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Abstract. The properties of the multiple-scale instabilities

present in a non-hydrostatic forecast model are investigated.

The model simulates intense convection episodes occurring

in northern Italy. A breeding technique is used to construct

ensembles of perturbations of the model trajectories aimed

at representing the instabilities that are responsible for er-

ror growth on various timescales and space scales. By means

of perfect model twin experiments it is found that, for ini-

tial errors of the order of present-day analysis error, a non-

negligible fraction of the forecast error can be explained by

a bred vector ensemble of reasonable size representing the

growth of errors on intermediate scales. In contrast, when

the initial error is much smaller, the spectrum of bred vec-

tors representing the fast convective-scale instabilities be-

comes flat, and the number of ensemble members needed to

explain even a small fraction of the forecast error becomes

extremely large. The conclusion is that as the analysis error

is decreased, it becomes more and more computationally de-

manding to construct an ensemble that can describe the high-

dimensional subspace of convective instabilities and that can

thus be potentially useful for controlling the error growth.

1 Introduction

In the last 10–15 years there has been operational interest

in non-hydrostatic, convection-resolving models (e.g. Dixon

et al., 2009; Seity et al., 2011; Baldauf et al., 2011) and

in the possibility of making use of data assimilation (e.g.

Zhang et al., 2003; Kain et al., 2010; Schenkman et al., 2011;

Claussnitzer et al., 2011) to improve short-range forecasting

and nowcasting of weather fields, or the accuracy of a past

event trajectory reconstruction. Some attention has been de-

voted to evaluating whether a higher resolution and a more

realistic description of convective events are in fact asso-

ciated with a quantitative improvement in forecasting their

location, timing and intensity (e.g. Weisman et al., 2008;

Schwartz et al., 2009).

Prediction and data assimilation systems for the ocean and

the atmosphere are largely founded upon the theory, devel-

oped over the last decades, of predictability and state estima-

tion in chaotic dynamical systems. Atmospheric NWP (nu-

merical weather prediction) models that predict the synoptic-

scale evolution of mid-latitude weather systems are based on

the hydrostatic assumption and include parameterisation of

convective processes. Ensemble forecasting and data assimi-

lation for such models have reached a mature stage, whereas

non-hydrostatic models face the hard task of dealing with

the fast instabilities typical of convection. Predictability in

the presence of multiple scales has been investigated in sev-

eral studies starting with the pioneering work of Lorenz

(1969). Errors in the small-scale weather features such as

thunderstorms grow very rapidly and reach saturation within

a timescale comparable to their brief lifetime, while errors in

larger scales may still be at a linear stage of growth. A com-

parison of the timescales involved in prediction of hydro-

static versus non-hydrostatic models has been performed by

Hohenegger and Schär (2007a), casting some doubts on the

feasibility of borrowing algorithms developed in the context

of the former for the application to the latter models.

In the present study we will try to look more deeply

into this question, using as a “laboratory” a realistic model

(MOLOCH, Sect. 3) and applying to a real case study the

classical breeding method. The relation between bred vec-

tors and Lyapunov vectors, developed in a rigorous theoret-

ical framework, states that as the rescaling amplitude goes

to zero, Lyapunov vectors are recovered from bred vectors

(BVs hereafter). This argument can be exploited when there
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fundamentally is one typical instability scale, as in synoptic-

scale models. In a convection-resolving model, we expect to

find a very large number of positive, competing Lyapunov

exponents with very large values, making it unfeasible to

compute all or even a reasonable number of their correspond-

ing modes.

The flow-dependent character of forecast uncertainty and

its estimation has become an important issue in NWP in

the last decades, starting from the early works of Kalnay

and Dalcher (1987) and Lorenz (1996), among others. In the

forecasting practice, before Lorenz clarified the dynamical

mechanism of selection of instabilities in his 1996 model

(Lorenz, 1996), researchers at the National Meteorological

Centre (NMC, now NCEP) were well aware of this problem,

and the breeding method (Toth and Kalnay, 1993, 1997) was

devised for its solution. When instabilities in a wide range

of scales is present, breeding provides a useful tool for se-

lecting the instability scale one wants to investigate by tun-

ing the breeding parameters, i.e. the rescaling amplitude and

time interval. For instance, if the rescaling amplitude is larger

than the typical saturation amplitude of a given scale, unsta-

ble structures characteristic of that scale will not appear in

the bred vectors.

While the importance for prediction of a rigorous descrip-

tion of flow instabilities in terms of the Lyapunov vectors

with positive exponents that define the unstable subspace has

long been recognised, the introduction of these concepts and

the use of Lyapunov vectors in the state estimation prob-

lem and data assimilation algorithms is more recent. Start-

ing with the paper by Trevisan and Uboldi (2004), a num-

ber of studies (Uboldi and Trevisan, 2006; Carrassi et al.,

2007, 2008a, b; Palatella et al., 2013) have shown that, by

confining the Assimilation of observations in the Unstable

Subspace (AUS) of the system, one can construct data as-

similation algorithms that are computationally more efficient

(EKF-AUS, Trevisan and Palatella, 2011b) and in some cases

more accurate (4DVar-AUS, Trevisan et al., 2010) than their

classical counterparts: the extended Kalman filter (EKF) and

four-dimensional variational assimilation (4DVar). A discus-

sion of the role of instabilities in weather forecasting and data

assimilation is found in Trevisan and Palatella (2011a).

For geophysical models, the huge number of degrees of

freedom constitutes the main difficulty whenever a descrip-

tion of the error probability distribution is attempted, in par-

ticular in the application of data assimilation algorithms.

During the forecast stage, errors grow in the unstable sub-

space, which can be of a much lower dimension than the

full phase-space dimension of the model: the algorithms that

perform the assimilation in the unstable subspace take full

advantage of the reduced dimension in which they operate.

In high-resolution non-hydrostatic models, the presence of

a large number of fast instabilities and spatial scales as small

as convective cells makes the problem of high dimensionality

particularly critical.

One of the goals of the present paper is to investigate, in

a realistic high-resolution, convection-resolving model, what

the structure of the forecast error is in relation to the unstable

modes on various scales that can be estimated by breeding.

One question we try to address is the following: in line of

principle, can an assimilation algorithm keep under control

a reasonable fraction of the errors that grow on such a wide

spectrum of space scales and timescales?

2 Preliminary remarks

Limited-area models are forced by lateral boundary condi-

tions that represent an error source in addition to initial state

errors and to errors intrinsic to the model dynamics (model

error), which are present in all operational systems. More-

over, initial and model errors evolve in a convoluted manner

(a relevant subject in recent studies, e.g. Nicolis et al., 2009;

Carrassi and Vannitsem, 2011).

The goal of this work is, however, to characterise the er-

ror growth on various dynamical scales. This is obtained by

studying the evolution and growth of errors that are only in-

troduced at initial time: both model and boundary conditions

are then “perfect”, i.e. they are the same in the “true” trajec-

tory and in all, control and perturbed, trajectories. The rea-

son for this choice is that the introduction of model and/or

boundary error would obscure the interpretation of results: it

is important not to attribute to newly introduced errors any

behaviour which is only and specifically due to error dynam-

ical evolution. At the same time, we feel the need to caution

the reader against too optimistic an interpretation of any re-

sults obtained in the absence of model and boundary errors.

A reader not particularly familiar with the perturbation

breeding technique, besides the original papers (Toth and

Kalnay, 1993, 1997), may refer to the book by Kalnay

(2003), where the relation between bred and Lyapunov vec-

tors is discussed; see also Trevisan and Pancotti (1998),

Legras and Vautard (1996), and Wolfe and Samelson (2007).

A classical method to compute Lyapunov exponents and

vectors is to make use of frequent Gram–Schmidt re-

orthogonalisation of small perturbations (Benettin et al.,

1980). The review by Trevisan and Palatella (2011a) dis-

cusses the role of unstable Lyapunov vectors in atmospheric

predictability and data assimilation. Finally, the perturbative

equations relevant for breeding in both an unforced dynami-

cal system and in a system forced by the assimilation of ob-

servations are presented in Sect. 2.1 of the paper by Uboldi

and Trevisan (2006).

Although throughout this work we broadly associate fast

growth with small scales and slow growth with large scales,

this should not be intended as a very rigid spatial charac-

terisation of error and perturbation fields, especially in the

non-linear regime of growth.
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3 Model and case study

The model is MOLOCH, developed at CNR-ISAC, Bologna,

Italy (Buzzi et al., 2004; Zampieri et al., 2005; Malguzzi

et al., 2006; Davolio et al., 2006, 2009a)1. MOLOCH is

a convection-resolving, non-hydrostatic atmospheric model,

running at about 2.2 km resolution with 50 hybrid vertical

levels. State variables include temperature, pressure, three

velocity components, specific humidity, and concentrations

of cloud water and ice and of three precipitation phases:

rain, snow, and hail (plus temperature and water content at

five ground levels). The domain includes the Alps, north-

ern Italy and Corsica, with portions of the Ligurian, Tyrrhe-

nian and Adriatic seas. The reference trajectory is a sim-

ulation of the real case of 26 September 2006 (Davolio

et al., 2009b), with initial and boundary conditions from GFS

(Global Forecasting System)2 and BOLAM (Buzzi et al.,

1998, 2004; Zampieri et al., 2005; Malguzzi et al., 2006).

In this case study, the circulation at 500 hPa is characterised

by a deep trough west of the Alps. Near the surface, a pres-

sure low is located in the Genoa Gulf, and strong winds

from the southeast over the Adriatic Sea. The Venice area

is hit by intense convective precipitation, mostly during the

morning. Four main episodes can be identified in the model

trajectories used in this work. (1) 00:00–05:00 UTC: scat-

tered convection over the Po Plain and the Alps; (2) 05:00–

09:00 UTC: no convection in the plain, orographic convec-

tion only; (3) 09:00–12:00 UTC: organised convection as-

sociated with a mesoscale front with intense precipitation,

mainly concentrated on the Alps, the eastern Po Plain (Venice

area) and the northern Adriatic Sea; (4) 12:00–18:00 UTC:

various convergence areas with intense winds and precipita-

tion progressively extending to the whole domain.

A BOLAM trajectory provides boundary conditions every

hour from 12:00 UTC of 25 September 2006 to 18:00 UTC

on 26 September 2006. Initial conditions for MOLOCH can

be chosen among these BOLAM fields.

4 Characterising the fastest instabilities: an extension

of previous results

The results reported in this section regard the fastest instabil-

ities associated with the smallest dynamical scales resolved

by the model. Results presented in this section were obtained

by simulations performed in a smaller domain, not includ-

ing Corsica and the Western Alps (Uboldi, 2010; Uboldi

et al., 2010), and the integrations only covered the time in-

terval between 00:00 and 12:00 UTC on 26 September. The

timescales that characterise the growth rate and saturation of

instabilities associated with convection in the 26 September

case are investigated in the line of Hohenegger and Schär

(2007a).

1http://www.isac.cnr.it/dinamica/projects/forecasts/index.html
2http://www.emc.ncep.noaa.gov/index.php?branch=GFS

First, a perturbation breeding technique has been used: two

initial random, independent perturbations, with very small

initial amplitude, are added to the non-linear model refer-

ence trajectory at 00:00 UTC. Their rms (root mean square)

value is 0.05 ms−1 for horizontal velocity at model level 5

(about 925 hPa over sea), with each variable scaled by its

estimated variability (estimated values, 5 ◦C for temperature

and 5 ms−1 for horizontal velocity, are obtained by perform-

ing an average over the control trajectory). Perturbed states

evolve following the model non-linear dynamics, and pertur-

bations are rescaled to the initial amplitude every 5 min. Bred

vectors quickly get organised in spatially coherent structures

and, after about 90 min, the two bred vectors (not shown

here) show very similar spatial structures, localised in dy-

namically active areas, where intense winds and convective

precipitation are located, differences only appearing in small-

scale structures. The emergence of a larger-scale unstable

pattern shows that the linear regime of growth is not dis-

rupted by the strongly non-linear processes present in moist

convection.

In order to estimate the linearity time, two perturbed states

are obtained by adding, to the state of the reference trajec-

tory, two perturbations with the same structure (an organised

bred vector), but with opposite signs. These perturbed states

are non-linearly evolved, and the spatial correlation of the

perturbations (i.e. the cosine of the angle between the per-

turbation vectors) is used as a linearity indicator (Hoheneg-

ger and Schär, 2007a). The two perturbations, which initially

(01:30 UTC) have the same direction (the cosine is−1), pro-

gressively lose their alignment as non-linearity becomes im-

portant. Conventionally, linearity is considered lost when the

spatial correlation exceeds the threshold −0.25 (for random

states it would be +0.5, Hohenegger and Schär, 2007b). The

scalar product used to compute spatial correlation is extended

to the whole domain, and to variables T , U and V after scal-

ing each of them with its own variability (estimated as de-

scribed above). A minor dependence on variables has been

found when the spatial correlation is computed for each vari-

able separately: global linearity appears to be lost when it

is lost in the horizontal velocity field. Estimates obtained at

different times along the same control trajectory, i.e. start-

ing the perturbed trajectories, in two different experiments, at

01:30 and at 06:00 UTC (26 September 2006), indicate that

the time required to lose linearity is shorter during the night

(Tlin ' 2.5h), when the main activity is scattered convection,

and longer (Tlin ' 4.0h) when organised convection, forced

by a mesoscale front, takes place during the morning.

Recalling that the perturbed states evolve according to the

full non-linear dynamics, the growth rate has been estimated

by averaging during the linear growth regime, when the log-

arithm of the amplification factor is approximately a linear

function of time (and the growth rate is approximately con-

stant). The estimates of the doubling time are TD ' 2.5h,

approximately the same value as Tlin, during the night, and

TD ' 2.0h, smaller than Tlin, during the morning.
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Comparing TD with Tlin is important, because when Tlin

is shorter than TD, errors may reach non-linear saturation so

quickly that one can hardly see a linear growth phase. In prin-

ciple, a reduction of the initial error cannot guarantee a re-

duction of the forecast error after a time when non-linear

error saturation has been reached (Hohenegger and Schär,

2007a).

By comparing TD with Tlin in the present case, the morn-

ing episode of organised convection, though more intense,

appears more stable and predictable than the scattered con-

vection episode occurring during the night.

The values obtained here (for this system and case study)

for the ratio Tlin/TD appear a bit more promising than those

obtained by Hohenegger and Schär (2007a), at least in the

perspective of very short-range forecasting or nowcasting.

5 Experiments

In Sect. 4, we described perturbation growth and saturation

properties with regard to the fastest-growth instabilities as-

sociated with the smallest dynamical scales. This was ob-

tained by breeding perturbations with a very high rescaling

frequency and a very small rescaling amplitude. Such an am-

plitude is much smaller, in fact, than the order of magnitude

presently achievable in operational practice for analysis er-

ror.

With a rescaling amplitude of the same order of magnitude

as the analysis error, and an appropriately lower rescaling fre-

quency, the bred vectors do not describe the fast instabilities,

which then have sufficient time to saturate between succes-

sive rescaling times.

As an example of a saturated small-scale error, the position

of a particular, localised and isolated convective feature can

be off by some distance in a “true” and in a “control” trajec-

tory. As long as this offset is shorter than the spatial width of

the disturbance itself, the error may grow in a linear fashion.

When the offset is larger than the disturbance, though, the

error is determined by the presence, in the two state fields,

of two separate, non-overlapping signals of approximately

the same size. As they drift away from each other, the rms

state difference (any variable) does not change steadily, so

that this error component does not effectively grow anymore.

Saturated small-scale instabilities are not directly responsible

for further error growth, but are expected to affect, by non-

linear interaction, larger scales that may still be in a regime

of linear growth. These large scales are mainly responsible

for error growth at an error level comparable to the analysis

error.

Under these premises, we perform an experiment where

the error, i.e. the state difference between a trajectory repre-

senting the truth and a control run representing the forecast,

has an initial amplitude (norm) compatible with the present-

day analysis error. We then examine the ability of bred vec-

tors to capture the forecast error. In order to do so and in view

of the different scales that may be involved in the growth of

forecast errors, a range of values for rescaling amplitude and

frequency is taken into consideration. In a second parallel ex-

periment, a hypothetical analysis error 1 order of magnitude

smaller is considered.

The experimental framework is that of a twin experi-

ment, where a model trajectory is considered to represent the

“truth” and is compared with one or more control trajectories.

Here, the true trajectory is a free MOLOCH evolution ini-

tiated by an external model state (from the same BOLAM

trajectory providing boundary conditions) at 21:00 UTC on

25 September 2006 and integrated until 18:00 UTC on

26 September. Two different control trajectories have been

considered, both computed using the same model and the

same boundary conditions as the true trajectory. The first

one is obtained by simply initiating a MOLOCH trajectory

from the BOLAM state at 18:00 UTC on 25 September (3 h

before the initial condition of the true trajectory) and inte-

grating for 24 h, with the same boundary conditions as the

“truth”. At 00:00 UTC, its rms error (calculated as described

in Sect. 5.1) is about 0.3, corresponding to about 0.4 ◦C for

temperature and 1.9 ms−1 for horizontal velocity at level 8

(about 1500 hPa over sea), and 0.25 ◦C, 1.8 ms−1 at level 25

(about 500 hPa). This first control trajectory, labelled 18H,

is used for breeding vectors meant to estimate instabilities

on a larger scale. The second control trajectory has been ob-

tained from the first one, by rescaling by 0.1 all components

of its error vector at 21:00 UTC on 25 September in order to

have a smaller initial error and again using the same bound-

ary conditions. This second control trajectory, labelled R21,

is used to construct bred vectors intended to estimate small-

scale, fast instabilities (still slower, though, than those stud-

ied in Sect. 4).

In any case, no comparison is done before 00:00 UTC

on 26 September, so that all trajectories have time enough

to develop the dynamical scales typical of a MOLOCH

non-hydrostatic, convection-resolving simulation. The ex-

periments described in Sect. 4 suggest waiting an initial 3 h

period for both control and “true” states to approach the sys-

tem attractor and for the bred vectors to acquire structures

representative of the unstable directions of the system. Note

that the bred vectors are initiated as random noise (Sect. 5.2)

at 21:00 UTC on 25 September 2006 and that, at this very

initial time, the error is due to features present in the exter-

nal model field. Instead, after 00:00 UTC on 26 September,

forecast error and bred vector structures are those typical of

the convection-resolving model dynamics, making it possi-

ble and significant to compare them.

The procedure used in the experiments is very similar to

what is often done in operational practice, when the state

used as the initial condition for a non-hydrostatic model is

taken from a hydrostatic model that also provides boundary

conditions. This procedure implies the absence, in the initial

control state, of small and fast scales typical of a convection-

resolving model: these dynamical scales, present in reality,
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are also present in our experiments, as we gave enough inte-

gration time for them to develop.

5.1 Norm and scalar product definition

For both control trajectories, 18H and R21, the error vec-

tor is orthogonally projected onto orthonormalised bred vec-

tors, and the square error component, which is a function of

the number of bred vectors used, is expressed as a percent-

age of the square norm of the whole error vector (Sects. 5.2

and 6.2). In order to orthogonalise the bred vectors and to

compute the error orthogonal projection, the definition of

a scalar product is needed. Our choice, appearing as the most

natural, is the sum of component products extended to the

whole three-dimensional domain (actually vertical levels 5–

45 only) for temperature and horizontal velocity, each vari-

able normalised with its own variability (Sect. 4). This is

called the TUV scalar product hereafter. The norm of a vec-

tor is by definition the square root of the scalar product of

the vector with itself. The TUV norm is then dimensionless;

it can be interpreted as a fraction of the overall state variabil-

ity. Since the state vector is composed of many other vari-

ables besides T , U , and V (pressure, specific humidity, verti-

cal velocity, concentration of condensed water phases, etc.),

this is more properly a seminorm: it is considered sufficient,

though, to evaluate errors and state differences, because the

chosen variables have the most direct impact on the dynam-

ics. The error size is defined as the TUV norm of the vector

difference between the control and true states.

5.2 Breeding and orthonormalisation procedure

A breeding scheme is characterised by a rescaling period and

amplitude. The rescaling period is set to 30 min for trajectory

18H (larger initial error), and, to estimate faster instabilities,

to 15 min for trajectory R21 (smaller initial error). Several

different values of the rescaling amplitude have been tested

for each trajectory. Boundary conditions are the same for all

perturbed and unperturbed integrations.

Bred vectors are initiated (“seeded”) by adding perturba-

tions to the control state (either that of trajectory 18H or that

of trajectory R21) at 21:00 UTC on 25 September. Note that

all initial perturbations are randomly generated point by point

in the three-dimensional domain on variables T , U , and V ,

so that they do not have a particular spatial structure at this

time. Only their amplitude (TUV norm) is imposed to be the

same used for rescaling (see below). The spatial structure that

bred vectors have at later times (when comparisons are per-

formed) is the result of the breeding technique, combining

model evolution and rescaling.

Every three hours, all bred vectors are Gram–Schmidt or-

thonormalised with the TUV scalar product; the error, i.e. the

vector difference between control and true state, is then pro-

jected onto the orthonormal bred vectors. The ratio between

the sum of square error projections and the square norm of

(h)

rm
s

.

Figure 1. The rms forecast error of control trajectories with dif-

ferent initial errors. Times indicated on the x axis correspond to

UTC times of 26 September 2006. Values on the y axis are non-

dimensional (TUV norm defined in the text) and are expressed as

fractions of natural variability. Red: trajectory labelled 18H (actu-

ally starting at 18:00 UTC on 25 September), which at 21:00 UTC

has error 0.3, of the order of the present-day analysis error. Green:

trajectory labelled R21, obtained from the previous one by rescal-

ing, at 21:00 UTC on 25 September, its error to 0.03, i.e. 1 order of

magnitude smaller than the present-day analysis error

the whole error is calculated and expressed as a percentage:

this is an increasing function of the number of bred vectors

used (it would be 100 % for a complete orthonormal basis). A

similar technique was used by Wei and Toth (2003) to com-

pare forecast error estimates with member subspaces in an

ensemble prediction system.

In each experiment, 12 bred vectors are computed (this

was the maximum allowed by computer memory). A second

set of 12 bred vectors was computed in some cases, to assess

the dependence on increasing subspace dimension of the pro-

jected error component.

For trajectory 18H, having fixed the rescaling period to

30 min, five different rescaling amplitudes have been tested,

each in a different run: 0.20, 0.30, 0.36, 0.40, and 0.50 (rms

TUV norm values). For R21, with rescaling period 15 min,

six rescaling amplitudes have been tested: 0.033, 0.067,

0.100, 0.133, 0.167, and 0.200 (these values are still 1 order

of magnitude larger than those used for the fastest instabil-

ities of Sect. 4). In both cases, the chosen amplitude values

span the range of variability of the corresponding control tra-

jectory error, as can be seen in Fig. 1.

www.nonlin-processes-geophys.net/22/1/2015/ Nonlin. Processes Geophys., 22, 1–13, 2015
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6 Results

6.1 Multiple-scale instabilities in the forecast error and

in bred vector subspaces

As stated in the introduction, one of the aims of the present

work is to extract information about the instabilities at play

from the inspection of bred vectors and their associated

growth rates. A second related question is whether the fore-

cast error can be described by BVs in a model such as the

present one, which includes the fast small scales typical of

convection. In the case of a positive answer, the algorithms

developed for ensemble weather forecasting and ensemble

data assimilation could be successfully used also in the con-

text of non-hydrostatic models.

We start discussing Fig. 1, which shows the forecast error

as a function of time for the two control trajectories starting

from initial errors with the same spatial structure, but with

different amplitudes: one, R21, 1 order of magnitude smaller

than the other, 18H. For both trajectories, the growth rate is

positive in the initial phase, until about 05:00 UTC for trajec-

tory 18H and 09:00 UTC for trajectory R21, approximately

corresponding to episode (1) of Sect. 3, and in the last part of

the simulation, from 11:00 UTC to the end, when the intense

phenomena progressively extend from north-eastern Italy to

almost the whole domain.

We observe that, whereas the ratio of the initial errors

in the two control trajectories was initially as large as 10

(in view of the hypothetical assumption that the analysis er-

ror could be reduced by 1 order of magnitude), after 21 h,

the ratio of the forecast errors has become smaller than 1.5.

The error during the first 10 h in fact grows much faster in

the small initial error trajectory (R21), whereas, during the

second episode, the error growth of the two trajectories is

very similar. This is because the growth rate is dominated by

(small-scale) fast instabilities when the initial error is small

(regardless of its initial spatial structure, which is the same

in both cases), but, as the forecast error grows in time, these

components saturate and slower instabilities associated with

larger dynamical scales become dominant3. This is the mech-

anism suggested in the Lorenz (1996) paper, as well as in

Toth and Kalnay (1993), that we discuss here relative to a real

case study. We now will see how bred vectors can be use-

ful for understanding this behaviour and for quantifying the

characteristics of instabilities on various scales.

Figure 2 shows the “spectrum” of BV (3 h averaged)

growth exponents for the two control trajectories of Fig. 1.

Here, for trajectory 18H (large initial error, top panel), BVs

are constructed with rescaling period 30 min and TUV am-

plitude 0.36; for trajectory R21 (small initial error, bottom

panel), BVs are constructed with period 15 min and TUV

3In fact, they dominate the growth of the whole vector norm,

even if small-scale signals corresponding to saturated unstable

structures may still be present and, locally, some of them may even

still be growing.

Figure 2. Growth rates of the 12 bred vectors at different forecast

times, as a function of the bred vector index (the growth rate has

been averaged over 3 h intervals, as indicated in the legend box).

Different colours refer to different forecast times. As indicated in

the panel titles, the BVs are constructed differently for trajectory

18H (large initial error, top panel) and for trajectory R21 (small

initial error, bottom panel).
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Figure 3. Growth rates of forecast errors for the two control trajec-

tories of Fig. 1 and the corresponding leading bred vector. Times

indicated on the x axis correspond to UTC times on 26 Septem-

ber 2006. Breeding parameters: period 30 min, amplitude 0.36 (red

dots) for trajectory 18H (large initial error, red line); period 15 min,

amplitude 0.100 (blue squares) for trajectory R21 (small initial er-

ror, blue line).

amplitude 0.100. In Fig. 2, different colours refer to differ-

ent forecast times.

The time variability of the exponents reflects the time vari-

ability of the forecast errors: BV growth rates are larger when

the forecast error increases, during the two periods of in-

tense convection activity. The number of BVs with a positive

growth rate at each time provides some indication of how

complex the structure of the error is, i.e. how many direc-

tions are unstable and possibly useful for describing errors

on the various scales present in the forecast error. We ob-

serve that in the set of BVs that has been constructed for the

control trajectory with larger initial error (18H) and meant to

describe larger-scale errors present in the forecast, the growth

rate generally decreases with the BV index. In general, these

BVs are more active (have larger growth rates) at the end

of the integration period, when slower scales become dom-

inant, and less active at the beginning. There are not many

BVs with a positive growth rate in this set, except during the

second episode of error growth.

In contrast, all the BVs of the set for the control trajectory

with small initial error (R21) have large growth rates during

the entire period, except for a time interval between the error

growth episodes; furthermore, the growth rate in this set of

BVs does not decrease at all with the BV index, indicating

that a large number of directions are present in the small-

scale unstable subspace. In Sect. 6.2, it is shown that this

number is much larger than 12.

Figure 3 shows the growth rate of the leading bred vec-

tor of each set together with the growth rate of the forecast

error shown in Fig. 1. The close correspondence in the time

Figure 4. Square norm of forecast error orthogonal projection onto

the subspace of the 12 leading bred vectors (percentage of error

square norm) as a function of time. Different curves in each panel

correspond to different rescaling norms. Top panel: control trajec-

tory 18H (large initial error), rescaling period 30 min, rescaling rms

TUV norms from 0.20 to 0.50. Bottom panel: control trajectory R21

(small initial error), rescaling period 15 min, rescaling rms TUV

norms from 0.033 to 0.200. Times indicated on the x axis corre-

spond to UTC times on 26 September 2006. The rescaling norm

range in each panel should be compared with the corresponding

control trajectory error in Fig. 1. The same data are plotted as a

function of rescaling amplitude in Fig. 5.

evolution of the growth rate for the forecast error and the

associated BV suggests that the BVs embed the same insta-

bilities that are active in the same time interval in the forecast

error. Only in the first stages of the trajectory with small ini-

tial error (R21) do the fast instabilities dominate, whereas,

towards the end of the forecast period, when they have satu-

rated, only those associated with larger scales, with smaller

growth rates, contribute to the error in both experiments; the

values of the growth rates at this stage are all very close to

each other.

www.nonlin-processes-geophys.net/22/1/2015/ Nonlin. Processes Geophys., 22, 1–13, 2015
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Figure 5. Square norm of error orthogonal projection onto the sub-

space of the first 12 bred vectors (percentage of error square norm),

as in Fig. 4, but plotted here as a function of rescaling amplitude.

Different symbols are used in each panel to mark different times

(UTC, 26 September 2006). Top panel: control trajectory 18H (large

initial error), longer rescaling period 30 min. Bottom panel: control

trajectory R21 (small initial error), shorter rescaling period 15 min.

The same data are plotted as a function of lead time in Fig. 4.

In Sect. 6.2 we examine in more detail whether the forecast

error of the two trajectories can be described in terms of the

two sets of BVs.

6.2 Forecast error component in orthonormalised bred

vector subspaces

As described in Sect. 5, we performed the orthogonal projec-

tion of the forecast error on the subsets of BVs that were con-

structed for each of the two control trajectories. The breeding

parameters were varied and we explored a wide range of val-

ues. Results are shown for several values of the amplitude

and the appropriate renormalisation frequency.

Figures 4–6 show these results. In all these figures, the top

panel refers to BVs constructed with rescaling period 30 min

for control trajectory 18H, while the bottom panel refers to

BVs constructed with rescaling period 15 min for control tra-

jectory R21. Notice that, here, percentages of the square error

are shown, rather than rms values.

The square norm of the error orthogonal projection onto

the 12-bred-vector subset is shown as a function of simu-

lation time in Fig. 4, where different colours correspond to

different rescaling amplitudes, and as a function of rescaling

amplitude in Fig. 5, where different symbols indicate differ-

ent simulation times (rms rescaling amplitude values on the

x axis may be compared with the range of values spanned by

the error evolution for the two trajectories in Fig. 1).

For the large initial error trajectory 18H, as is evident in

the top panel of Fig. 5, the largest error component at each

time (i.e. for each set of symbols) is almost always obtained

for the “optimal” rescaling amplitude 0.36. This value corre-

sponds to the average of TUV error values of trajectory 18H

at orthonormalisation times.

On the contrary, as can be seen in the bottom panels of both

Fig. 4 and Fig. 5, for the small initial error trajectory R21, the

maximum error component is obtained as time progresses

for an increasing rescaling amplitude. As a consequence, no

“optimal value” is found in this case. The maximum error

component is found for smaller rescaling amplitudes at the

beginning of the simulation, and for larger rescaling ampli-

tudes at later times. In other words, bred vectors correspond-

ing to larger and slower scales progressively become dom-

inant for increasing time. This result is consistent both with

the results of Sect. 5.1 and with the theory: small-scale unsta-

ble structures grow fast in the initial phases and, when they

begin to saturate, they trigger growth at larger and slower

scales, which become more important later on.

An important result is that, when the initial error is small,

and as long as it remains small, as in the initial part (00:00–

03:00 UTC) of trajectory R21, because of the many fast insta-

bilities present in the first stages of error growth, only a small

fraction of the forecast error is captured by the bred modes.

This is evident in the bottom panels of Figs. 4 and 5.

Twelve additional bred vectors have been computed for

two selected cases4: for control trajectory 18H with rescal-

ing amplitudes 0.36 and period 30 min; and for control tra-

jectory R21 with 0.100 amplitude and 15 min period. A to-

tal of 24 orthonormal bred vectors is then available in these

two cases, and the square norm of the error orthogonal pro-

jection onto each set is shown as a function of the subspace

dimension in Fig. 6. The top panel shows that, for trajec-

4Since 12 BV was the maximum allowed by computer memory

in one run, it has been necessary to save on disk all states (i.e. all

T , U , and V components on the whole three-dimensional grid) of

the previous 12-vector set at all orthogonalisation times, and to read

them from disk during the new run to perform the Gram–Schmidt

orthogonalisation on the 24 vectors.
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Figure 6. Square norm of error orthogonal projection onto subsets

of bred vectors (percentage of error square norm) as a function of

subspace dimension. Different curves in each panel correspond to

different times (UTC, 26 September 2006). Top panel: control tra-

jectory 18H (large initial error), rescaling period 30 min, rescaling

rms TUV norm 0.36. Bottom panel: control trajectory R21 (small

initial error), rescaling period 15 min, rescaling rms TUV norm

0.10.

tory 18H (large initial error), though very different error per-

centages are reached at different simulation times, increas-

ing the number of bred vectors above 12 does not increase

the projected error component in an important way. Assum-

ing that slower growth at very large scales (that could hy-

pothetically be found by further increasing the subspace di-

mension) is suppressed by boundary forcing, this means that

most of the error components are not, in fact, growing when

the initial error is so large. Non-growing error components

can be composed of localised unstable structures which have

already reached growth saturation, and, also, of wider sig-

nals, originally present in the large initial error, that are still

present in areas that are dynamically rather inactive (the 18H

initial state has in fact been constructed from a forecast state

of the BOLAM hydrostatic model, Sect. 5). Such larger non-

growing signals may appear, in the error field, as locally or-

ganised structures, which persist or drift in the domain, ac-

counting for an important portion of the error.

Finally, in the bottom panel of Fig. 6, corresponding to tra-

jectory R21 (small initial error), the error components appear

to continue increasing, more or less steadily, with increasing

subspace dimension. This means that the number of small-

scale fast instabilities is large (larger than 24, at least).

7 Discussion and further developments

In a preliminary study, it was possible to evaluate growth

and saturation properties of the fastest instabilities as-

sociated with the smallest (convective) dynamical scales

(Sect. 4). Their doubling time, characterising linear error

growth, and their tangent-linear time, characterising the du-

ration of growth in the linear regime, were found to be com-

parable in magnitude, leaving, on the one hand, some theoret-

ical possibilities to make use of some characterisation of the

linear regime to control error growth. On the other hand, both

these resulting characteristic times are quite short (about 2 h)

with respect to lead-time lengths of interest for weather fore-

casting, even if, in principle, still of some interest for now-

casting (6–12 h).

A possibility that would remain open in that context would

be the implementation of a sequence of dynamically con-

sistent analysis steps, with appropriate frequency, say every

hour, with the perspective of attempting control of the assim-

ilation system trajectory.

The forecast error, built in a twin-experiment framework,

has been compared with sets of orthogonalised bred vectors,

and its orthogonal projection onto bred vector subspaces has

been computed (Sect. 6.2).

When the initial error is comparable with the present-day

analysis error, the largest forecast error component on a sub-

space of 12 bred vectors has been found to have a square

norm of about 30 % of the whole square error norm. This

is a remarkable result, considering the huge linear dimen-

sion of the state vector and the limited number of bred vec-

tors used. Another remarkable point is, though, that when

the number of orthogonal bred vectors is increased, the error

component in the BVs subspace does not grow much further.

Slower mesoscale instabilities, not mainly convective, which

remain longer in the linear regime of growth, appear then

to be controllable using a small number of independent di-

rections. The “unexplained” 70 % of (square) forecast error

appears to be distributed on saturated small-scale unstable

structures and on non-growing larger-scale signals present

in the error field, directly inherited from the initial state: a

field of the larger-scale hydrostatic model providing bound-

ary conditions. These last error components could be reduced

or eliminated by assimilating observations, but in fact they

www.nonlin-processes-geophys.net/22/1/2015/ Nonlin. Processes Geophys., 22, 1–13, 2015
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are re-introduced each time the model is restarted from an

external model field.

Starting with a smaller initial error (using a higher rescal-

ing frequency), the “explained” square percentage of fore-

cast error grows very slowly with the number of bred vectors.

The fastest growing, small-scale instabilities (purely convec-

tive), which are also known to saturate quickly, are important

when the error is initially small and appear to be active in

a very large number, impossible to control within a reason-

ably small dimension subspace.

7.1 Error evolution after subtraction of the forecast

error projection onto the bred vector subspace

In a successive experiment, a new state at 03:00 UTC is ob-

tained by taking the vector difference between the 18H con-

trol state and its error projection onto the twelve-dimensional

BV subspace. In this way, the square error of the new state is

30 % smaller than before.

Figure 7 shows the maps of the 18H control state error

(top panel) at 03:00 UTC, of its orthogonal projection onto

the 12 BV subspace (middle panel), and of their difference,

the residual error of the new state (bottom panel). Comparing

the top and bottom panels, it is evident that many structures

disappear. The field in the middle panel shows which error

components are detected by the 12 BV together. Undetected

error components include many very localised signals, but

also a few larger structures (for example, one located in the

northern Apennines).

The (rms) error evolution of the new model trajectory

restarted from this new state is shown in Fig. 8 together

with, for comparison, the error in the 18H control forecast

of Fig. 1. The error appears to grow faster than before: the

new trajectory error reaches, in about 3 h, the level of the un-

perturbed control trajectory, even slightly exceeding it before

settling on a similar behaviour.

After restart, the rms error goes in 3 h from about 0.3 to

about 0.4: this corresponds to a doubling time of about 7 h,

much longer than that estimated in Sect. 4 for the fastest-

growing instabilities, but similar to that of the initial part

of control trajectory R21 started from a small initial error

(Fig. 1). The error reduction obtained by subtracting the er-

ror projection onto the BV subspace brings some small-scale

error features below their saturation level: in this condition,

fast error growth can be fueled by strong instabilities.

We think that we can summarise all this by drawing the

following picture.

Perturbations that grow fast in a non-hydrostatic,

convection-resolving system are associated with small dy-

namical scales, typical of convection. These fast-growing in-

stabilities may be present in a large number and quickly reach

linear growth saturation, and they do this at an error level

smaller than the present-day analysis error. An important

portion of larger-scale instabilities is effectively controlled

by boundary forcing. Between these “extremes”, there exists

Figure 7. Maps of error at 03:00 UTC on horizontal velocity (norm

of two-dimensional vector differences, ms−1). Top: error of con-

trol state 18H (trajectory started with large initial error). Middle:

projection of the error onto the 12 BV subspace. Bottom: difference

between the two above fields, i.e. error of the restart state of Fig. 8.
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(h)

rm
s

Figure 8. Red: rms error evolution of the 18H control trajectory,

same as in Fig. 1. Blue: error of the trajectory restarted after sub-

traction of the orthogonal error component on the 12 bred vectors’

subspace. Times indicated on the x axis correspond to UTC times

on 26 September 2006.

some linear growth, so that part of the error can be estimated

by breeding (30 % of its square norm in this case) and, in

principle, could be eliminated by assimilating observations.

However, after subtracting the BV-estimated component, the

growth of fast instabilities is reactivated and rapidly brings

the error to its previous level in the subsequent free evolution.

This means that it would be necessary to assimilate observa-

tions very frequently, with an interval of the order of 1 h in

the forecast-analysis cycle process, in order at least to con-

trol the error growth of slower instabilities. Moreover, set-

ting up such a forecast-analysis cycle process might in prin-

ciple make unnecessary the periodical restart from an exter-

nal model field (as is customary in the operational practice),

thus avoiding the periodical re-introduction of errors due to

the different nature of the external model solution.

8 Conclusions

In this paper, we have investigated the properties of error evo-

lution in the forecast of a real case study with a convection-

resolving model. We use the model as a laboratory where we

assume that a model trajectory represents the truth and we

can vary the amplitude and structure of the initial condition

error. We produce forecasts that start from two hypothetical

analyses, one with an error comparable to and one with an

error ten times smaller than the present-day analysis error. In

this way, it has been possible to quantify the properties of in-

stabilities with different space scales and timescales that are

representative of the evolution of the forecast error. Accord-

ing to the theory, when the analysis and the ensuing fore-

cast are so accurate as to reproduce the details of the single

convective cells, the error growth rate is that typical of this

phenomenon, while, as the error increases and convective-

scale instabilities saturate, the error growth is due to slower

instabilities. This result is based on the theory of Lyapunov

exponents and vectors that characterise the unstable, neu-

tral and stable subspace of the system. It is impossible to

compute the entire set of Lyapunov vectors with a positive

growth rate that would give us all the information on the in-

stabilities characterising the linear growth regime of the non-

hydrostatic model. To quantify the instabilities, we then used

the breeding technique, which, moreover, enables selection

of those that are relevant for forecast errors of a given typical

amplitude. We tuned the breeding parameters and used dif-

ferent rescaling amplitudes and frequencies to adapt them to

the assumed initial condition error. The results can be sum-

marised as follows. When the initial error is comparable to

the present-day analysis error, the unstable subspace, as esti-

mated with the breeding technique, has the following prop-

erties: the growth rate always decreases with the BV index,

and the number of BVs that are active during the convective

episodes is not extremely large: just one or two in this case,

during the night and the morning; only in the afternoon does

their number increase, to 8 after 12:00 UTC and to 12 (at

least) after 15:00 UTC (Fig. 2), in agreement with the flow-

dependent instabilities evident in the forecast error evolution

(Fig. 1). By projecting the forecast error onto this subspace,

we find that most of the forecast error projection is onto the

leading BVs, and it does not significantly increase when the

number of BVs is raised from 12 to 24. Typical values of

growth rates for the leading BVs are about 0.05–0.07 h−1,

corresponding to doubling times of 10–14 h.

When we decrease the analysis error by 1 order of magni-

tude, we find a completely different scenario. The spectrum

of BVs is flat: there is a large number of BVs with com-

petitive growth rates, three or four times larger than those

found in the previous case (large initial error), corresponding

to doubling times of 2–6 h. In addition, the projection of the

forecast error onto the leading 24 BVs is very small and con-

tinues to increase very slowly and steadily, suggesting the

need for a very large number of BVs to account for even

a small fraction of the forecast error. This makes us believe

that the unstable subspace on the convective scale really has

a very large dimension. The conclusion is that as we attempt

to decrease the analysis error significantly (e.g. by improv-

ing on the quality of observations and assimilation schemes),

the need to increase the number of members in an ensem-

ble forecast or an ensemble-based assimilation scheme may

very well turn out to be so computationally demanding as to

become an insurmountable obstacle.

The situation appears to be different for errors typical of

present-day analysis errors, when the instabilities at play are

not growing so fast, because the fast growth of errors on the

small convective scales is saturated. In this case, we have

seen that a non-negligible fraction of the forecast error is cap-

tured by the BVs.
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We performed an experiment which can be interpreted

as a preliminary test of the expected performance of an as-

similation in the present situation. We assumed a hypothet-

ical assimilation scheme, able to subtract exactly from the

forecast error its projection onto the BV subspace (once as-

signed the subspace where the analysis increment is con-

fined, this would be an upper limit to scheme performance

and observation quality), and looked at the forecast error

of the subsequent free evolution (i.e. after this single “as-

similation” step). A relevant error reduction is obtained (in

this perfect-model, perfect-boundary framework): subtract-

ing 30 % of square norm means reducing the rms “analysis”

error to about 84 % of the rms forecast error. However, af-

ter restart, the fast instabilities again take over and the fore-

cast error recovers its previous levels in a matter of 3 h. This

means that a frequent assimilation, every hour or so, would

be required to control the large-scale, slower instabilities, but

rapid growth should still be expected after each analysis, due

to the action of small-scale fast instabilities. Their large num-

ber makes the possibility of controlling them by data assimi-

lation (by means of a hypothetical “multiple-scale” breeding

or ensemble) particularly challenging.
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