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Abstract. Data assimilation transfers information from

an observed system to a physically based model sys-

tem with state variables x(t). The observations are typ-

ically noisy, the model has errors, and the initial state

x(t0) is uncertain: the data assimilation is statistical. One

can ask about expected values of functions 〈G(X)〉 on

the path X={x(t0), . . .,x(tm)} of the model state through

the observation window tn={t0, . . ., tm}. The conditional

(on the measurements) probability distribution P(X)=

exp[−A0(X)] determines these expected values. Variational

methods using saddle points of the “action” A0(X), known

as 4DVar (Talagrand and Courtier, 1987; Evensen, 2009), are

utilized for estimating 〈G(X)〉. In a path integral formula-

tion of statistical data assimilation, we consider variational

approximations in a realization of the action where measure-

ment errors and model errors are Gaussian. We (a) discuss an

annealing method for locating the path X0 giving a consis-

tent minimum of the action A0(X
0), (b) consider the explicit

role of the number of measurements at each tn in determining

A0(X
0), and (c) identify a parameter regime for the scale of

model errors, which allows X0 to give a precise estimate of

〈G(X0)〉 with computable, small higher-order corrections.

1 Introduction

In a broad spectrum of scientific fields, transferring the in-

formation contained in L observed data time series yl(tn);

l= 1, . . . , L; n= 0, . . . , m to a physically based model of

the processes producing those observations allows the esti-

mation of unknown parameters and unobserved states of the

model within an observation window {t0, . . ., tm}. As a sam-

ple of these fields, we note applications in meteorology (Tala-

grand and Courtier, 1987; Evensen, 2009; Lorenc and Payne,

2007), geochemistry (Eibern and Schmidt, 1999), fluid dy-

namics (Zadeh, 2008) and plasma physics (Mechhoud et al. ,

2013), among many others.

The conditional probability distribution

P(X)= exp[−A0(X)] allows evaluation of expected

values of physically interesting functions G(X) along the

path. P(X) is conditioned on the measurements yl(tn);

l= 1, . . . , L; n= 0, . . . , m. These are L-dimensional, while

the model state is D-dimensional; it is usually the case that

D�L. Data assimilation seeks to use the information in

y(tn) to estimate unknown parameters in the model and

unobserved states of the model. If this is accomplished,

one uses prediction for t > tm to examine the validity of the

model.

The action A0(X) contains terms giving a measurement’s

influence on P(X), terms propagating the model between

the measurement times tn, and a term − log[P(x(0))] repre-

senting the uncertainty in the initial state (Abarbanel, 2013).

We discuss the familiar case where additive measurement er-

rors are independent at each tn and Gaussian with covari-

ance R−1
m (l, l′, t); l, l′= 1, . . . , L. The model is a physi-

cal differential equation, discretized in space and time and

satisfying the D-dimensional stochastic discrete time map

xa(n+ 1)= fa(x(n))+R
−1/2
f (a, b)ηb(n); a, b= 1, . . . , D

with iid Gaussian noise error ηa(n)∼N (0, 1). We takeRm(l,

l′, n)=Rm(n)δl,l′ and Rf (a, b)=Rf δa,b. Rm(n) is zero ex-

cept near observation times tn.
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With these conditions, the action takes a familiar form:

A0(X)=

m∑
n=0

Rm(n)

2

L∑
l=1

[
xl(n)− yl(n)

]2
+
Rf

2

m−1∑
n=0

D∑
a=1

[
xa(n+ 1)− fa(x(n))

]2
− log[P(x(0))]. (1)

The conditional expected value 〈G(X)〉 of a function

G(X) on the path X={x(t0), . . ., x(tm)} is given as

〈G(X)〉 =

∫
dXG(X)exp[−A0(X)]∫

dX exp[−A0(X)]
. (2)

One interesting functionG(X) is X itself, whose expected

value gives us the average path over the measurement win-

dow [t0, tm]. Estimates of the parameters and P(x(tm)) per-

mit prediction for t > tm; in this window, one compares ob-

servations and predictions using model output with a user-

selected metric. No information is passed to the model in the

prediction window. Importantly, good estimation of observed

state variables (a “good fit”) is not sufficient to produce confi-

dence in the quality of the model; good prediction is critical.

To approximate the integral 〈G(X)〉, we follow the station-

ary path method of Laplace (Laplace, 1774) and seek saddle

points in path space Xq labeled by q = 0, 1 . . . satisfying

∂A0(X)/∂Xα = 0. The index α is a label for the state and

time α={a, n}. To determine their importance in evaluat-

ing the integral, Eq. (2) paths are sorted by increasing action

levels A0(X
q): A0(X

0)≤A0(X
1)≤ ·· ·.

2 Evaluating 〈G(X)〉

We take the the usual data assimilation technique (Talagrand

and Courtier, 1987; Evensen, 2009; Lorenc and Payne, 2007)

several steps further by

1. showing how to find a consistent path X0 for the mini-

mum action level using an annealing method,

2. demonstrating the importance of the number of mea-

surements L at each observation time tn, and

3. explaining how to make systematic perturbation correc-

tions to 〈G(X0)〉, i.e., G(X0) evaluated on the mini-

mum action level path.

For nonlinear problems of interest, there may be many

paths Xq ; q = 0, 1, . . . satisfying the saddle point condition.

To assess their contributions to 〈G(X)〉, we expand A0(X)

in the neighborhood of each Xq as (note that all variables are

notated in Table 2)

A0(X)= A0

(
Xq
)
+
(
X−Xq

)
α1
γ 2
α1α2

(
Xq
)(
X−Xq

)
α2

+

∑
r=3

A(r)(Xq)α1...αr

r!

(
X−Xq

)
α1
. . .
(
X−Xq

)
αr
. (3)

There is an implied sum over all paired Greek indices αj . A

sum over all terms with comparable action levelA0(X
q) then

gives an approximation to 〈G(X)〉.

Changing variables to Uα = γαβ(X
q ) (X−Xq)β leads to

a contribution to the numerator of 〈G(X)〉 in Eq. (2) from

each Xq

exp
[
−A0 (X

q)
]

detγ (Xq)

∫
dUexp

(
−U2
−V

(
Xq
))

[
G
(
Xq
)
+W

(
Xq
)]

(4)

where

V
(
Xq
)
=

∑
r=3

A(r)(Xq)α1...αr

r!

(
γ
(
Xq
)−1

U
)
α1

. . .
(
γ
(
Xq
)−1

U
)
αr
,

and

W
(
Xq
)
=

∑
k=1

G(k)(Xq)α1...αk

k!

(
γ
(
Xq
)−1

U
)
α1

. . .
(
γ
(
Xq
)−1

U
)
αk
.

The contributions to the denominator of Eq. (2) are identi-

cal to Eq. (4), with the factor [G(Xq)+W(Xq)] replaced by

unity. We sum over the contribution of each Xq to evaluate

〈G(X)〉.

If the lowest action level A0(X
0) is much smaller than all

others, then exp[−A0(X
0)]� exp[−A0(X

q 6=0)] and its con-

tribution to 〈G(X)〉 totally dominates the integral. We have

then that

〈G(X)〉 =

∫
dUexp

(
−U2
−V

(
X0
))[
G
(
X0
)
+W

(
X0
)]∫

dUexp
(
−U2−V

(
X0
)] , (5)

plus exponentially small corrections from the action levels

associated with other saddle paths Xq 6=0.

3 Annealing to find a consistent minimum action level

A0(X
0)

We now turn to an annealing method to find the path

X0 where exp[−A0(X
0)]� exp[−A0(X

q 6=0)]. Within this

method, we first examine the importance of the number L of

measurements at each observation time tn. We then present

an argument that, in the integral Eq. (4), contributions to

〈G(X)〉 from the terms V (Xq), W(Xq) behave as inverse

powers of Rf as Rf /Rm becomes large. This would leave
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us with 〈G(X)〉≈G(X0) with corrections that are a power

series in R−1
f . The implication is that all statistical data as-

similation questions, as Rf /Rm becomes large, can be well

approximated by the contribution of the path X0 with the

lowest action level A0(X
0) along with corrections one can

evaluate via standard perturbation theory. Variations about

〈G(X0)〉 would be small and computable.

The term in the action expressing uncertainty in the ini-

tial model state x(0), P(x(0)), is often written assum-

ing Gaussian variation about some base state xbase, so

− log[P(x(0)] ∝ (x(0)− xbase)
2 Rbase/2, and this has the

form of the measurement term evaluated at n= 0. We incor-

porate this expression into the term with coefficientRm in the

action and no longer display it. This term, often called a prior,

is also seen at the initial condition for the time evolution of

the conditional probability distribution P(X).

3.1 Annealing details

The annealing method starts with the observation (Quinn,

2010) that the equation for the saddle points Xq simplifies

at Rf = 0. The action at Rf = 0 has no information about

the model, and relies solely on the measurements. The saddle

point solution is xl(n)= yl(n); l= 1, 2, . . . ,L for all observa-

tion times. The other (D−L) components of the model state

vector are undetermined, and the solution is quite degenerate.

As we increase Rf , the action levels split, and, depending on

Rm, Rf , L and the precise form of the dynamical vector field

f (x), there will be 1, 2, . . . saddle points of A0(X). The sad-

dle points of interest are local minima.

For any Rf > 0, the search for saddle points of the action

requires an unconstrained numerical optimization problem

to be solved: minimize A0(X). This is 4DVar in its “weak”

formulation (Talagrand and Courtier, 1987; Evensen, 2009).

The methods we have utilized for performing this numerical

optimization range from Newton and quasi-Newton methods

(Press et al., 2012) to more sophisticated interior point meth-

ods (Waëchter , 2002). Each search for saddle paths requires

an initial guess X(0) that is then iterated via the algorithm to

produce X(1), then X(2), and continuing on to produce a final

path X(final) for each value of Rf .

We begin the annealing process by choosing the initialRf ,

denoted Rf 0, as very small, but nonzero; indeed, if Rf 0 was

chosen to be vanishing, the set of optimal paths would be

all paths whose measured components match the data, and

whose unmeasured components are entirely unconstrained.

Such a solution is infinitely degenerate and gives no more

insight than the data themselves. Therefore, we begin the

search at some Rf 0� 1 with the first L(m+ 1) components

of X(0) taken as the observations y(tn); n= 0, 1, . . . , m.

The remaining components of X(0) are chosen from a uni-

form distribution reflecting the dynamical range of the un-

measured state variables.

Because the search algorithm is an iterative process with

potentially many basins of attraction, it is not evident which

minimum or saddle point we will hit in this initial optimiza-

tion. Accordingly, we actually start with NI copies of this

procedure, making NI independent, with initial choices of

X(0;r); r = 1, 2, . . . , NI at Rf 0; in other words, we initi-

ate many such annealing procedures in parallel. These NI
choices differ in the unmeasured components of the path,

independently drawn from a uniform distribution over the

range of each variable.

In the next step of the annealing process, the value of

Rf is increased to Rf 0 ξ where ξ > 1. Using as our initial

paths the final paths X(final;r) from the previous optimiza-

tion with Rf =Rf 0, we perform the numerical optimiza-

tion procedure once again, independently for each of the NI
paths. This results in a new set of NI saddle paths X(final;r);

r = 1, 2, . . . , NI at Rf =Rf 0 ξ .

This process is repeated as many times as desired, increas-

ing Rf from one iteration to the next by a power of ξ . We use

the NI final paths from each value of Rf as the initial paths

for the next value of Rf . The output is a set of NI paths and

action values for each value of β = 0, 1, . . . , βmax, and the

action level for each of the NI final paths is plotted for each

Rf . Specific examples of this will be presented below.

All of these optimizations, for each r and each β, is a

4DVar calculation for which we have used various algorithms

(Press et al., 2012; Waëchter , 2002). In a sense, we can think

of this as an ensemble version of 4DVar, with the important

aspect that we perform NI calculations of 4DVar at each β.

As Rf /Rm grows large, the errors in the model dimin-

ish relative to the measurement errors and impose high-

precision x(n+ 1)≈f (x(n)) on the model dynamics. The

noise in the measurement has been taken to be GaussianN (0,

σ 2), so the measurement error term in the action satisfies

a χ2 distribution (NIST Handbook of Statistical Methods ,

2012) with mean Rm σ
2(m+ 1)L/2 and standard deviation

Rm σ
2
√
(m + 1)L/2. We note that this observation has been

made by Bennett (2002) when the weak form of 4DVar, here

using the action as the objective function, results in accurate

representation of the dynamics.

Using properties of the χ2 distribution, the action level for

large Rf approximately approaches a lowest value

A0

(
X0
)
→

Rmσ
2

2
L(m+ 1)

[
1±

1
√
(m+ 1)L/2

]
. (6)

σ 2 is the noise level in yl(n) and (m+ 1) is the number of

measurement times tn. This provides a consistency condi-

tion on the identification of the path X0 by giving a con-

sistent minimum action value A0(X
0). If the action levels

revealed by our annealing procedure do not give this result

for A0(X
0), it is a sign that the data are inconsistent with the

model.

At the beginning of the annealing procedure when

Rf =Rf 0, there was a degeneracy in the action values. As

Rf increases, this degeneracy is broken and the action levels

split. If the action level A0(X
0) is substantially smaller than
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the action level on the next saddle path A0(X
0)�A0(X

1),

all expected values 〈G(X)〉 are given by G(X0), and correc-

tions due to fluctuations about that path. The contribution to

the expected values of the path integral for 〈G(X)〉 from X1

with the next action level is exponentially smaller, of order

exp[−(A0(X
1)−A0(X

0))].

The annealing procedure discussed above is different from

standard simulated annealing (Aguiar e Oliviera et al., 2012).

We call this annealing because varying Rf is similar to vary-

ing a temperature in a statistical physics problem where Rf
is inversely proportional to the temperature. At high tempera-

tures, small Rf , the dynamics among the degrees of freedom

xa(n) is essentially irrelevant, and we have a universal solu-

tion where the observed degrees of freedom match the obser-

vations. As the temperature is decreased, the dynamics plays

a more and more significant role, and allowed paths “freeze”

out. Action levels play the role of energy levels in statistical

physics, and as the action is positive definite, the paths are

directly analogous to instantons in the Euclidian field theory

represented by A0(X) (Zinn-Justin, 2002).

The calculations used in the annealing process may seem

formidable. We have chosen NI = 100 in the examples we

present now, because we wish to make clear the scope of the

calculations and their implications. We chose this rather than

concentrating now on optimizing the algorithms. This will

come with some experience with different model structures.

Nonetheless, due to the manner in which the action levels

space themselves and split Rf is increased, it might prove

less demanding to use a large NI for the first few values of

Rf , and then significantly decrease the number of paths from

NI . Our goal is to trace accurately just the lowest action value

state X0 and the next X1 to estimate the scale of the domi-

nance of A0(X
0) in performing the path integral.

4 Examples from the Lorenz96 model

We now present the results of a set of calculations on the

Lorenz96 (Lorenz, 2006) model used frequently in geophys-

ical data assimilation discussions as a test bed for proposed

methods. The model hasD degrees of freedom xa(t) satisfy-

ing the differential equation

ẋa(t)= xa−1(t) (xa+1(t)− xa−2(t))− xa(t)+ f + ζa(t); (7)

a= 1, . . . , D; x−1(t)= xD−1(t), x0(t)= xD(t),

xD+1(t)= x1(t); ζa(t) is N (0, R−1
f ) Gaussian noise.

f = 8.17, for which the xa(t) are chaotic (Kostuk, 2012).

We studied D= 20 and added f as an additional degree of

freedom satisfying ḟ = 0. The number of model equations

in the action is therefore equal to D+ 1.

We performed a twin experiment in which we solved

these equations, with ζa(t)= 0 and with an arbitrary choice

of initial conditions x(0) using a fourth-order Runge–Kutta

solver with 1t = 0.025 over 160 steps in time. Here, t0= 0

and tm= T = 4. We then added iid Gaussian noise with

Figure 1. Action levels as a function ofRf for the Lorenz96 model,

D= 20, Rf 0= 0.01. (a) At L= 5, we used y1(t), y3(t), y5(t),

y7(t), and y9(t) in the action; (b) at L= 7, y11(t) and y13(t) are

added; (c) at L= 8, y15(t) is added; and (d) at L= 9, y17(t) is

added. The expected values of the lowest action level are denoted

by black dashed lines.

zero mean and variance σ 2
= 0.25 to each time series.

L= 1, 2, . . . of the data series were then represented in the

action at each measurement time tn during our annealing pro-

cedure. In our calculations, Rf 0= 0.01 and ξ = 2.

In the action, we selected Rm= 4, the inverse variance of

the noise added to the data in our twin experiment, so the

minimum action level we expect is 80.5L± 8.97
√
L. The

paths are (m+ 1) (D+ 1)= 3381-dimensional. Our search

for minimum paths used a BFGS routine (Press et al., 2012)

to which we provided an analytical form of the gradient of

A0(X). The search was initialized with NI = 100 times with

initial paths from a uniform distribution of values in the in-

terval [−10, 10].

We also investigated using the IPOPT public domain nu-

merical optimization package (Waëchter , 2002) and found

that it also worked well, giving essentially the same results

as BFGS. Any existing method for 4DVar should work as

well for this annealing procedure.

In Fig. 1, we display the computed action levels for L= 5,

7, 8 and 9 at each value of log Rf ∝β. For L= 5, there

are many close action levels associated with the extremum
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Figure 2. Data, estimated, and predicted time series for the Lorenz96 model (Lorenz, 2006) with D= 20, L= 8. (a) x3(t) was an observed

state variable, and (b) x12(t) was unobserved. The data (black), the estimated state variable (red), and the predicted state variable (blue) are

shown for each of them.

paths of the action Eq. (1); as L increases, the lowest ac-

tion level visibly separates from the others. At the bottom of

each panel, we indicate the lowest action level value and its

standard deviation. The next-lowest action level A0(X
1), for

L= 5, 7, 8, and 9, is at 403.8, 749.8, 1161.6, and 2256.1, re-

spectively. This means that for L= 5 we would have to sum

over the contributions of many paths Xq to evaluate the ex-

pected value 〈G(X)〉. At L= 7 or higher, X0 dominates the

integral. Our estimate for the forcing parameter, set to 8.17,

was 8.22 at large β.

We think it important to note that if we had begun our

search for the saddle point paths Xq at large values of Rf ,

we would be almost sure to miss the actual path X0, which

gives the lowest action level, since the Hessian matrix of A0

is ill conditioned when Rf is large; see Fig. 4.6 in Quinn

(2010).

Another sense of why beginning a search at large values of

Rf may fail to find the action level identified in the annealing

approach is that the basin of attraction of the minimum ac-

tion level is likely to be so small, relative to the size of path

space, that “falling into it” through an arbitrary initial path

used in any version of a variational procedure is unlikely. The

annealing method systematically tracks the known minimum

for very small Rf and, in that manner, starts in and remains

in the appropriate basin of attraction.

The real test of an estimation procedure in data assimi-

lation is not accuracy in the estimation of measured states

and fixed parameters, but accuracy in prediction beyond the

observation window. The predictions require accurate esti-

mation of the unobserved model state variables at the end of

the observation window. Indeed, one can achieve good “fits”

of observed variables that lead to inaccurate predictions for

t > tm= T (Abarbanel, 2013).

As this is a twin experiment, we show in Fig. 2 the data,

the estimated state variable, and the predicted state variable

for an observed variable x3(t) and for an unobserved variable

x12(t) for L= 8. In a real experiment, we could not com-

pare our estimates for the parameters or the unobserved state

variables. Although the estimation procedure for the path X0

with the minimum action value is rather good, both in esti-

mating the 12 unobserved states and the one parameter, there

nevertheless exist errors in our knowledge of the full state

(x(t)= 4). The predictions thus lose their accuracy in time

because of the chaotic nature of the trajectories at f = 8.17.

In the Lorenz96 equations, one usually has a single forc-

ing parameter f . To see how well our procedure works

for several unknown parameters, we introduced ten dif-

ferent forcing parameters fa into the Lorenz96 model at

D= 10: ẋa(t)= xa−1(t) (xa+1(t)− xa−2(t))− xa(t)+ fa ,

that is, with no fluctuations in the dynamics. Noise was added

to the solutions to the Lorenz96 system before the xa(t) are

used as data. For D= 10, the lowest action level stands out

from the rest at L= 4. In Table 1, we show our estimates for

the ten forcing parameters for L= 4, 5, and 6, as well as the

actual value used in the calculations of the data. In these es-

timates, and for the single forcing parameter reported above

for D= 20, there is a known source of bias (Kostuk et al.,

2012). As one can see in the examples, it is small here.

In the twin experiments we presented noisy data from the

known model as L= 1, 2, . . . data series of observations. To

www.nonlin-processes-geophys.net/22/205/2015/ Nonlin. Processes Geophys., 22, 205–213, 2015
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Table 1. Known and estimated forcing parameters for the Lorenz96

model at D= 10, and L= 4, 5, and 6.

Known fa L= 4 L= 5 L= 6

5.7 5.742 5.737 5.768

7.1 7.096 7.080 7.094

9.6 9.696 9.686 9.654

6.2 6.156 6.174 6.131

7.5 7.605 7.592 7.604

8.4 8.353 8.330 8.349

5.3 5.310 5.278 5.214

9.7 9.679 9.703 9.643

8.5 8.632 8.629 8.626

6.3 6.334 6.336 6.308

give some sense of what one might expect if the model were

totally wrong, in the sense that the data we presented came ei-

ther from a completely different model system or from enor-

mously noisy data, we presented data from a collection of

1963 Lorenz model (Lorenz, 1963) oscillators to a Lorenz96

D= 10 model. Twelve time series data are generated by four

individual Lorenz63 (Lorenz, 1963) systems with different

initial conditions. Gaussian white noise with zero mean and

standard deviation σ = 0.5 are added to each time series. All

these “data” yl(t) are rescaled to lie within [−10, 10].

We then place these signals as “data” in the action with

the model taken as Lorenz96 D= 10; the single forcing pa-

rameter is treated as a time-dependent state variable obey-

ing ḟ = 0. We use L= 5 and L= 6 as measurements using

the data time series taken in the order y1(t), y3(t), y5(t),

y7(t), y9(t) for L= 5, and y1(t), y3(t), y5(t), y7(t), y9(t),

y2(t) for L= 6. In Fig. 3 we display the action levels versus

log [Rf /Rf 0] =β associated with this for L= 5 and L= 6.

Results for other values of L are consistent with these. This

example provides a graphic illustration of the inconsistency

of the data and the model and how this makes its appearance

in the annealing procedure.

We also investigated, but do not display here, the action

levels when the parameter f is held at a different value in the

model than was used for generating the data. In particular,

we generated the data with f = 8.17 and then held f = 18 in

evaluating the action levels for a Lorenz96 model withD= 5

and L= 1 and 2. In each case, no minimum action level split

from the collection of Xq and no level was close to the con-

sistent χ2 condition discussed above. This actually empha-

sizes the importance of allowing the variational method to

include all parameters as state variables with a zero vector

field, allowing the estimation of the parameters along with

the unmeasured state variables.

We now have seen that a consistent smallest action level

can be identified via an annealing process, and the depen-

dence of the action levels on the number of measurements,

L, has been demonstrated. We have no formal proof that the

path X0 gives a global minimum of the action; our criteria of
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Figure 3. Action levels as a function ofRf for the Lorenz96 model,

D= 10, Rf 0= 0.01. (a) L= 5 and (b) L= 6 when the wrong data

are used for the Lorenz96 model. We actually used data from four

realizations of the Lorenz63 model (Lorenz, 1963). The structure

of the action levels versus Rf shows no trace of the minimum al-

lowed level Eq. (6). This indicates that the data and the model are

incompatible. The action levels are also quite large, and, for L= 6,

numerous and not well separated.

consistency with Eq. (6) and excellent predictions after the

observation window are functionally useful features of the

procedure.

5 Corrections to the contribution of a saddle path to

〈G(X)〉

We turn back to the evaluation of the path integral for 〈G(X)〉

in Eq. (2). In that integral for our action, we have

1

2
A
(2)
0 (X)=γ 2

αβ(X)= Rm(n)δa,lδb,l′ +Rf hαβ(X)

and A
(r)
0 (X)= Rf g

(r−2)(X),

for r ≥ 3. The functions h(X) and g(X) are derivable from

the form of A0(X). These are to be evaluated at X=Xq for

the qth saddle path.

In the form of the integral Eq. (4), we see that the term

in the exponential with order r in U has an order of magni-

tude about Rf /(Rm+Rf h(X
q))r/2 for r ≥ 3. Similarly, in

the expansion of G(X), the term of order k has a denomi-

nator of order 1/(Rm+Rf h(X
q))k/2 for k≥ 1. Since only

terms with even powers of U are nonzero in the integral be-

cause of symmetry, we have a collection of terms that, as

Rf becomes large with respect to Rm, decrease as 1/Rf or

faster. As a rule of thumb in the calculations we presented

for Lorenz96 D= 20, we see that for β = 15 or larger, or

Rf /Rm≈ 100 or larger, the terms in the path integral be-

yond the quadratic term in the expansion of the action be-

come small. A stronger estimate would come from evaluat-

ing the leading term in 1/Rf .
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Table 2. List of important mathematical notations (in alphabetical order).

Symbol Description

A(X) Action of path X

D Dimensionality of the dynamical system

fa(x(n)) One-step discrete time map of the dynamical system

L Dimensionality of the measured time series

m Number of time steps in observation window

P(X) Conditional probability of path X given measurements y

Rf Inverse of covariance matrix for model error

Rm Inverse of covariance matrix for measurement noises

x(t) State variables of the dynamical system

x(0) Initial state of the dynamical system

X Path of the model state composed of state variables X={x(t0), . . ., x(tm)}

Xq Paths satisfying the saddle point condition, ordered by action values A0(X
q )

y(tn) Measured data time series

6 Conclusions

We have examined the path integral formulation of data

assimilation Eq. (2) and asked how well a variational ap-

proach to the conditional expected values of functions G(X)

on the path X={x(0), x(1), x(2), . . ., x(m)} can approxi-

mate the integral. We use Laplace’s method, which estimates

the path integral by seeking saddle paths of the action where

∂A0(X)/∂Xα = 0. This approximation is widely used in me-

teorology and other fields, where it is known as weak 4DVar

(Talagrand and Courtier, 1987; Evensen, 2009; Lorenc and

Payne, 2007). The action is the cost function that is mini-

mized.

When measurement errors and model errors are distributed

as iid Gaussian noise, we have described an annealing

method in the strength Rf with which the model errors enter

the action that permits the following of a collection of ac-

tion levels from Rf = 0, where the saddle paths are known

precisely, through a set of increasing values of Rf at each

of which a numerical optimization algorithm produces a set

of saddle paths that are used as the initial conditions for the

solution of the variational approximation at the next larger

value of Rf . This permits the identification of a lowest ac-

tion level associated with a saddle path X0 where A0(X
0)

is split from the action values for the other possible saddle

paths Xq>0) at each Rf : A0(X
0)<A0(X

q>0)). The contri-

bution of X0 then dominates the integral.

We also explored the dependence of the action levels re-

vealed through the annealing method on the number of mea-

surements Lmade at each observation time. When L reaches

and exceeds a critical value, related to the number of unsta-

ble directions in the deterministic chaotic dynamics of the

model, the contribution of the path X0 is either certainly the

dominant contribution to the conditional expected value of

G(X), or it is the only path satisfying the saddle path con-

dition. By expanding the integrand of Eq. (2) about X0 we

argued that the resulting corrections to the contribution of

X0 produced a power series in R−1
f .

In previous work with variational principles for data as-

similation, we are unaware of any procedure such as our an-

nealing method using Rf to identify a consistent minimum

action. Nor are we aware of a systematic exploration of the

dependence of the action levels on the number of measure-

ments at each observation time. (Of course, there is the dis-

cussion in Quinn, 2010, which suggested this work.) Finally,

we do not know of any previous discussion of the corrections

to the variational approximation, which here is shown to con-

sist of small perturbations when the resolution of the model

error term in the action is increased; namely, Rf becomes

large.

The relation of the annealing method to familiar 4DVar

calculations (Talagrand and Courtier, 1987; Evensen, 2009)

is simple to state: each set of calculations during the anneal-

ing in Rf , at each value of Rf , is a 4DVar calculation. The

annealing has the added advantage of allowing one to estab-

lish an identified lowest action value path X0 that gives the

dominant contribution to the quantities of interest, namely,

the conditional expected values of functions G(X) on the

path.

A similar annealing procedure in the importance of the

model errors as represented by Rf can be incorporated into

a Monte Carlo calculation of the path integral. The relation

between that method of approximating the high-dimensional

integral and the variational method we have focused on here

is through the Langevin equation in “algorithmic time” de-

scribed in Abarbanel (2013). In each approach, the statistics

of moments about X0 or marginal distributions of selected

state variables is achieved by the choice ofG(X). This paper

has compared those evaluations in the variational method to

standard 4DVar by using 4DVar at each stage of the anneal-

ing adding the identification of the path X0 with the low-

est action level. By performing the annealing procedure in

a Monte Carlo context, one could compare it to other stan-
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dard ensemble methods such as the ensemble Kalman filter

(EnKF) (Evensen, 2009). However, that is a subject for an-

other investigation of the annealing approach; we have fo-

cused here only on variational methods.

We have worked within a framework where the measure-

ment errors and the model errors in the data assimilation

are Gaussian, with the inverse covariance of the model er-

rors taken to be of order Rf . We have shown that the path

that gives a consistent minimum action level can be traced

by an annealing procedure starting with a setting where the

dynamical model essentially plays no role, Rf ≈ 0, then sys-

tematically increasing the influence of the model dynamics.

As the scale of the model error reaches about 100 times the

scale of the measurement error, the path X0 associated with

a consistent global minimum action level dominates the path

integral with corrections of order 1/Rf . The important role

of the number of measurements L at each measurement time

is also demonstrated.

If the noise terms represented by the model errors are not

Gaussian, one can still use the annealing method to identify a

path with the lowest action level, but showing that perturba-

tion theory about the path X0 giving that lowest action level

is a power series in R−1
f may not succeed. The precise way

Rf enters the matrix γ 2
αα′
(X0) determines that.

In this paper, we do not address the typical situation where

the number of measurements actually available is less than

that needed to allow the ground level of the action A0(X
0) to

lie well below the next level. For a solution to that problem,

we have used information from the waveform of the mea-

surements as shown in some detail in Rey et al. (2014).

The results here justify the use of the variational approxi-

mation in data assimilation, focus on the role of the number

of measurements one requires for accuracy in that approxi-

mation, and permit the evaluation of systematic corrections

to the approximation when the form of the action is Eq. (1).

We anticipate that our use of Gaussian model error and mea-

surement error is a convenience and that other distributions

of these errors will permit many of the same set of statements

about the value of variational approximations to statistical

data assimilation.
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