 5

1
+ϕ2

0
σ 3

0
(2σ 2

0
− σ0σ1+ σ

2
1
)

+ϕ2
2
σ 3

2
(σ 2

1
− σ1σ2+ 2σ 2

2
))+

ε2ϕ0ϕ2σ0σ
2
1
σ2(σ

4
0
− σ 3

0
σ1− σ0σ1(σ1− σ2)

2
+

σ 2
0
(σ 2

1
− σ1σ2+ 2σ 2

2
)+ σ2(−σ

3
1
+ σ 2

1
σ2− σ1σ

2
2
+ σ 3

2
))

cos[φ],

(16)
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
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(17)

The formulas (16) represent the “intrinsic” dispersion rela-

tions of the nonlinear wave for each of the harmonics in the

presence of current, U(X). Equation (17) yields the known

wave action law with the energy exchange terms on the right

side of the equations.

The obtained system of Eqs. (16) and (17) in the absence

of current is similar to classical Zakharov equations for dis-

crete wave interactions (Stiassnie and Shemer, 2005; Mei et

al., 2009); it has a strong symmetry with respect to indexes

zero and two. The main property of the derived modulation

equations is the variability of interaction coefficients in the

presence of nonuniform current.

Modulation Eqs. (16) and (17) are closed by the equations

of wave phase conservation that follow from Eq. (6) as the

compatibility condition (Phillips, 1977):

kiT + (σi + kiU)X = 0,

i = 0,1,2.
(18)

The derived set of nine modulation Eqs. (16)–(18) form the

complete system for nine unknown functions (ki,σi,ϕi, i =

0,1,2).

3 Nondissipative stationary wave modulations

Let us analyze the stationary wave solutions of the problem in

Eqs. (16)–(18) supposing that all unknown functions depend

on the single coordinate X. Then, after integrating Eq. (18),

we have the conservation law for the absolute frequency of

each wave:

σi + kiU = ωi = const,

i = 0,1,2.
(19)

The wave action laws for resonant components take the form
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(20)

To perform the qualitative analysis of the stationary prob-

lem, we suggest the law of wave action conservation flux in a

slowly moving media as analogue of the three Manley–Rowe

dependent integrals:


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2
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φ2
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These integrals follow from the system (Eq. 20) with accept-

able accuracy O(ε4)for the stationary regime of modulation.

The second and third relations here clearly show that the

wave action flux of the side bands can grow up at the expense

of the main carrier wave flux. The last relationship manifests

the almost identical behavior of the main sidebands for the

problem of their generation due to the Benjamin–Feir insta-

bility.

Typical behavior of wave instability in the absence of cur-

rent is presented in Fig. 1a for a Stokes wave having ini-

tial steepness ε = 0.1. Two initially negligible side bands

(II) and (III) exponentially grow at the expense of the main

Stokes wave (I), and after saturation, the wave system re-

verts to its initial state, which is the Fermi–Pasta–Ulam re-

currence phenomenon. One can see here also the characteris-

tic spatial scale for the developing of modulation instability

O(1/(kcε
2)).

The development of modulation instability on negative

variable current U = U0Sech
[
ε2(x− 200)

]
,U0 =−0.1, is

presented in Fig. 1b. The modulation instability develops

far more quickly on opposing current and reaches deeper

stages of modulation. The energetic process is described as

follows. The basic Stokes wave (I) absorbs energy from the

counter current U and its steepness increases. This in turn

accelerates the wave instability; there is a corresponding in-

crease in energy flow to the most unstable sideband modes

(II) and (III). Wave refraction by current is acting simultane-

ously with nonlinear wave interactions. The linear modula-

tion model (Gargett and Hughes, 1972; Lewis et al., 1974)

assumes the independent variations of harmonics with cur-

rent and gives much larger maximum amplitude of the carrier

wave (IV). It just adsorbs energy from the adverse current.

The region of the most developed instability corresponds

to the spatial location of the maximum of the negative cur-

rent (Fig. 1c). As one can see from Fig. 1b, c, the ini-

tial stage of wave-current interaction is characterized by the

dominant process absorbing of energy by waves where all

three waves grow simultaneously. Initial growth of side band

modes (Fig. 1c) leads to a deeper modulated regime. Increas-

ing of wave steepness in turn accelerates instability and fi-

nally these two dominate processes alternate. Correspond-
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Figure 1. (a) BF instability without current. (b) and (c) modula-

tion of surface waves by adverse currentU = U0Sech
[
ε2(x− x0)

]
,

(U0 =−0.15); (b) x0 = 200 and (c) x0 = 400. (d) phase differ-

ence function ϕ[X] = 2θ1[X] − θ0[X] − θ2[X], θ1[0] = 0;θ0[0] =

θ2[0] = −π/4; (e) modulation of surface waves by adverse cur-

rent U = U0Sech
[
2ε2(x− x0)

]
, (U0 =−0.2), (f) modulation in-

stability for following current (U0 = 0.16,x0 = 400). (g) and (h)

functions of wave amplitude and wave number, respectively, for

U0 =−0.2. (I), (II), (III) amplitude envelopes of the carrier, super-

harmonic and subharmonic waves, respectively. (IV) linear solution

for the carrier envelope. The initial steepness of the carrier wave

is ε = 0.1, side band initial amplitudes are equal to 0.1ε. (i) Rela-

tive distortion of the linear dispersion relation for the case (g), (I) –

carrier, (II) – higher side band.

ingly, the triggering of this complicated process essentially

depends on the displacement of the current maximum.

Quasi-resonance interaction of waves in the presence of

variable current causes some crucial questions about its de-

tuning properties. Absolute frequencies for the stationary

modulation satisfy the resonance conditions (Eq. 7) for the

entire region of interaction. But the local wave numbers and

intrinsic frequencies are substantially variable due to current

effects and nonlinearity. Maybe the almost resonance condi-

tions are totally destroyed in this case due to large detuning

(Shrira and Slunyaev, 2014)?

To clarify this property we present the behavior of phase-

shift difference function ϕ[X] = 2θ1− θ0− θ2 (Fig. 1d) cor-

responding to waves modulation shown in Fig. 1c. Intensity

of nonlinear energy transfer is mostly defined by this func-

tion together with wave amplitudes (see Eqs. 17, 20). The re-

sults look rather surprising – several strong phase jumps take

place with corresponding changes of the wave energy flux

direction. Nevertheless, we see an intensive energy exchange

in the entire interaction zone. Quasi-resonant conditions are

satisfied locally in space with a relatively small detuning fac-

tor. Qualitatively similar behavior of phase-shift function we

found also for other regimes of wave modulation.

The typical scenario of wave interaction with co-

propagating current is presented in Fig. 1f. The modulation

instability is depressed by the following current U(X) > 0

and the resonant sideband modes develop at almost two

time’s longer distance in comparison with the evolution with-

out current.

Regimes of modulation presented in Fig. 1a–c demonstrate

the strictly symmetrical behavior with respect to the current

peak and wave train returns to its initial structure after inter-

action with current. The modulation equations permit sym-

metrical solutions for the symmetrical current function, but,

outside of interaction zone the nonlinear periodic waves are

defined by the boundary conditions and the constant Stokes

wave is only one of such possibilities. The symmetrical be-

havior is typical for a sufficiently slow-varying current. We

present in Fig. 1e the example of asymmetrical wave modu-

lation for the same wave initial characteristics as for Fig. 1c

and 2 times shorter space scale of the current. At the exit of

wave-current interaction zone we mention three waves sys-

tem with comparable amplitudes and periodic energy trans-

fer.

The increasing strength of the opposing flow (U0 =−0.2)

results in deeper modulation of waves and more frequent mu-

tual oscillations of the amplitudes (Fig. 1g). There are essen-

tial oscillations of wave-number functions of the sideband

modes (II) and (III) (Fig. 1h) owing to the nonlinear dis-

persion properties of waves. We mention also that the wave

number of the carrier wave in the linear model (IV) is much

higher than that in the nonlinear model (I). The width of

the wave-number spectrum of the wave train in the nonlin-

ear model locally increases to almost twice that of the initial

width. To give an idea about the strength of nonlinearity, we

present in Fig. 1i the relative distortion of the linear disper-

sion relation for different modes. As one can see the effect

of nonlinearity for the carrier (at maximum is about 10 %)

is much less compared to side bands (at peak is more than

30 %). The main impact of nonlinearity comes from the am-

plitude Stokes dispersion.

To estimate the possibility of generating large transient

waves, we employ the model and calculate the maximum
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Figure 2. Nondimensional maximum wave amplitude as a func-

tion of −U/Cg, where Cg is the group velocity of the carrier

wave and E1/2 is the local standard deviation of the wave enve-

lope. (a) experiments conducted by Toffoli et al. (2013) for car-

rier wave of period T = 0.8s (wavelength λ∼= 1 m), initial steep-

ness k1a1 = 0.063, and frequency difference 1ω/ω1 = 1/11, ini-

tial amplitudes of side bands equal to 0.25 times the amplitude of

the carrier wave. Solid dots show measurements made using a flume

at Tokyo University and squares show results obtained at Plymouth

University. Line (I) shows the prediction made using Eq. (2) (Tof-

foli et al., 2013) while line (II) shows the model prediction. (b) case

T11 in Ma et al. (2013) for carrier-wave frequency ω1 = 1 Hz, ini-

tial steepness k1a1 = 0.115, initial amplitudes of side bands equal

to 0.05 times the amplitude of the carrier wave and frequency dif-

ference 1ω/ω1 = 0.44a1k1. Solid dots show measurements. Line

(I) shows the model prediction, while line (II) shows the prediction

made using Eq. (2) (Toffoli et al., 2013).

amplification of the amplitudes of surface waves generated

in still water and then undergo a current quickly raised to

a constant value −U . The boundary conditions for the un-

perturbed waves were taken from experiments conducted by

Toffoli et al. (2013) and Ma et al. (2013). Results of the cal-

culations are presented in Fig. 2a and b.

Our simulations confirm that initially stable waves in ex-

periments of Toffoli et al. (2013) undergo a modulationally

unstable process and wave amplification in the presence of

adverse current. Maximum amplification reasonably corre-

sponds to results of experiments at the Tokyo University

Tank for moderate strength of current. Maximum of nonlin-

ear focusing in dependence on the value of current is weaker

compare to the model of Toffoli et al. (2013).

Experiments of Ma et al. (2013) (Fig. 2b) show that the de-

velopment of the modulational instability for a gentle wave

and relatively weak adverse current (U/Cg ∼−0.1) (see the

first experimental point) is limited due to the presence of dis-

sipation. Our model simulations are in good agreement with

the experimental values for the moderate values of adverse

current −U/Cg ∼ 0.2− 0.4. Results of Toffoli et al. (2013)

notably overestimate the maximum of wave amplification.

4 Wave propagation under the blocking conditions of

strong adverse current

Stokes waves with sufficiently high initial steepness ε under

the impact of strong blocking adverse current (U(X) <−Cg)

will inevitably reach the breaking threshold for the steepness

of water waves. We employ the adjusted weakly nonlinear

dissipative model of Tulin (1996), Tulin and Li (1999) and

Hwung et al. (2011) to describe the effect of breaking on the

dynamics of the water wave.

Dual non-conservative evolution equations for wave en-

ergy density E = 1/2gη2 and wave momentum M = E/c =

E/(ω/k), or, correspondingly, for energy E and celerity c

were rigorously derived (Tulin and Li, 1999) using the varia-

tional approach: a modified Hamiltonian principle involving

the modulating wave Lagrangian plus a work function repre-

senting the nonconservative effects of wave breaking. It was

also shown that these dual equations correspond to the com-

plex NLS equation, as modified by the non-conservative ef-

fects, i.e. to energy and dispersion equations. Wave breaking

effects were characterized by the energy dissipation rate Db

and momentum loss rate Mb.

An analysis of fetch laws parameterized by Tulin (1996)

reveals that the rate of energy loss Db due to breaking is of

fourth order of the wave amplitude:

Db/E = ωDη
2k2,

andD =O(10−1)is a small empirical constant. Momentum-

loss rateMbwas quantified in terms of energy dissipation rate

Dband parameterized in such a way that

cMb = (1+ γ )Db,

where γ is empirical coefficient, which is varied in the range

γ = 0.4−0.7. Strong plunging breaking corresponds to γ =

0.4 and weak to γ = 0.7. In all our numerical simulations

was chosen γ = 0.4,D = 0.1.

Tulin and Waseda (1999), through consideration of a mul-

timodal wave system evolving from a carrier wave and two

side bands, showed that energy downshifting during breaking

is determined by the balance between momentum and dissi-

pation losses, suitably parameterized by the parameter γ :

∂

∂t
(E0−E2)= γDb/(δω/ω),

where E0,E2 – energy densities of the sub and super har-

monics, respectively. The parametric value γ was found to

be positive γ > 0 and providing the long term downshifting.

The sink of energy Db and momentum Mb due to wave

breaking leads to additional terms at the right sides of the

wave energy Eq. (20) and dispersive Eq. (16) for each of the

waves. Tulin (1996) suggested using sink terms along the en-

tire path of wave interaction with the wind. The wave dissi-

pation function for the adjusted model (Hwung et al., 2011)

includes also the wave steepness threshold function

H

[∣∣ε∑σiφiki
∣∣

AS
− 1

]
,

where H is the Heaviside unit step function and AS is the

threshold value of the combined wave steepness ε
∑
σiφiki ,
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is applied to calculate energy and momentum losses in high

steepness zones. In our computations the threshold AS =

0.32 was chosen.

The dispersion relations (16) and wave energy laws (20)

including break dissipation take the form
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where χ =
∣∣ε∑σiφiki

∣∣/AS − 1, and
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Wave breaking leads to permanent (not temporal) frequency

downshifting at a rate controlled by breaking process. A cru-

cial aspect here is the cooperation of dissipation and near-

neighbor energy transfer in the discretized spectrum acting

together.

The numerical simulations for initially high steepness

waves (ε = 0.25) propagation with wave breaking dissipa-

tion is presented in Fig. 3a–c. We calculate the amplitudes

of surface waves on linearly increasing opposing current

U(x)=−U0x with different strengthU0. The most unsta-

ble regime was tested for frequency space 1ω±/ω1 ∼ ε, ini-

tial side bands amplitudes equal to 0.05 times the ampli-

tude of the carrier wave and most effective initial phases

θ1(0)= 0,θ0(0)= θ2(0)=−π/4.

A very weak opposite current U0 = 2.5 10−4 (Fig. 3a) has

a pure impact on wave behavior: it finally results in almost

bichromatic wave train with two dominant waves: carrier and

lower side band. Frequency downshift here is not clearly

seen. Two times stronger current case with U0 = 5× 10−4 is

presented in Fig. 3b. We note some tendency to final energy

downshift to the lower side band. Really strong permanent

downshift with total domination of the lower side band is

seen for two times more strong current U0 = 10−3 (Fig. 3c).

We also performed numerical simulations for the bound-

ary conditions and the form of the variable current ob-

tained in two series of experiments conducted by Chavla and

Kirby (2002) and Ma et al. (2010).

Data for the wave blocking regime in experiments con-

ducted by Chavla and Kirby (2002) are taken from their Test

6 (Fig. 11). The experimental results of test 6 and our nu-

merical simulation results are compared in Fig. 4. A surface

wave with initially high steepness (A1k1 = 0.296) and period

T = 1.2 s meets adverse current with increasing amplitude.

The model simulations results have distinctive features

that agree reasonably well with the results of experiments:

– initial symmetrical growth of the main sidebands with

frequencies f0 = 0.688 Hz, f2 = 0.978 Hz at distances

up to k1x <−2;

– asymmetrical growth of sidebands beginning at (k1x ≈

−2) and downshifting of energy to the lower sideband;

– energy transfer at very short spatial distances and sev-

eral increases in the lower sideband amplitude just on a

half meter length k1x ∈ (−2,0);

– a depressed higher frequency band and primary wave;

– an almost permanent increase in the lowest subhar-

monic along the tank;

– sharp accumulation of energy by the lowest subhar-

monic wave during interaction with increasing opposing

current;

– final permanent downshifting of the wave energy.

Modulation evolution of breaking waves in experiments of

Ma et al. (2010) for the most intriguing case 3 are presented

in Fig. 5 together with the results of our numerical compu-

tations. A primary wave with period T = 1s and steepness

A1k1 = 0.18 meets linearly increasing opposing current that
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Figure 3. Modulation of surface waves by the adverse current U = U0x. (a) U0 =−2.5 10−4, (b) U0 =−5 10−4, (c) U0 =−10−3. (I), (II),

(III) – amplitude envelopes of the carrier, subharmonic and superharmonic waves, respectively. Initial wave steepness ε = 0.25, side bands

amplitudes equal to 0.05 times the amplitude of the carrier.

Figure 4. Dashed curves show the amplitudes of the waves for pri-

mary (Pr), lower (Lo) and upper (Up) sidebands obtained experi-

mentally by Chavla and Kirby (2002). The solid lines (A1,A0,A2)

are wave amplitudes calculated in modeling. (U −U0)/C is the

no-dimensional variable current, where C is the initial phase

speed of the carrier wave, U0 =−0.32m/s;k1 = 4.71/m,C =

1.44m/s,T = 1.2s.

Figure 5. Dashed curves show amplitudes of the waves for pri-

mary (Pr), lower (Lo) and upper (Up) sidebands obtained from

experiments conducted by Ma et al. (2010). The solid lines

(A1,A0,A2) are the wave amplitudes calculated in modeling. (U−

U0)/(4C) shows the no-dimensional variable current, where C is

the initial phase speed of the primary wave, U0 =−0.25m/s;k1 =

4.1/m,C = 1.56m/s,T = 1s.

finally exceeds the threshold to be a linear blocking barrier

for the primary wave U(x) <−1/4C. In experiments, side-

band frequencies arose ubiquitously from the background

noise of the flume. In numerical simulations, the sidebands

were slightly seeded at frequencies corresponding to the most

unstable modes. The wave-breaking region in this experi-

mental case ranged from k1x = 52 to k1x = 72. The lower

sideband amplitude grew with increasing distance at the ex-

pense of the primary wave, while there was little change in

the higher sideband energy. There was an effective frequency

downshift following initial breaking (k1x = 56). The model-

ing results agree reasonably well with the experimental data.

5 Conclusions

The evolution of a Stokes wave and its two main sidebands

on a slowly varying unidirectional steady current gives rise

to modulation instability with special properties. Interac-

tion with countercurrent accelerates the growth of sideband

modes on much shorter spatial scales. In contrast, wave insta-

bility on the following current is sharply depressed. Ampli-

tudes and wave numbers of all waves vary enormously in the

presence of strong adverse current. The increasing strength

of the opposing flow results in deeper modulation of waves

and more frequent mutual oscillations of the waves ampli-

tudes.

Large transient or freak waves with amplitude and steep-

ness several times larger than those of normal waves may

form during temporal nonlinear focusing of waves accom-

panied by energy income from sufficiently strong opposing

current. The amplitude of a rough wave strongly depends on

the ratio of the current velocity to group velocity.

Interaction of initially steep waves with the strong block-

ing adverse current results in intensive energy exchange be-

tween components and energy downshifting to the lower

sideband mode accompanied by active breaking. A more sta-

ble long wave with lower frequency can overpass the block-

ing barrier and accumulate almost all the wave energy of the

packet. The frequency downshift of the energy peak is per-

manent and the system does not revert to its initial state.

The model simulations satisfactorily agree with available

experimental data on the instability of waves on blocking ad-

verse current and the generation of rough waves.
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