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Abstract. The ability of empirical mode decomposition

(EMD) to extract multi-decadal variability from sea level

records is tested using three simulations: one based on a se-

ries of purely sinusoidal modes, one based on scaled climate

indices of El Niño and the Pacific decadal oscillation (PDO),

and the final one including a single month with an extreme

sea level event. All simulations include random noise of sim-

ilar variance to high-frequency variability in the San Fran-

cisco tide gauge record. The intrinsic mode functions (IMFs)

computed using EMD were compared to the prescribed os-

cillations. In all cases, the longest-period modes are sig-

nificantly distorted, with incorrect amplitudes and phases.

This affects the estimated acceleration computed from the

longest periodic IMF. In these simulations, the acceleration

was underestimated in the case with purely sinusoidal modes,

and overestimated by nearly 100 % in the case with pre-

scribed climate modes. Additionally, in all cases, extra low-

frequency modes uncorrelated with the prescribed variabil-

ity are found. These experiments suggest that using EMD

to identify multi-decadal variability and accelerations in sea

level records should be used with caution.

1 Introduction

Over the last decade, several papers have used the method of

empirical mode decomposition (EMD) (Huang et al., 1998;

Huang and Wu, 2008) to evaluate non-stationary patterns in

time series as disparate as electromyographic signals (An-

drade et al., 2006) and sea level (Breaker and Ruzmaikin,

2011; Ezer and Corlett, 2012; Ezer et al., 2013; Lee, 2013;

Chen et al., 2014). The use of EMD in sea level records has

been motivated in large part by numerous papers discussing

the appearance of decadal and longer-period fluctuations in

tide gauge records and global mean sea level estimates based

on tide gauge records (e.g., Feng et al., 2004; Miller and Dou-

glas, 2007; Woodworth et al., 2009; Bromirski et al., 2011;

Sturges and Douglas, 2011; Chambers et al., 2012; Calafat

and Chambers, 2013; Becker et al., 2014; Dangerdorf et al.,

2014).

At first glance, EMD appears to be a useful tool to find

non-stationary, low-frequency fluctuations in sea level, as it

breaks the time series into a set of intrinsic mode functions

(IMFs) that have progressively longer quasi-periodic fluctu-

ations. IMFs extracted from various tide gauge records have

been correlated with several climate indices (e.g., Ezer and

Corlett, 2012; Ezer et al., 2013), which gives some credence

to extracted signals. Moreover, authors have argued that the

final IMF, representing the continuously increasing sea level

mode, is a better representation of an acceleration, or nonlin-

ear trend, than simply fitting a quadratic to the original data

using ordinary least squares (Huang and Wu, 2008; Ezer and

Corlett, 2012; Ezer et al., 2013).

However, there are some potential pitfalls that we believe

have not been fully addressed in previous papers utilizing the

method. First and foremost, EMD is a purely mathematical

deconstruction of the data, with no regard to intrinsic covari-

ance of the signals or physics. Second, it assumes that IMFs

are comprised of fluctuating signals where the magnitude of

nearby peaks and troughs are balanced to create a zero mean

– an assumption not based on any physical requirement, as

real observations can have quite large ranges in magnitudes,

especially sea level data affected by climate signals and syn-

optic storm events, and there is no reason to a priori expect a

mode to have peaks and troughs of equal but offsetting mag-

nitude.
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Thus, it is unlikely that a single IMF from the EMD anal-

ysis can represent a real, physical climate variation. Because

of the assumptions underlying the method, it is more likely

that multiple modes will be needed to quantify the physical

climate mode. However, without some a priori knowledge of

this mode, how can one know which IMFs to add together?

In the worst case, the climate signal could be spread among

a large number of modes. Already, several authors have per-

formed an EMD on El Niño–Southern Oscillation (ENSO)

indices and argued they have extracted distinct modes of in-

terannual to multi-decadal variability (Wu and Huang, 2004;

Franzke, 2009; Yang et al., 2010); their argument based

solely on the fact that such modes are extracted during the

EMD process, but with no physical explanation for them.

The same has been done to sea level measurements made by

tide gauges, and individual IMFs are interpreted as distinct

climatic modes (Ezer and Corlett, 2012; Ezer et al., 2013).

Moreover, Wu and Huang (2004) have previously shown

that EMD behaves as a low-pass filter on random noise. If

one runs white noise with a normal Gaussian distribution

through the process, low-frequency signals will appear in the

resulting IMFs. They found there is roughly a doubling of the

average period with each subsequent mode. This is a signif-

icant issue. It means that any quasi-random, high-frequency

signal will propagate into low-frequency signals in the re-

covered IMFs. Wu and Huang (2009) proposed a method to

quantify the uncertainty caused by this behavior by comput-

ing an ensemble mean of IMFs, starting from the same time

series but with different amounts of added random noise.

However, this method ignores the fact that most geophys-

ical time series have an underlying real signal that has high

variance and little serial correlation, i.e., a high-frequency,

near-random signal. This signal will also be filtered by the

EMD process and will likely appear as a quasi-stationary

oscillation in higher-order IMFs that is not real. Although

adding multiple realizations of random noise to a time se-

ries will account for uncertainty in the IMFs from random

error in the measurement, it will not account for the shifting

of high-frequency signal to low-frequency signal in the re-

covered IMFs. One of the assumptions in EMD processing

is high-frequency variability is captured in the lowest IMFs,

but as far as this author is aware, this assumption has not been

evaluated or verified.

Additionally, the assertion that the recovered nonlinear

trend from EMD is more accurate than one computed using

a parametric model and ordinary least squares has not been

evaluated for data that simulates a tide gauge record. Consid-

ering the importance of quantifying acceleration in long sea

level records to understand ongoing climate change, this is a

vital test. Franzke (2011) conducted an experiment of detect-

ing nonlinear trends (i.e., an acceleration) in a small suite of

100 simulated temperature time series, using different statis-

tical estimators, including ordinary least squares and EMD.

The results showed no statistically significant improvement

using EMD. In fact, in most tests, the nonlinear trend esti-

mated using ordinary least squares was closer to the input

signal. Whether the same result holds for sea level records is

still an open question.

Several questions arise from this discussion. How well

can the EMD method recover the acceleration in a long tide

gauge record? Is it more accurate than using a linear model

and ordinary least squares? Do the individual IMFs reflect

distinct climate modes, or do they reflect in part the aliasing

of high-frequency variability to the low-frequency because

of the EMD low-pass filtering? To answer these questions,

we will apply the EMD process to three simulated data sets

where known low-frequency modes are prescribed. This is

not a novel idea, and should be used to evaluate any new al-

gorithm. However, it has not been used in the application of

EMD to sea level records to this author’s knowledge. The dif-

ferences between the recovered IMFs and given signals will

be a better measure of the accuracy of the EMD method than

what has previously been discussed in the literature. Two dif-

ferent simulations will be examined with fluctuating signals

and differing random noise to represent high-frequency vari-

ability: one using purely sinusoidal oscillations with multiple

periods ranging from 13 to 80 years, the second with varia-

tions based on band-pass filtered and scaled ENSO and Pa-

cific decadal oscillation (PDO) indices, both with additional

random noise applied. The third case will examine a situa-

tion with only seasonal fluctuations, random noise, and a sin-

gle month with a variation larger than 3 standard deviations.

This represents an extreme event, typically caused by major

storm surge, which is a common feature in many sea level

records. We will demonstrate that the EMD method leads to

spurious IMFs with significant multi-decadal variability in

all cases, and where the IMFs are correlated with the input

signal, their amplitudes and phases are significantly biased

in many periods of the record. These spurious low-frequency

IMFs also have a tendency to bias the recovered acceleration

either low or high.

2 Data and methods

The basic idea of EMD is to fit cubic splines to the local

maxima and minima of a time series separately, average the

splines, then remove the average from the time series. The

process is iterated on the residual time series until the aver-

age of the splines converges to have a standard deviation less

than some pre-set tolerance. This is the first IMF; this is then

subtracted from the original time series and the process is re-

peated until only one minimum and one maximum remain.

For details of the procedure, readers are referred to the origi-

nal paper by Huang et al. (1998) or more recent applications

(e.g., Huang and Wu, 2008; Ezer et al., 2013).

EMD is applied using the EMD toolkit for SciLab (http:

//www.scilab.org), based on code documented in Rilling et

al. (2003). The specific function utilized was emdc, which
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stops iterating when a tolerance is reached. A tolerance value

of 0.05 was utilized.

There is a subtlety in finding the last IMF that is not dis-

cussed in the literature. Since the EMD process requires fit-

ting of cubic splines, the last IMF mode that can be calcu-

lated has more than one local minima and more than one lo-

cal maxima, but fewer than four. The only way to get the fi-

nal IMF shown in most studies (e.g., Ezer and Corlett, 2012;

Ezer et al., 2013), which shows a continuously increasing

sea level, is to fit a quadratic to the final IMF from the EMD

process using least squares, and plot the resulting fit. This is

conceptually no different than fitting a quadratic to the orig-

inal time series, other than the fact that it is done to the final

mode, which has significantly lower variance than the origi-

nal data. This should improve the estimate – provided there

are no systematic errors or biases in the final IMF that would

bias the result.

To demonstrate how EMD shifts some of the random vari-

ability to higher IMFs (Huang and Wu, 2008), we ran EMD

on a monthly resolution time series that is 150-years long

with randomly correlated values that have a standard devi-

ation of 60 mm, using a white noise model with a normal

Gaussian distribution. A value of 60 mm was used because

this is the standard deviation of the residual monthly sea level

at San Francisco after fitting and removing a quadratic func-

tion plus annual and semi-annual sinusoids; therefore, it is

representative of high-frequency sea level at a typical site,

although some sites can have significantly higher variability.

Another case was run using a colored noise model that re-

produces the autocovariance of the San Francisco tide gauge

residuals, based on an AR(5) model, where the coefficients

are computed from the autocovariance following the Yule–

Walker method. The results were nearly identical to the ones

shown with the randomly correlated residuals; subsequently,

we choose to use random values as they are faster to com-

pute for the several thousand simulations planned. The EMD

finds IMFs that have quasi-periodic fluctuations of nearly 60

years and amplitudes as large as 10 mm (Fig. 1); fluctuations

at quasi-30-year periods are the same magnitude.

We use the monthly sea level record from the San Fran-

cisco tide gauge for our reference. It was downloaded from

the Permanent Service for Mean Sea Level (PSMSL) (Wood-

worth and Player, 2003; PSMSL, 2012). Annual and semi-

annual sinusoids are fit to the data along with a trend and an

acceleration term using ordinary least squares to obtain the

baseline sea level variability for the model (ybase), where

ybase(t)=−78.3+ 0.92 · dt + 0.0081 · dt · 2.

+ 4.2 · cos(2π · dt)− 31.8 · sin(2π · dt)

+ 20.3 · cos(4π · dt)+ 17.7 · sin(4π · dt), (1)

and t is the time in years, with dt = t − 1900.0. This baseline

model is the same for all experiments.

Figure 1. Low-frequency IMFs resulting from EMD of random

noise with a standard deviation of 60 mm.

For case 1, three long-period sinusoids (13, 55, and 80

years) are added to the baseline model along with white (ran-

dom) noise which has a normal distribution (ε(t)):

ycase 1(t)= ybase(t)− 9.8 · cos((2π/13) · dt)

+12.5 · sin((2π/13) · dt)− 6.3 · cos((2π/55) · dt)

+12.3 · sin((2π/55) · dt)+ 9.6 · cos((2π/80) · dt)

−15.2 · sin((2π/80) · dt)+ ε(t). (2)

The random noise has a variance to match the variance of the

residuals of the real tide gauge data minus the model. In all,

1000 different random noise models were applied to create

1000 different versions of case 1 to quantify how the recov-

ered IMFs change depending on the different high-frequency

variability. The periods and amplitudes of the long-period

sinusoids were chosen arbitrarily to approximate the level

of multi-decadal fluctuations in the San Francisco sea level

record (Fig. 2a). The hypothesis being tested is that the high-

frequency variations are isolated into the lowest IMFs with

little or no distortion of the higher IMFs, and that the higher

IMFs will represent the prescribed multi-decadal fluctua-

tions.

Case 2 starts from the same baseline model, but in-

stead of prescribing sinusoidal oscillations, non-stationary

climate indices for ENSO variations and the PDO are used.

The Southern Oscillation Index (SOI) utilized is based on

the pressure differences between Tahiti and Darwin, Aus-

tralia to represent ENSO variability (Trenberth, 1984; Ro-

pelewski and Jones, 1987; downloaded from http://www.cgd.

ucar.edu/cas/catalog/climind/soi.html on 5 March 2014), and

the PDO index is based on the leading principal compo-

nent of sea surface temperature in the North Pacific (Zhang

et al., 1997; Mantua et al., 1997; downloaded from http:

//jisao.washington.edu/pdo/PDO.latest on 5 March 2014).

Several additional processing steps are required before us-

ing these indices for our experiment. First, neither index cov-

ers the same period as the tide gauge (January 1856 to De-

cember 2010). The SOI starts in January 1866 while the PDO
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Figure 2. True monthly sea level recorded at San

Francisco tide gauge (blue) (a) simulated by a

trend+ acceleration+ seasonal+ 13-, 55-, and 80-year sinu-

soidal functions with additional random noise (case 1), and

(b) simulated by a trend+ acceleration+ seasonal+ENSO+PDO

(case 2). See text for details.

index begins in January 1900. In order to have a simulated

record as long as possible, we start in January 1866 and use

values from the end of the PDO record to fill in the missing

data before January 1900. Recall the experiment does not re-

quire true ENSO or PDO variability, only a simulation of the

type of variability and how well EMD can recover it.

Second, because the two indices are slightly correlated

(−0.21, p< 0.001) due to similar interannual (< ten year)

variations, the PDO index is low-pass filtered with a 5-year

Gaussian, and the SOI is band-pass filter by first removing

the 5-year Gaussian of the SOI, and then filtering the residu-

als with a 0.5-year Gaussian. After doing this, the correlation

between the two filtered indices PDOLP(t) and SOIBP(t) is

insignificant (−0.003, p< 0.01).

The final step is to determine the scaling factor to apply

to both the PDOLP(t) and SOIBP(t) variations. This is done

by first normalizing both time series by their standard devia-

tion. Then, after removing the estimated trend, acceleration,

and seasonal variations, the sea level data are low-pass and

band-pass filtered as the climate indices were, and the stan-

dard deviation of the filtered residuals is calculated. The scal-

ing factor applied to PDOLP(t) is the standard deviation of

the low-pass filtered sea level residuals (20.8 mm); the scal-

ing factor applied to SOIBP(t) is the standard deviation of

the band-pass filtered sea level residuals scaled by −1 to ac-

count for the fact that the El Niño sea level variations at San

Francisco are positive when the SOI is negative (−28.7 mm).

The final time series for case 2 is assembled as for case 1,

including the random noise term based on the standard devi-

ation of the residuals and the model:

ycase 2(t)= ybase(t)− 28.7 ·SOIBP(t)

+ 20.8 ·PDOLP(t)+ ε(t), (3)

where PDOLP(t) and SOIBP(t) are normalized as described

previously. One time series is shown in Fig. 2b to show the

model does a reasonable job of simulating the San Francisco

tide gauge record.

Case 3 starts as the baseline model, adds random noise

with a standard deviation of 60 mm (representative of the

high-frequency variability in the San Francisco sea level),

then adds an extra 350 mm for January 1956 to represent the

signal of a large anomalous high-water event, such as the ef-

fect of a large storm surge event on the monthly average, a

large flooding event from sustained rainfall, or climatic vari-

ations in winds that can cause sustained high water levels.

Such a value is possible in sea level records, depending on

the size and duration of the storm (e.g., the maximum devia-

tion of monthly sea level residuals after removing a trend for

the San Francisco tide gauge record is 4.9 times higher than

the standard deviation). Moreover, most tide gauge records

have numerous events instead of just one; San Francisco has

six monthly residuals exceeding 200 mm and two exceed-

ing 300 mm. For this study, however, we consider just one

to demonstrate the effect on EMD if authors do not consider

this possibility in their analysis.

3 Results and analysis

Figure 3 shows the low-frequency IMFs for a single simu-

lation of case 1, along with the input signals. IMFs 1–5 are

all of a much higher frequency and so are not considered,

although we note that none accurately captures the input sea-

sonal variation. However, we point out that some of the arti-

facts shown in Fig. 3 for the low-frequency IMFs are a direct

result of correcting for errors in the higher frequency IMFs

not shown, so that the sum of all matches the original data.

The correlation of IMF 6 with the prescribed 13-year si-

nusoid is significant (> 0.5), but not high. It is clear there

are several periods where the EMD method would suggest

no variability at a 13-year period (1870–1890, 1950–1970)

and other periods (∼ 1910) where the variation is signifi-

cantly faster. Moreover, the amplitude of the recovered IMF

is steadily increasing after 1980, although the phase is about
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Figure 3. True oscillations and long-term trend+ acceleration (red) for simulation shown in Fig. 2a, along with the closest correlating IMF

(blue).

correct. The next IMF is an artifact of the method, with no

significant correlation with any input signal, yet showing a

periodicity of ∼ 20 years with amplitudes as high as 20 mm.

The longer-period IMFs also have problems (Fig. 3). The

one best correlated with the 55-year sinusoid (IMF 8) is out

of phase with the real signal until about 1940, and the ampli-

tude is increasing in time. The 80-year IMF exhibits a similar

behavior of increasing amplitude (Fig. 3). Finally, the esti-

mated quadratic term to the longest oscillatory IMF (IMF 9

in this case), significantly underestimates the prescribed ac-

celeration.

Although this is a single example, it will reflect the type

of the distortion in low-frequency IMFs caused by apply-

ing the EMD algorithm to high-frequency variability inher-

ent in a sea level record. Note that the ensemble EMD ap-

proach proposed by Wu and Huang (2009) creates the ensem-

ble members from the original time series, differing only by

random noise. This process will still filter the inherent, high-

frequency, quasi-random signal with EMD, which will likely

bias the ensemble mean. Moreover, Wu and Huang (2009)

assume that averaging will minimize any residual effect of

EMD from the additional random noise on the ensemble

mean, although this is not demonstrated.

We test whether this assumption is valid by averaging

the 1000 different IMF clusters computed from the simu-

lations. One cannot simply separate the corresponding low-

www.nonlin-processes-geophys.net/22/157/2015/ Nonlin. Processes Geophys., 22, 157–166, 2015



162 D. P. Chambers: Evaluation of empirical mode decomposition for quantifying multi-decadal variations

frequency modes based on the IMF number, however, as the

total number of IMFs changed from 9 to 11 in the 1000 dif-

ferent simulations. The 13-year signal was found in IMFs

ranging from number 4 to 7, while the 55-year mode ranged

from IMF 7 to 9. The last mode found ranged from IMF 9

to 11. Thus, we had to rely on correlation with the known

oscillation to identify the relevant IMF. This was done by

computing the correlation of each recovered IMF from each

simulation with the prescribed sinusoids. Figure 4 shows the

histogram of computed correlations. Note that the correla-

tions were not the same in every simulation. The 13-year

oscillation had a mean correlation of 0.66 (standard devia-

tion= 0.09), the 55-year had a mean of 0.52 (standard devia-

tion= 0.11), while the mean correlation of the 80-year signal

was 0.74 (standard deviation= 0.09).

So that the lower correlation in the 55-year test did not

bias our results, a minimum bound was set to 0.5. If two

or more modes have correlations> 0.5 with one of the in-

put signals, the one with the highest correlation will be cho-

sen. Figure 5 summarizes the results, showing the mean IMF

with the standard deviation as a shaded uncertainty band. Not

every simulation found an IMF that had a correlation> 0.5

with all the prescribed sinusoids. The 13-year oscillation had

848 matches, the 55-year oscillation only 550, and the 80-

year oscillation 990. It appears that the extra mode or two

that often pops up between 13 years and 55 years in the EMD

distorts the recovery of the 55-year signal (e.g., Fig. 3).

Although the phase of the mean 13-year IMF is consistent

with the prescribed signal, the mean amplitude is too small

(Fig. 5). The standard deviation is also quite high relative to

the amplitude (80 %), suggesting the actual recovered IMF

could be nearly zero for any realization, or 2 times too large,

depending on how the high-frequency variability affects it.

For the longer-period oscillations, there is a systematic er-

ror in the mean IMF. It is roughly the same in both the 55-

and 80-year signal: the phase is only correct at the end of

the record, and the amplitude is unrealistically increasing in

time (Fig. 5), from almost no fluctuation at the beginning to

larger variations than were prescribed at the end. The scat-

ter is again relatively large compared to the largest amplitude

(60–80 %). Finally, the acceleration estimated from the final

IMF mode is systematically too small (Fig. 5).

We acknowledge this test has its limitations. The final

peaks of the 55-year and 80-year sinusoids are very close

to each other. However, a rather simplistic harmonic anal-

ysis using least squares over ranges of given periods found

all three sinusoids precisely with small errors (< 5 mm). The

fact that EMD creates non-stationary modes where none are

present is troubling, and suggests one must be very careful in

interpreting the results for a single IMF.

For example, consider the interpretation of the results from

this simplistic simulation in terms of longer-term climate

change if only the EMD results (Fig. 5) were analyzed. Based

only on the returned IMFs, one could easily argue that there

was no significant low-frequency variation in the sea level

Figure 4. Histogram of correlation values for IMFs in case 1 corre-

lated with the (a) 13-year, (b) 55-year, and (c) 80-year signals.

before 1950, then a rather dramatic rise in the 1970s, fol-

lowed by a return to a normal condition. In fact, there were

equally large sea level shifts in the early part of the simu-

lated record that were lost due to the way the EMD method

partitions the real signal.

Figure 6 summarizes the results of case 2, the simulation

based on the ENSO and PDO indices. As with the experiment

in case 1, 1000 different simulations were run, differing only

by the random noise. The IMF with the highest correlation

greater than 0.5 with both the prescribed ENSO and PDO in-

dex was averaged. In addition, in nearly every case (99 %)

the EMD computed one to two IMFs with a periodic signal

that did not correlate highly with either PDO or ENSO, but

had a low-frequency. Because this was not always contained

in a single IMF between the two prescribed periodic fluctua-
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Figure 5. Mean (solid blue line) and standard deviation (light blue envelope) of IMFs calculated from the 1000 different case 1 simulations,

along with the true signal (red).

tions, we had to adapt a method to search for it. This signal

was isolated by looking at the autocorrelation of the IMFs

after removing those correlated with PDO or ENSO, as well

as the last mode. To find the mode with the longest-period

fluctuation, we examined the autocorrelation at a 1-year lag.

Only IMFs with an autocorrelation greater than 0.9 at a lag

of 1 year were examined, and if two existed, the one with the

higher autocorrelation was selected.

We should note that typically there were several IMFs that

correlated significantly with the ENSO index. For the statis-

tics shown in Fig. 6, only the one with the highest correlation

was chosen. Although we found that by adding the 1–2 ad-

ditional IMFs to the most significant ENSO mode resulted

in a better correlation, we felt this was not a fair evaluation

of the EMD process. ENSO is a physical process, and the

relationship between the climate indices and the physics of

the strength and timing of an ENSO event related to the in-

dex has been well established (e.g., Philander, 1990, 2006).

Although some authors have run EMD on ENSO indices

and argued they have extracted distinct modes of interannual

to multi-decadal variability (Wu and Huang, 2004; Franzke,

2009; Yang et al., 2010), their conclusions are based solely

on the fact such modes are extracted during the EMD pro-

cess; they have offered no physical explanation for them.

We note that other statistical-based methods (such as princi-

pal component analysis) run, e.g., on environmental data like

sea surface temperature, precipitation, sea level, winds, find

modes highly correlated with ENSO and PDO indices (e.g.,

Mantua et al., 1997; Wolter and Timlin, 1998; Chambers et

al., 1999; Bond et al., 2003). We know of none that find mul-

tiple modes that add up to correlate with an ENSO index.

Thus, we argue it is more relevant to quantify if EMD can

extract physically meaningful climate modes than whether it

can extract modes with interannual and multi-decadal vari-

ability.

The ENSO-mode IMF on average matches the timing of

the input ENSO variability (Fig. 6), although the amplitude

is smaller; on average it underestimates the size of the El

Niño and La Niña events by a factor of 2 to 3. Moreover, the

standard deviation is large, ranging from 50 to 250 % of the

estimated peak values. This means that no single decomposi-

tion exactly matches the simulated ENSO variability. Some

may catch a peak or two properly, but other El Niño or La

Niña events are not captured at all.

The non-simulated low-frequency IMF has a period of be-

tween 25 and 30 years (Fig. 5), with an average amplitude

ranging from 10 to 20 mm. This is the same magnitude of

variability as the PDO-related variability, although IMFs ex-

tracted from a single simulation could have an amplitude

nearly 3 to 4 times higher, based on the standard deviation.

Without knowing a priori what variations were in the data,

this mode would be interpreted as a real, physical oscillation
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164 D. P. Chambers: Evaluation of empirical mode decomposition for quantifying multi-decadal variations

Figure 6. Mean (solid blue line) and standard deviation (light blue envelope) of IMFs calculated from the 1000 different case 2 simulations,

along with the true signal (red).

in the sea level, when in fact it is a bogus artifact of the anal-

ysis.

As with the ENSO mode, the mean PDO-mode IMF tracks

the general periodicity of the PDO, although the amplitudes

are on average too small. Again, the standard deviation sug-

gests any single simulation would give a considerable range

of amplitudes. We note that as with the case 1 results, there is

a tendency for an increasing amplitude in time for the mean

IMF, inconsistent with the true signal, which could be misin-

terpreted as a sign of climate change; the first two peaks in

the given PDO signal are roughly the same magnitude.

Finally, the average long-term rise computed from the last

IMF is wrong (Fig. 6). The trend at 1900 is 36 % lower than

prescribed, and the overall acceleration is 83 % higher.

Figure 7 shows the results from the EMD of case 3, with

the single extreme event. Notice the large, non-stationary os-

cillation with a period of about 10 years in IMF 6. The am-

plitude reaches 25 mm around 1956. Recall that this exper-

iment only included seasonal variations, random noise, and

this single large event. Because the EMD method implicitly

assumes local highs are balanced perfectly by nearby lows, it

cannot handle an extreme event like this. By enforcing an un-

realistic balance of equal highs and lows, the method creates

a low-frequency oscillation that does not exist. Although the

random-only case (Fig. 1) also produces low-frequency er-

roneous oscillations, the amplitudes are significantly less for

Figure 7. Low-frequency IMFs resulting from EMD of a simulated

signal with a trend+ acceleration+ seasonal variations+ random

noise+ a single large anomalous event in January 1956.

the longer-period IMFs. With a larger pulse, the magnitude

of the error is even higher. It does not affect just this mode.

It also shows up in IMF 7 and IMF 8, especially distorting

the end of the record (Fig. 7). We have not tested by adding

more extreme events, but we would assume it would cause

even more spurious signals like these.
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4 Conclusions

While at first glance empirical mode decomposition appears

to be a useful tool for quantifying non-stationary multi-

decadal oscillations in sea level records, the results of our

experiments suggest there are several issues. Probably the

biggest one is the fact the EMD process applied to random

noise consistent with high-frequency sea level variability and

single extreme events will cause relatively large and system-

atic multi-decadal oscillations that are not real. This will dis-

tort any underlying true signal. Our results suggest this is

especially a problem for the longest period fluctuations; the

IMFs are systematically biased away from the true signal,

both in amplitude and phase. In some cases the amplitude in-

creases in time, which could lead to incorrect interpretations

regarding acceleration.

Moreover, there always appears to be one or more IMFs

that are completely spurious fluctuations. These are needed

to correct the errors in the other IMFs so they all sum up

to the original data. With no knowledge of the underlying

physical modes, how is one to know which of the signals is

spurious? In the articles that have applied EMD to sea level,

all long-period IMFs have been assumed real and analyzed

in regards to climatic or dynamical fluctuations in sea level.

Based on the results of our experiments, we cannot believe

that all the analyzed modes are true.

Finally, authors have asserted that the acceleration that

comes out of an EMD process is more accurate, as they be-

lieve the IMFs better separate the high- and low-frequency

fluctuations than applying a parametric model and linear least

squares. Their argument assumes that the high-frequency

variations and shorter-period non-stationary signals in the

original time series are biasing a quadratic fit to the origi-

nal data. By distributing these signals in the EMD process to

specific IMFs, they believe the final IMF contains the true

acceleration plus residual low-frequency variability. Even

Fanzke (2011), who demonstrated that EMD was no better

than using an ordinary least squares estimator and a paramet-

ric model, argued that EMD was still better if the trend was

nonlinear, especially exponential. Our experiments, however,

show the opposite. The quadratic fit to the last IMF is either

no more accurate than one fit with least squares to the full,

unfiltered data set, or, in some cases, is significantly biased.

In the experiment with ENSO- and PDO-like oscillations, the

acceleration estimated from the final IMF was nearly 100 %

too large on average. In individual experiments, the error was

even more. This is most likely due to the aliasing behavior of

EMD where some of the high-frequency variance is aliased

into the low-frequency modes, as we have demonstrated.

EMD is a quick and relatively easy tool to identify possi-

ble multi-decadal fluctuations in a sea level record. However,

we have demonstrated that real climatic non-stationary sig-

nals are generally spread among multiple modes. Analyzing

a single IMF for climate variability will likely lead to signifi-

cantly biased interpretations. Thus, we feel that EMD analy-

sis should not be used solely to quantify magnitude and phase

of non-stationary climate variations, nor should analysis of

climatic signals be based on a single IMF. One should also be

cautious in interpreting acceleration computed from the final

IMF, especially in light of the significant errors found in the

early and later parts of the low-frequency IMFs (Figs. 5, 6,

and 7). Where EMD has shown to be useful has been in low-

pass filtering data to reduce the impact of high-frequency

variability and noise (e.g., Alberti et al., 2014). In that case,

the sum of the higher IMFs are used as the low-pass filter.

Instead, we believe other more traditional methods, such

as harmonic analysis (e.g., Chambers et al., 2012), linear re-

gression against climatic indices or physical parameters (e.g.,

Calafat and Chambers, 2013), running means of linear trends

evaluated over discrete window lengths (e.g., Holgate, 2007;

Merrifield et al., 2009), or simply low-pass filtering on dif-

ferent timescales should also be utilized along with EMD

to study low-frequency climatic variability. This is in order

to find possible spurious signals in the IMFs arising from

the way the EMD process filters random noise and extreme

events. At the very least, authors should carefully remove ex-

treme events from the sea level records before performing

EMD to reduce biasing low-frequency IMFs. Unless other

methods are utilized and shown to agree with the EMD re-

sults, we remain skeptical of many interpretations of EMD

processed sea level data.
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