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Abstract. An effective boundary condition (EBC) is intro-
duced as a novel technique for predicting tsunami wave run-
up along the coast, and offshore wave reflections. Numeri-
cal modeling of tsunami propagation in the coastal zone has
been a daunting task, since high accuracy is needed to capture
aspects of wave propagation in the shallower areas. For ex-
ample, there are complicated interactions between incoming
and reflected waves due to the bathymetry and intrinsically
nonlinear phenomena of wave propagation. If a fixed wall
boundary condition is used at a certain shallow depth con-
tour, the reflection properties can be unrealistic. To alleviate
this, we explore a so-called effective boundary condition, de-
veloped here in one spatial dimension. From the deep ocean
to a seaward boundary, i.e., in the simulation area, we model
wave propagation numerically over real bathymetry using ei-
ther the linear dispersive variational Boussinesq or the shal-
low water equations. We measure the incoming wave at this
seaward boundary, and model the wave dynamics towards the
shoreline analytically, based on nonlinear shallow water the-
ory over bathymetry with a constant slope. We calculate the
run-up heights at the shore and the reflection caused by the
slope. The reflected wave is then influxed back into the simu-
lation area using the EBC. The coupling between the numer-
ical and analytic dynamics in the two areas is handled using
variational principles, which leads to (approximate) conser-
vation of the overall energy in both areas. We verify our ap-
proach in a series of numerical test cases of increasing com-
plexity, including a case akin to tsunami propagation to the
coastline at Aceh, Sumatra, Indonesia.

1 Introduction

Shallow water equations are widely used in the modeling
of tsunamis, since their wavelengths (typically 200 km) are
far greater than the depth of the ocean (typically 2–3 km).
Tsunamis also tend to have a small amplitude offshore, which
is why they generally are less noticeable at sea. Linear shal-
low water equations (LSWE) therefore often suffice as a sim-
ple model of tsunami propagation (Choi et al., 2011; Liu et
al., 2009; Kânŏglu and Synolakis, 1998). On the contrary,
it turns out that the lack of dispersion is a shortcoming of
shallow water modeling when the tsunami reaches the shal-
lower coastal waters on the continental shelf, and thus disper-
sive models are often required (Madsen et al., 1991; Horrillo
et al., 2006). Numerical simulations based on these linear
models are desirable because they involve a small amount of
computation. However, as the tsunami approaches the shore,
shoaling effects cause a decrease in the wavelength and an in-
crease in the amplitude. Here, the nonlinearity starts to play
a more important role, and thus the nonlinear terms must be
included in the model. To capture these shoaling effects in
more detail, a smaller grid size will be needed. Consequently,
longer computational times are required.

Some numerical models of tsunamis use nested methods
with different mesh resolutions to preserve the accuracy of
the solution near the coastal area (Titov et al., 2011; Wei et
al., 2008), while other models employ an impenetrable ver-
tical wall at a certain depth contour as the boundary condi-
tion. Obviously, the reflection properties of such a boundary
condition can be unrealistic. We therefore wish to alleviate
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this shortcoming by an investigation of a so-called effective
boundary condition (EBC) (Kristina et al., 2012), including
run-up. In one horizontal spatial dimension, an outline of
the desired mathematical modeling is sketched in Fig.1. In
the deep ocean forx ∈ [B,L] with horizontal coordinatex
and seaward boundary pointx = B, denoted as thesimula-
tion area, we model the wave propagation numerically using
a linear model. In the coastal zone forx ∈ [xs(t),B] with
shoreline positionxs(t) < B, denoted as themodel area, we
model the wave propagation analytically using a nonlinear
model by approximating the bathymetry as a planar beach.
We calculate the run-up heights at the shore and the reflection
caused by the slope. The reflected wave is then influxed back
into the simulation area using the EBC. The coupling be-
tween the numerical and analytic dynamics in the two areas
is handled using variational principles, which leads to (ap-
proximate) conservation of the overall energy in both areas.
Following Kristina et al.(2012), an observation and influx
operator are defined atx = B to measure the incoming wave
signal and to influx the reflected wave, respectively.

The shoreline position and wave reflection in the model
area (sloping region) are determined using an analytical so-
lution of the nonlinear shallow water equations (NSWE) fol-
lowing the approach ofAntuono and Brocchini(2010) for
unbroken waves. The decomposition of the incoming wave
signal and the reflected one is also described inAntuono and
Brocchini (2007, 2010) for the calculation of the shoreline
and the wave reflection. Nevertheless, the method in their pa-
per is applied by determining the incoming wave signal with
the solution of the Korteweg–de Vries (KdV) equation. The
novelty of our approach is the utilization of an observation
operator at the boundaryx = B to calculate the incoming
wave elevation towards the shore from the numerical solu-
tion of the LSWE in the simulation area. For any given wave
profile and bathymetry in the simulation area, the numerical
solution can be calculated, and the signal arriving atx = B

can be observed. Afterwards, the data are used to calculate
the analytical solution of the NSWE in the onshore region
and the reflected waves.

A rapid method for estimating tsunami run-up heights
is also suggested byChoi et al.(2011, 2012) by imposing
a hard-wall boundary condition atx = B. Giving the wa-
ter wave oscillations at this hard wall atx = B, the max-
imum run-up height of tsunami waves at the coast is sub-
sequently calculated separately by employing a linear ap-
proach. It is claimed that the linear and nonlinear theories
predict the same maximal values for the run-up height if the
incident wave is determined far from the shore (Synolakis,
1987). In contrast,Li and Raichlen(2001) show that there
is a difference in the maximum run-up prediction between
linear and nonlinear theory. In addition to calculating only
the maximum run-up height as in Choi’s method, our EBC
also includes the calculation of reflected waves. The point-
wise wave height in the whole domain (offshore and onshore
area) is thus predicted accurately. For the inundation predic-

Figure 1. At the seaward boundaryx = B, we assign (η, u) data,
and we want to find a solution of the NSWE on the sloping region
near the shoreline.

tion, we have verified that the method introduced byChoi et
al. (2011, 2012) performs as well as our EBC method, while
the reflection wave comparisons show larger discrepancies
due to the usage of a hard-wall boundary condition. The in-
teraction between incoming and reflected waves needs to be
predicted accurately, since subsequent waves may cause dan-
ger at later times.Stefanakis et al.(2011) investigate the fact
that resonant phenomena between the incident wavelength
and the beach slope are found to occur. The resonance hap-
pens due to incoming and reflected wave interactions, and
the actual amplification ratio depends on the beach slope. It
explains why in some cases it is not the first wave that results
in the highest run-up.

Determination of the location of the seaward boundary
point x = B is another issue that must be addressed.Choi
et al. (2011) put the impermeable boundary conditions at a
5–10 m depth contour. In comparison,Didenkulova and Peli-
novsky(2008) show that their run-up formula for symmetric
waves gives optimal results when the incoming wave sig-
nal is measured at a depth that is two-thirds of the maxi-
mum wave height. We determine the location of this sea-
ward boundary as the point before the nonlinearity effect
arises, and examine the dispersion effect at that point as well.
Considering the simple KdV equation (Mei, 1989), the mea-
sures of nonlinearity and dispersion are given by the ratios
ε = A/h andµ2

= (kh)2 for the wave amplitudeA, water
depthh, and wavenumberk. Provided with the information
of the initial wave profile, we can calculate the amplification
of the amplitude and the decrease in the wavelength in a lin-
ear approach, and thereafter estimate the location of the EBC
point.

The EBC in this article will be derived in one spatial
dimension for reasons of simplicity and clarity of expo-
sure. The numerical solution in the simulation area is based
on a variational finite element method (FEM). In order to
verify the EBC implementation that employs this asymp-
totic closed-form solution, we also numerically simulate the
NSWE in the model area using a finite volume method
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(FVM). Both cases are coupled to the simulation area to com-
pare the results. We also validate our approach against the
laboratory experiment ofSynolakis(1987). In Sect.2, we in-
troduce the linear variational Boussinesq model (LVBM) and
shallow water equations (SWE), both linear and nonlinear,
from their variational principles. The coupling conditions re-
quired at the seaward boundary point are also derived here.
The solution of the NSWE using a method of characteris-
tics is shown in Sect.3, which includes the solution of the
shoreline position. In Sect.4, the effective boundary condi-
tion is derived. It pinpoints the newly derived coupling con-
ditions between the finite element simulation area and the
model area. Numerical validation and verification are shown
in Sect.5, and we conclude in Sect.6.

2 Water wave models

Our primary goal is to model the water wave motion to the
shore analytically, instead of resolving the motion in these
shallow regions numerically. We therefore introduce an arti-
ficial open boundary at some depth, and wish to determine an
effective boundary condition at this internal boundary. Con-
sider motion in a vertical plane normal to the shore, with an
offshore coordinatex. The artificial boundary is then placed
at x = B, while the real (time-dependent) boundary lies at
x = xs(t) with xs(t) < B. For example, at rest, land starts at
x = 0, where the total water depthh(0, t) is zero. This water
line is time dependent, as the wave can move up and down
the beach.

We will restrict our attention to the dynamics in a verti-
cal plane with horizontal and vertical coordinatesx and z,
respectively. Nonlinear potential flow water waves are suc-
cinctly described by variational principles as follows (Luke,
1967; Zakharov, 1968; Miles, 1977):

0 = δ

T∫
0

L [φ,8,η,xs] dt

= δ

T∫
0

L∫
xs

(
φ∂tη−

1

2
g
(
(h+ b)2 − b2

)

−

η∫
−hb

1

2
|∇8|

2dz
)
dxdt (1)

with velocity potential8=8(x,z, t) and surface poten-
tial φ(x, t)=8(x,z= η, t), whereη = h−hb is the wave
elevation andh= h(x, t) the total water depth above the
bathymetryb = −hb(x), withhb(x) the rest depth. Time runs
from t ∈ [0,T ]; partial derivatives are denoted by∂t , etc., the
gradient in the vertical plane by∇ = (∂x,∂z)

T , and the ac-
celeration of gravity byg.

The approximation for the velocity potential8 in Eq. (1)
can be of various kinds, but all are based on the idea of re-
stricting the class of wave motions to a class that contains the
wave motions one is interested invan Groesen(2006),Cotter
and Bokhove(2010), andGagarina et al.(2013). Following
Klopman et al.(2010), we approximate the velocity potential
as follows:

8(x,z, t)= φ(x, t)+F(z)ψ(x, t) (2)

for a functionF = F(z). Its suitability is determined by in-
sisting thatF(η)= 0, such thatφ is the potential at the loca-
tion z= η of the free surface and satisfies the slip flow con-
dition at the bottom boundaryz+hb(x)= 0. The latter kine-
matic condition yields∂z8+ ∂x8∂xhb = 0 at z= −hb(x).
For a slowly varying bottom topography, this condition is ap-
proximated by

(∂z8)z=−hb(x)
= F ′ (−hb)ψ = 0. (3)

Substitution of Eq. (2) into Eq. (1) yields the variational
principle for Boussinesq equations, as follows (Klopman et
al., 2010):

0 = δ

T∫
0

L [φ,ψ,η,xs] dt

= δ

T∫
0

L∫
xs

(
φ∂tη−

1

2
g
(
(h+ b)2 − b2

)
−

1

2
(η+hb) |∂xφ|

2

− β̆∂xψ∂xφ−
1

2
ᾰ|∂xψ |

2
−

1

2
γ̆ ψ2

)
dxdt , (4)

where functionsβ̆(x), ᾰ(x), andγ̆ (x) are given by

β̆(x)=

η∫
−hb

Fdz, ᾰ(x)=

η∫
−hb

F 2dz, γ̆ (x)=

η∫
−hb

(F ′)2dz . (5)

The shallow water equations (SWE) are derived with the as-
sumption that the wavelengths of the waves are much larger
than the depth of the fluid layer, so that the vertical varia-
tions are small and will be ignored. In this case, there is no
dispersive effect. The velocity potential is approximated over
depth by its value at the surface, such thatF(z)= 0. Hence,
whenβ̆ = ᾰ = γ̆ = 0 in Eq. (4), the nonlinear shallow water
equations are obtained as a limiting system.

We a priori divide the domain into two intervals:x ∈

[B,L], where we model the wave propagation linearly, and
x ∈ [xs(t),B], where we keep the nonlinearity. To be pre-
cise, in the simulation areax ∈ [B,L], we linearize the equa-
tions, and thus the wave propagation in this domain is mo-
deled by the linear shallow water shallow water equations
or the linear yet dispersive Boussinesq model. In the model
areax ∈ [xs(t),B], we only consider depth-averaged shal-
low water flow. The non-dispersive and nonlinear shallow
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water equations are thus used to model the wave propaga-
tion in this region. Hereafter, we writĕφ andη̆ for the linear
variables. Consequently, by applying the corresponding ap-
proximations to variational principle (4), the (approximated)
variational principle becomes

0 = δ

T∫
0

L
[
φ̆, ψ̆, η̆,φ,η,xs

]
dt (6a)

= δ

T∫
0

[ L∫
B

(
φ̆∂t η̆−

1

2
gη̆2

−
1

2
hb|∂x φ̆|

2
− β̆∂xψ̆∂x φ̆

−
1

2
ᾰ|∂xψ̆ |

2
−

1

2
γ̆ ψ̆2

)
dx

+

B∫
xs

(
φ∂tη−

1

2
g
(
(h+ b)2 − b2

)
−

1

2
(η+hb) |∂xφ|

2
)

dx
]
dt . (6b)

We choose a parabolic profile functionF(z;hb)=

2z/hb + z2/h2
b, in which thex dependence is considered to

be parametric when the total water depthh is sufficiently
slowly varying. The coefficients in Eq. (5) simplify to their
linearized counterparts in the simulation area where the lin-
ear Boussinesq equations hold (while these coefficients dis-
appear in the model area where the nonlinear depth-averaged
shallow water equations hold)

ᾰ = ᾰ(x)=

0∫
−hb

F 2dz=
8

15
hb ,

β̆ = β̆(x)=

0∫
−hb

Fdz= −
2

3
hb ,

γ̆ = γ̆ (x)=

0∫
−hb

(F ′)2dz=
4

3hb
. (7)

The variations in Eqs. (6) yield

0 = lim
ε→0

1

ε

T∫
0

L
[
φ̆+ εδφ̆, ψ̆ + εδψ̆, η̆+ εδη̆,φ+ εδφ ,

η+ εδη,xs+ εδxs

]
−L

[
φ̆, ψ̆, η̆,φ,η,xs

]
dt (8a)

=

T∫
0

[ L∫
B

((
∂t η̆+ ∂x(hb∂x φ̆)+ ∂x(β̆∂xψ̆)

)
δφ̆

− (∂t φ̆+ gη̆)δη̆+ (∂x(ᾰ∂xψ̆)+ ∂x(β̆∂x φ̆)− γ̆ ψ̆)δψ̆
)
dx

+ (hb∂x φ̆+ β̆∂xψ̆)δφ̆|x=B + (ᾰ∂xψ̆ + β̆∂x φ̆)δψ̆ |x=B

+

B∫
xs

((
∂tη+ ∂x ((η+hb)∂xφ)

)
δφ− (∂tφ+ gη

+
1

2
∂2
xφ)δη

)
dx− (η+hb)∂xφδφ|x=B

+ (φδη)|x=xs

dxs

dt
− (φ∂tη)|x=xsδxs

]
dt, (8b)

where we used the endpoint conditionsδη(0)= δη(T )=

0, and no-normal through-flow conditions atx = L and
h(xs(t), t)= 0. Since the variations are arbitrary, the linear
equations emerging from Eq. (8b) for x ∈ [B,L] are as fol-
lows:

∂t φ̆+ gη̆ = 0, (9a)

∂t η̆+ ∂x(hb∂x φ̆)+ ∂x(β̆∂xψ̆)= 0, (9b)

∂x(ᾰ∂xψ̆)+ ∂x(β̆∂x φ̆)− γ̆ ψ̆ = 0, (9c)

and forx ∈ [xs(t),B], we get the nonlinear equations of mo-
tion

∂tφ+ gη+
1

2
∂2
xφ = 0, (10a)

∂tη+ ∂x ((η+hb)∂xφ)= 0. (10b)

The last two terms in Eq. (8b) are the boundary terms at
x = xs. They can be rewritten as follows:

T∫
0

[
(φδη) |x=xs

dxs

dt
−(φ∂tη) |x=xsδxs

]
dt

=

T∫
0

[(
−φ∂x (η+hb)

dxs

dt
−φ∂tη

)
δxs

]
x=xs

dt, (11)

since the total depth ish(xs, t)= η(xs, t)+hb(xs)= 0 at
the shoreline boundary. We therefore have the relation 0=

δh(xs, t)= δh+ ∂xhδxs = δη+ ∂x (η+hb)δxs. Substituting
Eq. (10b) into Eq. (11), the boundary condition at the shore-
line is

dxs

dt
= ∂xφ at x = xs(t) ; (12)

i.e., the velocity of the shoreline equals the horizontal ve-
locity of the fluid particle. The underlined terms in Eq. (8b)
apply at the seaward point, where we want to derive the cou-
pling of the effective boundary conditions. To derive the con-
dition for the linear model, the goal is to write these terms
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using the variationsδφ̆ andδψ̆ . Because the depth-averaged
shallow water equations are considered, we have

φ(x, t)= 8̄(x, t)=
1

hb

0∫
−hb

8(x,z, t)dz= φ̆+
β̆

hb
ψ̆ , (13)

where the last equality arises from approximation (2) for the
velocity potential. The variation ofδφ thus becomes

δφ = δφ̆+
β̆

hb
δψ̆ . (14)

Substituting this into Eq. (8b), we get the coupling condition
atx = B for the linear model as follows:

hb∂x φ̆+ β̆∂xψ̆ = h∂xφ (15a)

ᾰ∂xψ̆ + β̆∂x φ̆ =
β̆

hb
h∂xφ . (15b)

To derive the condition for the nonlinear shallow water
model, we use the approximation for the velocity poten-
tial (2) again. SinceF(z= η)= 0 at the surface, we have
φ = φ̆ and thusδφ = δφ̆. From Eq. (8b), the coupling condi-
tion for a nonlinear model is given by

h∂xφ = hb∂x φ̆+ β̆∂xψ̆ . (16)

Note that the coupling conditions (15)–(16) are used to
transfer the information between the two domains. Coupling
condition (15) gives the information of̆φ and ψ̆ in the si-
mulation area, provided the information ofφ from the model
area is given. Meanwhile, coupling condition (16) gives the
information ofφ in the model area, provided the information
of φ̆ andψ̆ from the simulation area is given.

3 Nonlinear shallow water equations

3.1 Characteristic form

We will start with the NSWE in the shore region. Using
η = −hb +h and velocityu= ∂xφ, we may rewrite Eq. (10)
as follows (starred variables are used here for later conve-
nience):

∂t?h
?
+ ∂x?

(
h?u?

)
= 0 (17a)

∂t?u
?
+ u?∂x?u

?
= −g?∂x?

(
−h?b +h?

)
. (17b)

The dimensionless form of Eq. (17) for a still water depth
h?b = γ ?x? (whereγ ? = tanθ is the beach slope) is obtained
by using the scaling factors (Brocchini and Peregrine, 1996)

h=
h?

h0
,u=

u?

u0
,x =

x?

l0
, t =

t?

t0
, (18)

in whichh0 is the still water depth at the seaward boundary,
andu0, l0, andt0 are defined below as

u0 =

√
g?h0

g
, l0 =

h0γ

γ ?
, t0 =

γ

γ ?

√
gh0

g?
, (19)

whereg = 1 andγ = 1 are dimensionless gravity accelera-
tion and beach slope, respectively. The NSWE in dimension-
less form are then given by

∂th+ ∂x (hu)= 0 (20a)

∂tu+ u∂xu= gγ − g∂xh. (20b)

The asymptotic solution of this system of equations for
wave propagation over sloping bathymetry has been given
for several initial-value problems using a hodograph trans-
formation (Carrier and Greenspan, 1958; Synolakis, 1987;
Pelinovsky and Mazova, 1992; Carrier et al., 2003; Kânŏglu,
2004), and also for the boundary-value problem (Antuono
and Brocchini, 2007; Li and Raichlen, 2001; Madsen and
Schaffer, 2010) that will be used in this article. Since the sys-
tem is hyperbolic, it has the following characteristic forms:

dα

dt
= 0 on

dx

dt
= u− c (21a)

dβ

dt
= 0 on

dx

dt
= u+ c, (21b)

in which c =
√
gh,

α = 2c− u+ gγ t, andβ = 2c+ u− gγ t. (22)

Variablesα andβ are the so-called Riemann invariants, since
they do not change their value along the characteristic curves
in Eq. (21). Assuming the flow to be subcritical (that is,|u|<

c), the first characteristic curves withu− c < 0 are called
“incoming”, since they propagate signals towards the shore.
The second ones withu+ c > 0 are called “outgoing”, since
they move towards the deeper waters (carrying information
on the wave reflection over the sloping region).

3.2 A trivial solution of the characteristic curve

In the trivial case of no motion (u= η ≡ 0), as well as in
the dynamic case presented later, we focus on the incoming
characteristic curve. In the rest case, it is given by

dx

dt
= −

√
gγ x. (23)

For x 6= 0, substitutingy =
√
gγ x results in the general so-

lution for variabley as follows:

y = −
1

2
gγ t +C2, (24)
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with a constantC2. When the curve intersectsx = B at time
t = τ , with h0 the depth atx = B such thath0 = γB and
y(B)=

√
gγB = c0, the particular solution is given by

y =
2c0 − gγ (t − τ)

2
. (25)

In the case of no motion, the boundary dataα = α0(τ ) and
β = β0(τ ) are as follows:

α0 = 2c0 + gγ τ, β0 = 2c0 − gγ τ . (26)

Transforming back to thex variable while using these ex-
pressions, we get the incoming characteristic curve

x =
1

4gγ
(gγ t −α0)

2
=
gγ (2ω− (t − τ))2

4
(27)

with ω = c0/(gγ ). Along this characteristic curve, the
Riemann invariant is constant.

Figure 2 shows the characteristic curves of the dimen-
sionless NSWE over sloping bathymetryb(x)= −x for x ∈

[0,1], and LSWE over flat bathymetryh0 = 1, B = 1 for
x ∈ [1,2]. As in our previous paper (Kristina et al., 2012), the
characteristic curves of the LSWE are given by dx/dt = ±c0.
The “incoming” and “outgoing” characteristic curves are
shown by the solid and dashed lines, respectively.

For each characteristic curve (27), the location of the
shoreline can be determined by looking for theτ = τs for
which the characteristic reaches the shoreline position, here
x = 0, at timet . It is given by the condition

∂x

∂τ
= 0, so thatτs = t − 2ω. (28)

As displayed in Fig.2, the incoming characteristic curves
that reach the shoreline at timet intersectx = B = 1 at time
τ = t − 2 (ω = 1 in this case). Sinceu equals zero in the rest
case, the boundary condition (12) is of course satisfied.

3.3 Boundary value problem (BVP)

Li and Raichlen(2001) andSynolakis(1987) combine linear
and nonlinear theory to reduce the difficulties in the assign-
ment of the boundary data for solving the BVP problem in
the NSWE. Later, it is shown that the proper way to solve the
assignment problem without using linear theory at all is not
given in terms ofη or u (Antuono and Brocchini, 2007), but
in terms of the incoming Riemann variableα. This article fol-
lows the approach ofAntuono and Brocchini(2010), who use
this incoming Riemann variable as boundary data and solve
the dimensionless NSWE by direct use of physical variables
instead of using the hodograph transformation introduced by
Carrier and Greenspan(1958). We do, however, clarify the
mathematics of the boundary condition at the shoreline.

Given the data ofη andu at the seaward boundaryx = B,
for all time t , we want to find a solution of the NSWE in
the sloping region to the shoreline, including the reflected
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Fig. 2. Plot of the characteristic curves in case of no motion
(η = u= 0) for the dimensionless NSWE over sloping bathymetry
b(x) =−x for x ∈ [0,1] and LSWE over flat bathymetry h0 = 1,
B = 1 for x ∈ [1,2]. The ”incoming” and ”outgoing” characteristic
curves are shown by the solid and dashed lines, respectively. The
shoreline x= 0 can be seen as the envelope of the characteristic
curves themselves.

As in our previous paper (Kristina et al., 2012), the charac-
teristic curve of the LSWE are given by dx/dt=±c0. The405

“incoming” and “outgoing” characteristic curves are shown
by the solid and dashed lines respectively.

For each characteristic curve (27), the location of the
shoreline can be determined by looking for the τ = τs for
which the characteristic reaches the shoreline position, here410

x= 0, at time t. It is given by the condition

∂x

∂τ
= 0 so that τs = t− 2ω. (28)

As displayed in Fig. 2, the incoming characteristic curves
that reach the shoreline at time t, intersect x=B = 1 at time415

τ = t− 2 (ω = 1 in this case). Since u= 0 in the rest case,
the boundary condition (12) is of course satisfied.

3.3 Boundary Value Problem (BVP)

Li and Raichlen (2001) and Synolakis (1987) combine linear
and nonlinear theory to reduce the difficulties in the assign-420

ment of the boundary data for solving the BVP problem in
the NSWE. Later, it is shown that the proper way to solve the
assignment problem without using linear theory at all is not
given in terms of η or u (Antuono and Brocchini, 2007) but in
terms of the incoming Riemann variable α. This article fol-425

lows the approach of Antuono and Brocchini (2010) who use
this incoming Riemann variable as boundary data and solve
the dimensionless NSWE by direct use of physical variables
instead of using the hodograph transformation introduced by
Carrier and Greenspan (1957). We do, however, clarify the430

mathematics of the boundary condition at the shoreline.
Given the data of η and u at the seaward boundary x=B,

for all time t, we want to find a solution of the NSWE in
the sloping region to the shoreline including the reflected
waves traveling back into the deeper waters. If the sea is as-435

sumed in the rest state during the initial condition, the data

of η(B,t)=u(B,t)=0 for t < 0. In accordance to the previous
trivial case, the initial time where a characteristic meets x=
B is labeled as τ and we write x= χ(t,τ), so we have the
data α= α0 ≡ 2c(B,τ)−u(B,τ)+gγτ along the incoming440

characteristic curves and β = β0 ≡ 2c(B,τ)+u(B,τ)−gγτ
along the outgoing characteristic curves. Then we can rewrite
Eq. (21) as

α= α0 on curves such that χt = u− c=
β− 3α0

4
+ gγt

(29a)

β = β0 on curves such that χt = u+ c=
3β0−α

4
+ gγt,

(29b)

445

which means that the boundary values are carried by the in-
coming and outgoing characteristic curves. To be concise,
we write χt = ∂tχ and χτ = ∂τχ. Our aim is to obtain a
closed equation for the dynamics and we focus on the incom-450

ing characteristic by fixing α= α0. We can rewrite Eq. (29a)
as follows

β = 3α0 + 4(χt− gγt). (30)

Here β = β(χ,t) since we are moving along an incoming455

characteristic curve. By taking the total t derivative of β, we
obtain
dβ

dt
= βt +βxχt = βt +

(
β− 3α0

4
+ gγt

)
βx = 4(χtt− gγ) ,

(31)

in which the last equality comes from Eq. (30). In addition,460

the τ -derivative of Eq. (30) gives

∂β

∂τ
= βxχτ = 3α̇0 + 4χtτ ⇒ βx =

3α̇0 + 4χtτ
χτ

. (32)

We still need an explicit expression for βt which can be ob-
tained by rewriting Eq. (21b) in the following way465

βt +

(
3β−α0

4
+ gγt

)
βx = 0 . (33)

Combining Eqs. (31)–(33), we get the following differen-
tial equation for the incoming characteristic curves:

2χτ (χtt− gγ) = (4χtτ + 3α̇0)(gγt−α0−χt) for t > τ
(34a)

470

with boundary conditions

χ|t=τ =B (34b)
χτ |τ=τs = 0 . (34c)

475

The second boundary condition is the shoreline boundary
condition. We have 4c= α+β from Eq. (22), which implies
β =−α at the shoreline c= 0. Using Eq. (30), we note that
4c= α0 +β = 4(α0 +χt−gγt) = 0 at the shoreline. Hence,
the right-hand-side of Eq. (34a) is zero, such that for con-480

sistency χτ must be zero at the shoreline since generally
χtt 6= gγ.

Figure 2. Plot of the characteristic curves in the case of no motion
(η = u= 0) for the dimensionless NSWE over sloping bathymetry
b(x)= −x for x ∈ [0,1] and LSWE over flat bathymetryh0 = 1,
B = 1 for x ∈ [1,2]. The “incoming” and “outgoing” characteristic
curves are shown by the solid and dashed lines, respectively. The
shorelinex = 0 can be seen as the envelopes of the characteristic
curves themselves.

waves traveling back into the deeper waters. If the sea is as-
sumed in the rest state during the initial condition, the data
areη(B, t)= u(B, t)= 0 for t < 0. In accordance to the pre-
vious trivial case, the initial time where a characteristic meets
x = B is labeled asτ , and we writex = χ(t,τ ), so we have
the dataα = α0 ≡ 2c(B,τ)−u(B,τ)+gγ τ along the incom-
ing characteristic curves andβ = β0 ≡ 2c(B,τ)+u(B,τ)−
gγ τ along the outgoing characteristic curves. We can then
rewrite Eq. (21) as

α = α0 on curves such thatχt=u−c=
β−3α0

4
+gγ t, (29a)

β = β0 on curves such thatχt=u+c=
3β0−α

4
+gγ t, (29b)

which means that the boundary values are carried by the in-
coming and outgoing characteristic curves. To be concise, we
write χt = ∂tχ andχτ = ∂τχ . Our aim is to obtain a closed
equation for the dynamics, and we focus on the incoming
characteristic by fixingα = α0. We can rewrite Eq. (29a) as
follows:

β = 3α0 + 4(χt − gγ t) . (30)

Here,β = β(χ, t), since we are moving along an incoming
characteristic curve. By taking the totalt derivative ofβ, we
obtain

dβ

dt
= βt +βxχt = βt +

(
β − 3α0

4
+ gγ t

)
βx

= 4(χt t − gγ ) , (31)

in which the last equality comes from Eq. (30). In addition,
theτ derivative of Eq. (30) gives

∂β

∂τ
= βxχτ = 3α̇0 + 4χtτ ⇒ βx =

3α̇0 + 4χtτ
χτ

, (32)
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in which α̇0 = ∂τα0.
We still need an explicit expression forβt , which can be

obtained by rewriting Eq. (21b) in the following way:

βt +

(
3β −α0

4
+ gγ t

)
βx = 0. (33)

Combining Eqs. (31)–(33), we get the following differen-
tial equation for the incoming characteristic curves:

2χτ (χt t−gγ )=(4χtτ+3α̇0)(gγ t−α0−χt ) for t > τ,
(34a)

with boundary conditions

χ |t=τ = B (34b)

χτ |τ=τs = 0. (34c)

The second boundary condition is the shoreline boundary
condition. We have 4c = α+β from Eq. (22), which implies
β = −α at the shorelinec = 0. Using Eq. (30), we note that
4c = α0+β = 4(α0+χt −gγ t)= 0 at the shoreline. Hence,
the right-hand side of Eq. (34a) is zero, such that for con-
sistency,χτ must be zero at the shoreline, since generally,
χt t 6= gγ .

3.3.1 Perturbation expansion

Due to the nonlinearity inχ , we use a perturbation method to
solve Eq. (34). We expand it in a perturbation series around
the rest solution (27), with the assumption of small data at
x = B. Using the linearity ratioε = A/h0 (A is the wave
amplitude), we say a wave is small ifε � 1, and expand as
follows:

α0 = α0,0 + εα0,1 +O(ε2), (35a)

χ = χ (0)+ εχ (1)+O(ε2), (35b)

τs = τ0(t)+ ετ1(t)+O(ε2), (35c)

in whichα0,0 = 2c0+gγ τ is the incoming Riemann invariant
in case of no motion,χ (0) is given by Eq. (27), and τ0 =

t − 2ω. By substituting Eq. (35) into Eq. (34), we obtain at
first order inε:

(2ω− t + τ)
(
χ
(1)
tt + 2χ (1)tτ

)
−

(
χ (1)τ −χ

(1)
t −α0,1

)
+

3

2
(2ω− t + τ) α̇0,1 = 0, (36a)

χ
(1)
t=τ = 0, (36b)

χ (0)ττ (t,τ0)τ1 +χ (1)τ (t,τ0)= 0. (36c)

By letting ϒ (1) equalχ (1)− (2ω− t + τ)α0,1/2, we can
rewrite Eq. (36a) as

(2ω− t + τ)(ϒ
(1)
tt + 2ϒ (1)tτ )−ϒ

(1)
τ +ϒ

(1)
t = 0. (37)

We then make the change of variablesν = −(2ω− t+τ) and
ξ = τ , and Eq. (37) becomes

ν
(
2ϒ (1)νξ −ϒ (1)νν

)
− 2ϒ (1)ν +ϒ

(1)
ξ = 0. (38)

Denoting the Fourier transformF(·) with respect toξ ,

ρ(1)(ν,s)= F
(
ϒ (1)(ν,ξ)

)
(s)=

∞∫
−∞

ϒ (ν,ξ)e−isξdξ , (39)

we obtain from Eq. (38) a differential equation related to a
Bessel equation:

ν
(
2isρ(1)ν − ρ(1)νν

)
− 2ρ(1)ν + isρ(1) = 0, (40)

which has the general solution

ρ(1)(ν,s)= eisν
(
A1(s)

[
J0(sν)− iJ1(sν)

]
+A2(s) [iY0(sν)+Y1(sν)]

)
, (41)

with J0,1 andY0,1 the Bessel functions of the first and second
kinds. To recoverϒ(ν,ξ), we just need to take the inverse
Fourier transform of Eq. (41), and by usingϒ (1) = χ (1)+

να0,1/2, we get

χ (1) (ν,ξ)=
1

2π

∞∫
−∞

eis(ν+ξ)
(
A1(s)

[
J0(sν)− iJ1(sν)

]
+A2(s)

[
iY0(sν)+Y1(sν)

])
ds−

ν

2
α0,1, (42)

with ξ = τ ≤ t .

3.3.2 Boundary value assignment

In order to calculate the unknown functionsA1(s) andA2(s),
we need to assign the boundary conditions (34). In (ν,ξ)
space,t = τ corresponds toν = −2ω, and by imposing the
first boundary condition, we get

−F
(
α0,1

)
ωe2isω

= A1(s) [J0 (2sω)+ iJ1 (2sω)]

+A2(s) [iY0 (2sω)−Y1 (2sω)] . (43)

The second boundary condition is given by Eq. (36c), in
which

χ (1)τ = −χ (1)ν +χ
(1)
ξ

=
i

2π

∞∫
−∞

eis(ν+ξ)
(
A1(s)

[
sJ0(sν)−isJ1(sν)−

J1(sν)

ν

]
+A2(s)

[
isY0(sν)+ sY1(sν)+

Y1(sν)

iν

])
ds

+
α0,1

2
−
να̇0,1

2
, (44)
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is evaluated atτ = τ0; i.e., ν = 0 needs to be finite. Evalu-
ating Eq. (44) at ν = 0 gives us convergence when the co-
efficientA2(s) is zero, which avoids an unbounded result.
Hence, from the first boundary condition (36b), coefficient
A1(s) is given by

A1(s)= −
F(α0,1)ωe

2isω

J0(2sω)+ iJ1(2sω)
. (45)

The solution of the incoming characteristic curves at first or-
der is thus given by

χ (1)(ν,ξ)

= −
1

2π

∞∫
−∞

eis(ν+ξ+2ω)ωF
(
α0,1

) J0(sν)− iJ1(sν)

J0(2sω)+ iJ1(2sω)
ds

−
ν

2
α0,1 . (46)

The shoreline position must satisfyχτ |τ=τs = 0, and in the
first-order approximation, it is given by

xs(t)=χ (0) (t,τ0)+ ε
[
χ (0)τ (t,τ0)τ1 +χ (1) (t,τ0)

]
+O

(
ε2
)
. (47)

Sinceτ = τ0 corresponds toν = 0 andξ = t − 2ω, we get

xs(t)= −F−1
[
F
(
α0,1

) ω

J0 (2sω)+ iJ1 (2sω)

]
. (48)

4 Effective boundary condition

4.1 Finite element implementation

The regionx ∈ [B,L] will be approximated using a classical
Galerkin finite element expansion. We use first-order spline
polynomials onN elements withj = 1, . . . ,N+1 nodes. The
variational structure is simply preserved by substituting the
expansions

φ̆h(x, t)= φj (t)ϕj (x), ψ̆h(x, t)= ψj (t)ϕj (x) , and

η̆h(x, t)= ηj (t)ϕj (x) (49a)

into Eq. (6) for x ∈ [B,L] concerningN elements and(N +

1) basis functionsϕj . We used the Einstein summation con-
vention for repeated indices.

To ensure continuity and a unique determination, we em-
ploy Eq. (13) and substitute

φ(x, t)= φ̃(x, t)+φ1(t)ϕ1(x)+
β̃

hb
ψ1(t)ϕ1(x) and

η(x, t)= η̃(x, t)+ η1(t)ϕ1(x), (49b)

with ϕ1 the basis function in element 0 forx ∈ [xs,B], and
with φ̃(B, t)= η̃(B, t)= 0. For linear polynomials, the use

of Eq. (49) in Eq. (6) yields

0 =δ

T∫
0

[
Mklφk η̇l −

1

2
gMklηkηl −

1

2
Sklφkφl

− Bklψkφl −
1

2
Aklψkψl −

1

2
Gklψkψl

+

B∫
xs

(
φ∂tη−

1

2
gη2

−
1

2
h(∂xφ)

2
)
dx
]
dt (50a)

=

T∫
0

[
(Mkl η̇l−Sklφl−Bklψl)δφk−(Mkl φ̇k+gMklηk)δηl

−(Aklψl+Bklφl + Gklψl)δψk

+

B∫
xs

((
∂tη+ ∂x(h∂xφ)

)
δφ̃− (∂tφ+ gη+

1

2
∂2
xφ)δη̃

)
dx

+ (φδη) |x=xs

dxs

dt
− (φ∂tη) |x=xsδxs

+

B∫
xs

(
(∂tη+ ∂x(h∂xφ))ϕ1δφ1 − (∂tφ+ gη+

1

2
∂2
xφ)ϕ1δη1

)
dx

−h∂xφ|x=Bδφ1 −
β̃

hb
h∂xφ|x=Bδψ1

]
dt, (50b)

where we introduced mass and stiffness matricesMkl , Skl ,
Akl , Bkl , and Gkl , and used endpoint conditionsδηk(0)=

δηk(T )= 0, connection conditionsδη̃(B, t)= δφ̃(B, t)=

δψ̃(B, t)= 0, and no-normal through-flow conditions atx =

L. The matrices in Eq. (50) are defined as follows:

Mkl =

L∫
B

ϕkϕldx, Skl =

L∫
B

h∂xϕk∂xϕldx,

Akl =

L∫
B

ᾰ∂xϕk∂xϕldx, Bkl =

L∫
B

β̆∂xϕk∂xϕldx,

and Gkl =

L∫
B

γ̆ ϕkϕldx. (51)

Provided we let the size of the zeroth element go to zero such
that the underlined terms in Eq. (50b) vanish, the equations
arising from Eq. (50) are

Mkl η̇l − Sklφl − Bklψl − δk1 (h∂xφ) |x=B− = 0 (52a)

Mkl φ̇k + gMklηk = 0 (52b)

Aklψl + Bklφl + Gklψl − δk1

( β̃
hb
h∂xφ

)
|x=B− = 0, (52c)
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with Kronecker delta symbolδkl (one whenk = l, and zero
otherwise) and Eq. (10) for x ∈ [xs,B] with boundary condi-
tion (12). Taking this limit does not jeopardize the time step,
as this zeroth element lies in the continuum region, in which
the resolution is infinite. The time integration is solved using
ode45 in MATLAB, which uses its internal time step.

From Eq. (52), we note that we need the depthh and the
velocity u from the nonlinear model atx = B, whose val-
ues are given at timet = τ in the characteristic space. The
definitions (22), while usingα = α0 andβ in Eq. (30) with
expansions up to first order, yield

h= c2/g =
1

16g
(α0 +β)2

=
(
α0,0 +χ

(0)
t − gγ t + ε

(
α0,1 +χ

(1)
t

))2
/g

=
(
α0,0 +

gγ t−α0,0

2
−gγ t+ε

(
α0,1+χ

(1)
t

))2
/g

=
(
c0 +

1

2
gγ (τ − t)+ ε

(
α0,1 +χ

(1)
t

))2
/g (53a)

u= gγ t +
1

2

(
β −α0

)
= ε

(
α0,1 + 2χ (1)t

)
. (53b)

Note that forε = 0, we indeed find the rest depthhb(x)=

γ x. The functionχ (1)t follows from evaluation of Eq. (46),
and sincet = τ is equivalent toν = −2ω, we immediately
obtain

χ
(1)
t |t=τ ≡ χ (1)ν (−2ω,ξ)

= −
i

4π

∞∫
−∞

eisξF
(
α0,1

) J1 (2sω)

J0 (2sω)+ iJ1 (2sω)
ds

−
α0,1

2
. (54)

The solutions ofh andu at t = τ are thus given as follows:

h(B, t)= hb + η

=
c2

0

g
+ ε

c0

g
F−1

[
F
(
α0,1

) J0 (2sω)

J0 (2sω)+ iJ1(2sω)

]
(55a)

u(B, t)= −εF−1
[
F
(
α0,1

) iJ1 (2sω)

J0 (2sω)+ iJ1 (2sω)

]
. (55b)

In order to calculate the solutions forh andu at x = B

and the shoreline position, we need the data of the incoming
Riemann invariants at the first order as follows:

εα0,1 ≈ α−α0,0

= 2
(√
g(γB + η̆)−

√
gγB

)
|x=B+ − ŭ|x=B+ , (56)

which is obtained by disregarding higher-order terms in
Eq. (35a). This expression is actually the incoming Riemann
invariant in LSWE (Kristina et al., 2012). By imposing the
effective boundary condition (EBC) and choosing the loca-
tion x = B before the nonlinearity arises, we thus do actually

solve for the perturbation expansion in the nonlinear area, but
we do not perturb the incoming wave data.

The values̆η andŭ in Eq. (56) are obtained from the simu-
lation area[B,L]. In this region, we only have the values of
η̆, φ̆, andψ̆ . The depth-averaged velocityu(B+, t) is deter-
mined by using the approximation (13) as follows:

ŭ= ∂x φ̆+
β̆

hb
∂xψ̆ at x = B+ , (57)

which is the limit from the right at node 1.
The solutions ofη = h−hb andu in Eq. (55) account for

the reflected wave, so we may define

η = ηI
+ ηR and u= uI

+ uR, (58)

whereηI andηR are the wave elevations of the incoming and
reflected waves, respectively, atx = B. This superposition is
also described inAntuono and Brocchini(2007, 2010), and is
actually in line with our EBC concept, since linearity holds
in the simulation area. To obtain the expression for the re-
flected wave, we need to know the incoming one. Using the
knowledge of the incoming and outgoing Riemann invariants
in the LSWE as derived inKristina et al.(2012), the obser-
vation operator is given by

O = hŭ+ cη̆ = 2cηI, (59)

which is calculated using approximation (57). We can thus
calculate the incoming wave elevation for any given wave
signal atx = B. Implementation of this observation operator
allows us to have any initial waveform at the point of tsunami
generation, and to let it travel over the real bathymetry to the
seaward boundary pointx = B. From Eq. (55), the expres-
sions for the reflected wave are as follows:

ηR
=M(ηI)

=
c0

g
F−1

[
F(εα0,1)

J0 (2sω)

J0 (2sω)+ iJ1 (2sω)

]
− ηI (60a)

uR
=M(uI)

= −F−1
[
F
(
εα0,1

) iJ1 (2sω)

J0 (2sω)+ iJ1 (2sω)

]
− uI, (60b)

where the Fourier transform and its inverse for any incoming
wave signal are evaluated using the FFT and IFFT functions
in MATLAB.

The influxing operator is defined as the coupling condition
in Eq. (52) to send the NSWE result to the simulation area. It
is shown that we need the value ofh∂xφ, and hence

I = h∂xφ = (hb + η)u. (61)

In order to verify the EBC implementation, we perform nu-
merical simulations with a code that couples the LSWE in the
simulation area to the NSWE in the model area (Bokhove,
2005; Klaver, 2009). For numerical simulation of the LSWE,
we use a finite element method, while for the NSWE, we use
a finite volume method. The implementation of the finite vo-
lume method is explained in AppendixA.

www.nonlin-processes-geophys.net/21/987/2014/ Nonlin. Processes Geophys., 21, 987–1005, 2014



996 W. Kristina et al.: EBC for tsunami wave run-up over sloping bathymetry

5 Study case

Three test cases are considered. The first one is a synthetic
one concerning a solitary wave, such that we can compare it
with other results. Subsequently, we consider periodic wave
influx as the second case to test the robustness of the tech-
nique when there is continuous interaction between the in-
coming and reflected waves. The third case is a more realis-
tic one concerning tsunami propagation and run-up based on
simplified bathymetry at the Aceh coastline.

The location of the EBC point is determined from the
linearity conditionε = A0/h0 � 1. From linear theory, the
wave amplification over depth is given by the ratioA0 =

A 4
√
h/h0, whereA andh are the initial wave amplitude and

depth. Hence, the EBC point must be located at depth

h0 �
5
√
A4h/ε4 . (62)

Since a dispersive model is also used in the simulation
area, we will discuss the dispersion effect at this EBC point
as well. The non-dispersive condition is given byµ2

=

(k0h0)
2
� 1, wherek0 = 2π/λ0 is the wavenumber andλ

is the wavelength. In linear wave theory, the wavelength de-
creases with the square root of the depth when running in
shallower water, that isλ0 = λ

√
h0/h. Using this relation,

we can thus investigate the significance of the dispersion
given the information of the initial condition and bathymetry
profile.

5.1 Solitary wave

The run-up of a solitary wave is studied by means of the well-
known case ofSynolakis(1987). A solitary wave centered at
x = x0 at t = 0 has the following surface profile:

η(x,0)= A sech2κ(x− x0). (63)

We benchmark the EBC implementation and the coupling
of numerical solutions to experimental data ofSynolakis
(1987) provided at the NOAA Center for Tsunami Research
(http://nctr.pmel.noaa.gov/benchmark/). Solitary wave run-
up over a canonical bathymetry is considered with the scaled
amplitudeA= 0.0185 andκ =

√
3A/4 = 0.1178. The ini-

tial condition is centered atx0 = 37.35 over the bathymetry,
with a constant slopeγ = 1/19.85 for x < 19.85. The EBC
point is located atx = 10, such that the domain is divided
into the model area forx ∈ [−5,10] and the simulation area
for x ∈ [10,80]. The spatial grid sizes are1x = 0.25 in the
simulation area and1x = 0.0125 in the model area for the
numerical solution of NSWE. In all cases, several spatial res-
olutions have been applied to verify numerical convergence.
For the time integration, we use the fourth-order ode45 solver
that uses its own time step in MATLAB.

The simulations with the EBC implementation and the
coupling of numerical solutions are only presented for the
LSWE model in the simulation area, since the initial condi-
tion has a long wavelength, and thus dispersion effects will
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tion has long wavelength and thus dispersion effects will not
appear. Figure 3 shows the time evolution of this profile for
scaled time t= 30− 70 with 10 increments. It can be seen
that the EBC implementation and the coupling of numerical
solutions agree well with the laboratory data. The compari-755

son of the shoreline movement between the simulation with
EBC implementation and the coupling of numerical solutions
is shown in Fig. 4. For the simulation till the scaled physical
time t= 100, the computational time for the coupled numer-
ical solutions in both domains is 10.9 s. While the computa-760

tional time of the simulation with the EBC implementation
only takes about 18 % of that time. Hence, we notice that
the simulation with the EBC reduces the computational time
significantly, up to approximately 82 %, compared with the
computational time in the whole domain.765

In order to show the dispersion effect, we consider a
shorter wave with the profile given in Eq. (63) for κ= 0.04,
x0 = 150 m, and A= 0.1 m. The bathymetry is given by
constant depth 10m for x > 50 m, continued by a constant
slope γ = 1/5 towards the shore. A uniform spatial grid770

∆x= 1m is used in the simulation area and ∆x= 0.015 m
in the model area for the numerical solution of the NSWE.
Evaluating Eq. (62) for ε= 0.02� 1, the EBC point must be
located at h0� 3.3 m. Accordingly, we choose this seaward
boundary point at h0 = 10 m at the toe of the slope, that is775

at x=B = 50 m. Therefore, we divide the domain into the
simulation area for x ∈ [50,250] m and the model area for
x ∈ [−5,50] m.
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Fig. 3. Run-up of a solitary waves over a canonical bathymetry at
times (a) t= 30, (b) t= 40, (c) t= 50, (d) t= 60, (d) t= 70. The
solid line is LSWE with EBC implementation at x= 10, the dashed
and dotted-dashed lines are the coupling of LSWE and NSWE
model respectively, and the symbols are laboratory data of Syno-
lakis (1987).
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Fig. 4. The shoreline movement of a solitary wave introduced in
Synolakis (1987). The LSWE model coupled to the NSWE is shown
by the dashed line, while the solid one is the shoreline movement of
the LSWE model with an EBC implementation.

Figure 3. Run-up of a solitary wave over a canonical bathymetry
at times(a) t = 30, (b) t = 40, (c) t = 50, (d) t = 60, and(e) t =
70. The solid line is LSWE, with EBC implementation atx = 10,
the dashed and dotted-dashed lines are the couplings of the LSWE
and NSWE models, respectively, and the symbols are the laboratory
data ofSynolakis(1987).

not appear. Figure3 shows the time evolution of this profile
for scaled timet = 30–70 with 10 increments. It can be seen
that the EBC implementation and the coupling of numerical
solutions agree well with the laboratory data. The compari-
son of the shoreline movement between the simulation with
EBC implementation and the coupling of numerical solutions
is shown in Fig.4. For the simulation till the scaled physical
time t = 100, the computational time for the coupled numer-
ical solutions in both domains is 10.9 s, while the computa-
tional time of the simulation with the EBC implementation
only takes about 18 % of that time. Hence, we notice that
the simulation with the EBC reduces the computational time
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Fig. 5. A solitary wave initial condition for the NSWE (dotted-
dashed line) coupled to the linear model (dashed line), and the linear
model with the EBC implementation (solid line) at x= 50 m. The
solid and dashed lines are on top of another.
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Fig. 6. Free-surface profiles of solitary wave propagation are shown
for the coupled linear model (left: LSWE, right: LVBM) with the
NSWE (dashed and dotted-dashed lines), and for the linear model
with an EBC implementation (solid line), at times (a) t= 10 s,
(b) t= 20 s, (c) t= 30 s, (d) t= 40 s. The solid and dashed lines
are on top of another.

In Fig. 5, we can see the initial profile of the solitary wave.
Comparisons between these two simulations at several time780

steps can be seen in Fig. 6 (left: LSWE, right: LVBM). Com-
paring the left and right figures, we can see that the wave
is slightly dispersed in the LVBM. Because we have flat
bathymethy in this case, the dispersion ratio at the simula-
tion area is constant and given by µ2 = 0.39< 1. Hence, it is785

shown that the long waves propagate faster than the shorter
ones in LVBM simulations. In Fig. 7, the shoreline move-
ment caused by this solitary wave is shown. The paths of
characteristic curves forming the shoreline are also presented
in this figure. We can see that the shoreline is formed by790

the envelope of the characteristic curves. The result with the
LVBM shows a lower run-up but higher run-down with some
oscillations at later times.

For simulation till the physical time t= 40 s, the com-
putational time for the coupled numerical solutions in both795

domains is 3.3 times the physical time for the LSWE and
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Fig. 7. The shoreline movement of a solitary wave for the linear
model (a: LSWE, b: LVBM) coupled to the NSWE (dashed line)
and the linear model with an EBC implementation (solid line). Paths
of the first-order characteristic curves are shown by the thin lines.

2.2 times the physical time for the LVBM. While the com-
putational time of the simulation using an EBC only takes
0.12 times the physical time for the LSWE and 0.06 times
for the LVBM. Hence, we notice that the simulation with800

the EBC reduces the computational time significantly, up to
approximately 97 %, compared with the computational time
for the numerical models in the entire domain. The computa-
tional time for the LSWE with an EBC is slower than the one
with LVBM and an EBC, because the internal time step of the805

ode45 time step routine in MATLAB required a smaller time
step ∆t (compared to the LVBM) to preserve the stability.

The shoreline movement of our result compare well with
the one of Choi et al. (2011). We can see the comparison in
Fig. 8. The solution of Choi et al. (2011) gives a higher pre-810

diction for the shoreline, but it cannot follow the subsequent
small positive wave. It may be caused by neglecting the re-
flection wave and nonlinear effects in their formulation. We
also compare the free-surface profile for several time steps in
Fig. 9. The implementation of the hard-wall boundary condi-815

tion at x=B in the method of Choi et al. (2011) causes in-
accuracies in the prediction of the point-wise wave height in
the entire domain. In this case, the effect of reflected waves
for the shoreline movement prediction is small, but it may
become important when a compound of waves arrives at the820

coastline.

Figure 5. A solitary wave initial condition for the NSWE (dotted-
dashed line) coupled to the linear model (dashed line), and the linear
model with the EBC implementation (solid line) atx = 50 m. The
solid and dashed lines are on top of one another.

significantly, down by approximately 82 %, compared with
the computational time in the whole domain.

In order to show the dispersion effect, we consider a
shorter wave with the profile given in Eq. (63) for κ = 0.04,
x0 = 150 m, andA= 0.1 m. The bathymetry is given by a
constant depth of 10 m forx > 50 m, continued by a con-
stant slopeγ = 1/5 towards the shore. A uniform spatial
grid1x = 1 m is used in the simulation area, and1x equals
0.015 m in the model area for the numerical solution of the
NSWE. Evaluating Eq. (62) for ε = 0.02� 1, the EBC point
must be located ath0 � 3.3 m. Accordingly, we choose this
seaward boundary point ath0 = 10 m at the toe of the slope,
that is atx = B = 50 m. We therefore divide the domain into
the simulation area forx ∈ [50,250] m, and the model area
for x ∈ [−5,50] m.

In Fig.5, we can see the initial profile of the solitary wave.
Comparisons between these two simulations at several time
steps can be seen in Fig.6 (left: LSWE; right: LVBM). Com-
paring the left and right figures, we can see that the wave
is slightly dispersed in the LVBM. Because we have flat
bathymetry in this case, the dispersion ratio in the simula-
tion area is constant and given byµ2

= 0.39< 1. Hence, it is
shown that the long waves propagate faster than the shorter
ones in LVBM simulations. In Fig.7, the shoreline move-
ment caused by this solitary wave is shown. The paths of
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Fig. 5. A solitary wave initial condition for the NSWE (dotted-
dashed line) coupled to the linear model (dashed line), and the linear
model with the EBC implementation (solid line) at x= 50 m. The
solid and dashed lines are on top of another.
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Fig. 6. Free-surface profiles of solitary wave propagation are shown
for the coupled linear model (left: LSWE, right: LVBM) with the
NSWE (dashed and dotted-dashed lines), and for the linear model
with an EBC implementation (solid line), at times (a) t= 10 s,
(b) t= 20 s, (c) t= 30 s, (d) t= 40 s. The solid and dashed lines
are on top of another.
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Fig. 5. A solitary wave initial condition for the NSWE (dotted-
dashed line) coupled to the linear model (dashed line), and the linear
model with the EBC implementation (solid line) at x= 50 m. The
solid and dashed lines are on top of another.
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Fig. 6. Free-surface profiles of solitary wave propagation are shown
for the coupled linear model (left: LSWE, right: LVBM) with the
NSWE (dashed and dotted-dashed lines), and for the linear model
with an EBC implementation (solid line), at times (a) t= 10 s,
(b) t= 20 s, (c) t= 30 s, (d) t= 40 s. The solid and dashed lines
are on top of another.
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oscillations at later times.
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Fig. 7. The shoreline movement of a solitary wave for the linear
model (a: LSWE, b: LVBM) coupled to the NSWE (dashed line)
and the linear model with an EBC implementation (solid line). Paths
of the first-order characteristic curves are shown by the thin lines.
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with LVBM and an EBC, because the internal time step of the805

ode45 time step routine in MATLAB required a smaller time
step ∆t (compared to the LVBM) to preserve the stability.

The shoreline movement of our result compare well with
the one of Choi et al. (2011). We can see the comparison in
Fig. 8. The solution of Choi et al. (2011) gives a higher pre-810

diction for the shoreline, but it cannot follow the subsequent
small positive wave. It may be caused by neglecting the re-
flection wave and nonlinear effects in their formulation. We
also compare the free-surface profile for several time steps in
Fig. 9. The implementation of the hard-wall boundary condi-815

tion at x=B in the method of Choi et al. (2011) causes in-
accuracies in the prediction of the point-wise wave height in
the entire domain. In this case, the effect of reflected waves
for the shoreline movement prediction is small, but it may
become important when a compound of waves arrives at the820

coastline.

Figure 7. The shoreline movement of a solitary wave for the linear
model (a: LSWE; b: LVBM) coupled to the NSWE (dashed line),
and the linear model with an EBC implementation (solid line). Paths
of the first-order characteristic curves are shown by the thin lines.

characteristic curves forming the shoreline are also presented
in this figure. We can see that the shoreline is formed by
the envelope of the characteristic curves. The result with the
LVBM shows a lower run-up but higher run-down, with some
oscillations at later times.
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Fig. 8. Comparison of the shoreline movement of Choi et al. (2011)
(dashed line) and the LSWE with an EBC simulation (solid line) for
solitary wave case.
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Fig. 9. Free-surface profiles of solitary wave propagation are shown
for the coupled LSWE with the NSWE (dashed and dotted-dashed
lines), for the LSWE with an EBC implementation (solid line), and
for the LSWE with the method of Choi et al. (2011) (solid line with
’o’ marker) at times (a) t= 10 s, (b) t= 20 s, (c) t= 30 s, (d) t=
40 s. The solid and dashed lines are on top of another.

5.2 Periodic wave

Using the same bathymetry profile in the previous case, we
influx a periodic wave at the right boundary (x= L) with the
profile:825

η(L,t) =A sin(2πt/T ) (64)

in which A= 0.05 m is the amplitude and period T = 20 s.
A smoothened characteristic function until t= 10 s is used
in influxing this periodic wave. We use uniform spatial grid830

∆x= 1 m in the simulation area and ∆x= 0.015 m in the
model area for the numerical solution of the NSWE.

As in the previous case, we also choose the seaward
boundary point at h0 = 10 m at the toe of the slope, that
is at x=B = 50 m. Thus, the simulation area is for x ∈835

[50,250] m and the model area for x ∈ [−5,50] m. Compar-
isons between these two simulations at several time steps can
be seen in Fig. 10 (left: LSWE, right: LVBM). We can see
in the comparison that the wave is slightly dispersed in the
LVBM. The dispersion ratio at the simulation area is given840

by µ2 = 0.0986< 1, which is less dispersive than the previ-
ous case. In Fig. 11, the shoreline movement caused by the
periodic wave as well as the paths of characteristic curves
forming the shoreline are shown. Observing the results of
this case, we can conclude that the EBC technique can deal845
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Fig. 10. Free-surface profiles of periodic waves are shown for the
coupled linear model (left: LSWE, right: LVBM) with the NSWE
(dashed and dotted-dashed lines), and for the linear model with an
EBC implementation (solid line), at times (a) t= 20 s, (b) t= 40 s,
(c) t= 60 s, (d) t= 75 s. The solid and dashed lines are on top of
another at several plots.

(a)
20 30 40 50 60 70 80

−3

−2

−1

0

1

2

t [s]

x
s
(t

) 
[m

]

(b)
20 30 40 50 60 70 80

−3

−2

−1

0

1

2

t [s]

x
s
(t

) 
[m

]

Fig. 11. The shoreline movement of periodic waves for the linear
model (a: LSWE, b: LVBM) coupled to the NSWE (dashed line)
and for the linear model with an EBC implementation (solid line).
Paths of the first-order characteristic curves are shown by the thin
lines.

robustly with consecutive interactions between the incoming
and the reflected wave.

For simulation till the physical time t= 80 s, the com-
putational time for the coupled numerical solutions in both
domains is 1.83 times the physical time for the LSWE and850

Figure 8. Comparison of the shoreline movement ofChoi et al.
(2011) (dashed line) and the LSWE with an EBC simulation (solid
line) for the solitary wave case.

For simulation till the physical timet = 40 s, the com-
putational time for the coupled numerical solutions in both
domains is 3.3 times the physical time for the LSWE and
2.2 times the physical time for the LVBM, while the com-
putational time of the simulation using an EBC only takes
0.12 times the physical time for the LSWE and 0.06 times
that for the LVBM. Hence, we notice that the simulation with
the EBC reduces the computational time significantly, down
by approximately 97 %, compared with the computational
time for the numerical models in the entire domain. The com-
putational time for the LSWE with an EBC is slower than
the one with LVBM and an EBC, because the internal time
step of the ode45 time step routine in MATLAB required a
smaller time step1t (compared to the LVBM) to preserve
the stability.

The shoreline movement of our result compares well with
the one ofChoi et al.(2011). We can see the comparison in
Fig. 8. The solution ofChoi et al.(2011) gives a higher pre-
diction for the shoreline, but it cannot follow the subsequent
small positive wave. It may be caused by neglecting the re-
flection wave and nonlinear effects in their formulation. We
also compare the free-surface profile for several time steps in
Fig. 9. The implementation of the hard-wall boundary condi-
tion atx = B in the method ofChoi et al.(2011) causes in-
accuracies in the prediction of the point-wise wave height in
the entire domain. In this case, the effect of reflected waves
for the shoreline movement prediction is small, but it may
become important when a compound of waves arrives at the
coastline.

5.2 Periodic wave

Using the same bathymetry profile as in the previous case,
we influx a periodic wave at the right boundary (x = L) with
the profile

η(L, t)= A sin(2πt/T ), (64)

in which A= 0.05 m is the amplitude andT = 20 s is the
period. A smoothened characteristic function untilt = 10 s is
used in influxing this periodic wave. We use a uniform spatial
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(dashed line) and the LSWE with an EBC simulation (solid line) for
solitary wave case.
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Fig. 9. Free-surface profiles of solitary wave propagation are shown
for the coupled LSWE with the NSWE (dashed and dotted-dashed
lines), for the LSWE with an EBC implementation (solid line), and
for the LSWE with the method of Choi et al. (2011) (solid line with
’o’ marker) at times (a) t= 10 s, (b) t= 20 s, (c) t= 30 s, (d) t=
40 s. The solid and dashed lines are on top of another.
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Using the same bathymetry profile in the previous case, we
influx a periodic wave at the right boundary (x= L) with the
profile:825
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in which A= 0.05 m is the amplitude and period T = 20 s.
A smoothened characteristic function until t= 10 s is used
in influxing this periodic wave. We use uniform spatial grid830

∆x= 1 m in the simulation area and ∆x= 0.015 m in the
model area for the numerical solution of the NSWE.

As in the previous case, we also choose the seaward
boundary point at h0 = 10 m at the toe of the slope, that
is at x=B = 50 m. Thus, the simulation area is for x ∈835

[50,250] m and the model area for x ∈ [−5,50] m. Compar-
isons between these two simulations at several time steps can
be seen in Fig. 10 (left: LSWE, right: LVBM). We can see
in the comparison that the wave is slightly dispersed in the
LVBM. The dispersion ratio at the simulation area is given840

by µ2 = 0.0986< 1, which is less dispersive than the previ-
ous case. In Fig. 11, the shoreline movement caused by the
periodic wave as well as the paths of characteristic curves
forming the shoreline are shown. Observing the results of
this case, we can conclude that the EBC technique can deal845
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Fig. 10. Free-surface profiles of periodic waves are shown for the
coupled linear model (left: LSWE, right: LVBM) with the NSWE
(dashed and dotted-dashed lines), and for the linear model with an
EBC implementation (solid line), at times (a) t= 20 s, (b) t= 40 s,
(c) t= 60 s, (d) t= 75 s. The solid and dashed lines are on top of
another at several plots.
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Fig. 11. The shoreline movement of periodic waves for the linear
model (a: LSWE, b: LVBM) coupled to the NSWE (dashed line)
and for the linear model with an EBC implementation (solid line).
Paths of the first-order characteristic curves are shown by the thin
lines.
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putational time for the coupled numerical solutions in both
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Figure 9. Free-surface profiles of solitary wave propagation are
shown for the coupled LSWE with the NSWE (dashed and dotted-
dashed lines), for the LSWE with an EBC implementation (solid
line), and for the LSWE with the method ofChoi et al. (2011)
(solid line with the “o” marker) at times(a) t = 10 s,(b) t = 20 s,
(c) t = 30 s, and(d) t = 40 s. The solid and dashed lines are on top
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Fig. 9. Free-surface profiles of solitary wave propagation are shown
for the coupled LSWE with the NSWE (dashed and dotted-dashed
lines), for the LSWE with an EBC implementation (solid line), and
for the LSWE with the method of Choi et al. (2011) (solid line with
’o’ marker) at times (a) t= 10 s, (b) t= 20 s, (c) t= 30 s, (d) t=
40 s. The solid and dashed lines are on top of another.

5.2 Periodic wave

Using the same bathymetry profile in the previous case, we
influx a periodic wave at the right boundary (x= L) with the
profile:825

η(L,t) =A sin(2πt/T ) (64)

in which A= 0.05 m is the amplitude and period T = 20 s.
A smoothened characteristic function until t= 10 s is used
in influxing this periodic wave. We use uniform spatial grid830

∆x= 1 m in the simulation area and ∆x= 0.015 m in the
model area for the numerical solution of the NSWE.

As in the previous case, we also choose the seaward
boundary point at h0 = 10 m at the toe of the slope, that
is at x=B = 50 m. Thus, the simulation area is for x ∈835

[50,250] m and the model area for x ∈ [−5,50] m. Compar-
isons between these two simulations at several time steps can
be seen in Fig. 10 (left: LSWE, right: LVBM). We can see
in the comparison that the wave is slightly dispersed in the
LVBM. The dispersion ratio at the simulation area is given840

by µ2 = 0.0986< 1, which is less dispersive than the previ-
ous case. In Fig. 11, the shoreline movement caused by the
periodic wave as well as the paths of characteristic curves
forming the shoreline are shown. Observing the results of
this case, we can conclude that the EBC technique can deal845
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Fig. 10. Free-surface profiles of periodic waves are shown for the
coupled linear model (left: LSWE, right: LVBM) with the NSWE
(dashed and dotted-dashed lines), and for the linear model with an
EBC implementation (solid line), at times (a) t= 20 s, (b) t= 40 s,
(c) t= 60 s, (d) t= 75 s. The solid and dashed lines are on top of
another at several plots.
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Fig. 11. The shoreline movement of periodic waves for the linear
model (a: LSWE, b: LVBM) coupled to the NSWE (dashed line)
and for the linear model with an EBC implementation (solid line).
Paths of the first-order characteristic curves are shown by the thin
lines.
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Figure 10.Free-surface profiles of periodic waves are shown for the
coupled linear model (left: LSWE; right: LVBM) with the NSWE
(dashed and dotted-dashed lines), and for the linear model with an
EBC implementation (solid line), at times(a) t = 20 s,(b) t = 40 s,
(c) t = 60 s, and(d) t = 75 s. The solid and dashed lines are on top
of one another in several plots.

grid 1x = 1 m in the simulation area and1x = 0.015 m in
the model area for the numerical solution of the NSWE.

As in the previous case, we also choose the seaward
boundary point ath0 = 10 m at the toe of the slope, that
is, at x = B = 50 m. The simulation area is thus forx ∈

[50,250] m and the model area is forx ∈ [−5,50] m. Com-
parisons between these two simulations at several time steps
can be seen in Fig.10 (left: LSWE; right: LVBM). We
can see in the comparison that the wave is slightly dis-
persed in the LVBM. The dispersion ratio in the simulation
area is given byµ2

= 0.0986< 1, which is less dispersive
than the previous case. In Fig.11, the shoreline movement
caused by the periodic wave as well as the paths of char-
acteristic curves forming the shoreline are shown. Observ-
ing the results of this case, we can conclude that the EBC
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(dashed line) and the LSWE with an EBC simulation (solid line) for
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Fig. 9. Free-surface profiles of solitary wave propagation are shown
for the coupled LSWE with the NSWE (dashed and dotted-dashed
lines), for the LSWE with an EBC implementation (solid line), and
for the LSWE with the method of Choi et al. (2011) (solid line with
’o’ marker) at times (a) t= 10 s, (b) t= 20 s, (c) t= 30 s, (d) t=
40 s. The solid and dashed lines are on top of another.

5.2 Periodic wave

Using the same bathymetry profile in the previous case, we
influx a periodic wave at the right boundary (x= L) with the
profile:825

η(L,t) =A sin(2πt/T ) (64)

in which A= 0.05 m is the amplitude and period T = 20 s.
A smoothened characteristic function until t= 10 s is used
in influxing this periodic wave. We use uniform spatial grid830

∆x= 1 m in the simulation area and ∆x= 0.015 m in the
model area for the numerical solution of the NSWE.

As in the previous case, we also choose the seaward
boundary point at h0 = 10 m at the toe of the slope, that
is at x=B = 50 m. Thus, the simulation area is for x ∈835

[50,250] m and the model area for x ∈ [−5,50] m. Compar-
isons between these two simulations at several time steps can
be seen in Fig. 10 (left: LSWE, right: LVBM). We can see
in the comparison that the wave is slightly dispersed in the
LVBM. The dispersion ratio at the simulation area is given840

by µ2 = 0.0986< 1, which is less dispersive than the previ-
ous case. In Fig. 11, the shoreline movement caused by the
periodic wave as well as the paths of characteristic curves
forming the shoreline are shown. Observing the results of
this case, we can conclude that the EBC technique can deal845
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Fig. 10. Free-surface profiles of periodic waves are shown for the
coupled linear model (left: LSWE, right: LVBM) with the NSWE
(dashed and dotted-dashed lines), and for the linear model with an
EBC implementation (solid line), at times (a) t= 20 s, (b) t= 40 s,
(c) t= 60 s, (d) t= 75 s. The solid and dashed lines are on top of
another at several plots.
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Fig. 11. The shoreline movement of periodic waves for the linear
model (a: LSWE, b: LVBM) coupled to the NSWE (dashed line)
and for the linear model with an EBC implementation (solid line).
Paths of the first-order characteristic curves are shown by the thin
lines.
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Figure 11.The shoreline movement of periodic waves for the linear
model (a: LSWE; b: LVBM) coupled to the NSWE (dashed line),
and for the linear model with an EBC implementation (solid line).
Paths of the first-order characteristic curves are shown by the thin
lines.

technique can deal robustly with consecutive interactions be-
tween the incoming and reflected waves.

For simulation till the physical timet = 80 s, the com-
putational time for the coupled numerical solutions in both
domains is 1.83 times the physical time for the LSWE, and
2.01 times the physical time for the LVBM, while the com-
putational time of the simulation using an EBC only takes
0.07 times the physical time of the LSWE, and 0.06 times
that of the LVBM. Obviously, we notice that in the simulation
with the EBC, the computational time decreases down by ap-
proximately 97 %, compared with the computational time for
whole domain simulation.

As mentioned in the Introduction, resonant phenomena
were investigated byStefanakis et al.(2011) for monochro-
matic waves on a planar beach. Subsequently,Ezersky et
al. (2013) used three piece-wise linear profiles of unper-
turbed depths (see Fig.12), akin to a real coastal bot-
tom topography, to find the analytical run-up amplification
due to resonance effects. We follow this bathymetry pro-
file, with tanα = 0.0036, tanβ = 0.0414,h0 = 2500 m, and
h1 = 200 m. These choices roughly characterize the Indian
coast bathymetry (Neetu et al., 2011). The EBC point is lo-
cated at the edge of the last beach slope. We influx a pe-
riodic wave (64) with amplitudeA= 1 m andω = 2π/T =

0.0009 rad s−1. As a result, we get 10.67 times amplification,
as shown in the run-up heightR(t) in Fig.13, while the result
of Ezersky et al.(2013) gives about 12 times amplification.
It should be noted that they use a linear approximation to

Figure 12.The three piece-wise linear bathymetry profiles.
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2.01 times the physical time for the LVBM. While the com-
putational time of the simulation using an EBC only takes
0.07 times the physical time for the LSWE and 0.06 times
for the LVBM. Obviously, we notice that the simulation with
the EBC reduces the computational time up to approximately855

97 %, compared with the computational time for whole do-
main simulation.

Fig. 12. The three piece-wise linear bathymetry profile.
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Fig. 13. The run-up height of periodic waves with initial amplitude
A= 1m and frequency ω = 0.0009rad/s. The solid line is the run-
up height calculated by employing the LSWE model in the simu-
lation area with EBC implementation. The dashed one is the result
of coupling the NSWE model in model area with LSWE model in
simulation area.

As mentioned in the Introduction, resonant phenomena
were investigated by Stefanakis et al. (2011) for monochro-
matic waves on a planar beach. Subsequently, Ezersky et al.860

(2013) used three piece-wise linear profiles of unperturbed
depths (see Fig. 12), akin to a real coastal bottom topogra-
phy, to find the analytical run-up amplification due to res-
onance effects. We follow this bathymetry profile with tan
α= 0.0036, tan β = 0.0414, h0 = 2500m, and h1 = 200m.865

These choices are roughly characterizing the Indian coast
bathymetry (Neetu et al., 2011). The EBC point is located at
the edge of the last beach slope. We influx periodic wave (64)
with amplitude A= 1 m and ω = 2π/T = 0.0009 rad/s. As
a result, we get 10.67 times amplification as shown in the run-870

up height R(t) in Fig. 13, while the result of Ezersky et al.
(2013) gives about 12 times amplification. It should be noted
that they use a linear approximation to calculate the ampli-
fication of periodic waves. In our result, the NSWE model

is employed in the last beach slope region. The period of875

this wave is approximately 2 hours and it coincides with the
observed tsunami at the Makran coast, according to Neetu
et al. (2011). In nature, one would not expect a tsunami of
monochromatic wave train. The investigation of Stefanakis et
al. (2011) for the October 25, 2010 Mentawai Islands tsunami880

showed that the period of the dominant mode of the incident
wave is within the resonant regime, and it explained the fact
that the highest run-up is not driven by the leading and high-
est wave.

5.3 Simulation using simplified Aceh bathymetry885

The bathymetry near Aceh, Indonesia, is displayed in Fig. 14.
Figure 14a concerns bathymetry data from GEBCO, with a
zero value on land. Figure 14b concerns the cross section at
(95.0278◦ E, 3.2335◦ N)–(96.6583◦ E, 3.6959◦ N) shown by
the solid line. The 2004 Indian Ocean tsunami was a result of890

an earthquake of magnitude of Mw 9.1 at the epicenter point
(95.854◦ E, 3.316◦ N), shown by the symbol in Figure 14a.
Presently, we consider the following initial N -wave profile

η(x,0) =Af(x)/S with f(x) =
d

dx
exp

(
−(x−x0)2/w0

2)
and S = max(f(x)) , (65)895

and the initial velocity potential is zero. We take A= 0.4 m,
the position of the wave profile x0 = 107.4 km, and a width
w0 = 35 km.

(a)

(b)

Fig. 14. Bathymetry near Aceh (a) and the cross section (b) at
(95.0278◦ E, 3.2335◦ N)–(96.6583◦ E, 3.6959◦ N). The solid line
concerns the bathymetry data and the dashed line concerns the ap-
proximation used in the simulations.

Figure 13.The run-up height of periodic waves with initial ampli-
tudeA= 1 m and frequencyω = 0.0009 rad s−1. The solid line is
the run-up height calculated by employing the LSWE model in the
simulation area with the EBC implementation. The dashed one is
the result of coupling the NSWE model in the model area to the
LSWE model in the simulation area.

calculate the amplification of periodic waves. In our result,
the NSWE model is employed in the last beach slope region.
The period of this wave is approximately 2 h, and it coin-
cides with the observed tsunami at the Makran coast, accord-
ing to Neetu et al.(2011). In nature, one would not expect a
tsunami of a monochromatic wave train. The investigation of
Stefanakis et al.(2011) for the 25 October 2010 Mentawai Is-
lands tsunami showed that the period of the dominant mode
of the incident wave is within the resonant regime, and it ex-
plained the fact that the highest run-up is not driven by the
leading and highest waves.

5.3 Simulation using simplified Aceh bathymetry

The bathymetry near Aceh, Indonesia, is displayed in Fig.14.
Figure 14a concerns bathymetry data from GEBCO (gen-
eral bathymetric chart of the oceans), with a zero value on
land. Figure14b concerns the cross-section at (95.0278◦ E,
3.2335◦ N)–(96.6583◦ E, 3.6959◦ N) shown by the solid line.
The 2004 Indian Ocean tsunami was a result of an earthquake
of magnitude ofMw = 9.1 at the epicenter point (95.854◦ E,
3.316◦ N), shown by the symbol in Fig.14a. Presently, we
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Figure 14. Bathymetry near Aceh(a) and the cross-section(b) at
(95.0278◦ E, 3.2335◦ N)–(96.6583◦ E, 3.6959◦ N). The solid line
concerns the bathymetry data, and the dashed line concerns the ap-
proximation used in the simulations.

consider the following initialN -wave profile

η(x,0)=Af (x)/S, with f (x)=
d

dx
exp

(
−(x−x0)

2/w0
2
)

and S = max(f (x)) , (65)

and where the initial velocity potential is zero. We takeA=

0.4 m, the position of the wave profilex0 = 107.4 km, and a
widthw0 = 35 km.

The location of the EBC point is also determined from
Eq. (62). For ε = 0.02� 1, the linear model is valid for
h0 � 25.1 m. Hence, we choose the EBC point at depthh0 =

41.4 m, which is located atx = B = 12.4 km. The simula-
tion area is thus forx ∈ [12.4,162.4] km, where we follow
the real bathymetry of Aceh to calculate the wave propaga-
tion. It is coupled to the model area forx ∈ [−8.6,12.4] km,
where a uniform slope with gradientγ = 1/300 is used to
calculate the reflection and shoreline position. We use a non-
uniform grid according to the depth, with ratio

√
h0/h as the

decrease in the wavelength when traveling from a deep re-
gion with depthh to a shallower region with depthh0 in lin-
ear wave theory. The grid size used in the simulation area is
1x = 305 m at the shallowest point nearx = B. This choice
of spatial resolution is fairly close to other numerical tsunami
simulations (Horrillo et al., 2006use1x = 100 m offshore
and1x = 10 m onshore in one-dimensional (1-D) simula-
tions). For the numerical solution of the NSWE in the model
area, a uniform grid with1x = 3 m is used.
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Fig. 15. The initial condition for the Aceh case is shown for the
linear model coupled to the NSWE (dashed and dotted-dashed lines)
and for the linear model with an EBC implementation (solid line).
The solid and dashed lines are on top of another.

The location of the EBC point is also determined from900

Eq. (62). For ε= 0.02� 1, the linear model is valid for
h0� 25.1 m. Hence, we choose the EBC point at depth h0 =
41.4 m, which is located at x=B = 12.4 km. Thus, the sim-
ulation area is for x ∈ [12.4,162.4] km, where we follow the
real bathymetry of Aceh to calculate the wave propagation.905

It is coupled with the model area for x ∈ [−8.6,12.4] km,
where a uniform slope with gradient γ = 1/300 is used to
calculate the reflection and shoreline position. We use an ir-
regular grid according to the depth with ratio

√
h0/h as the

decrease of the wavelength when traveling from a deep re-910

gion with depth h to a shallower region with depth h0 in lin-
ear wave theory. The grid size used in the simulation area is
∆x= 305 m at the shallowest point near x=B. This choice
of spatial resolution is fairly close to a tsunami numerical
simulation (Horrillo et al., 2006 use ∆x= 100 m offshore915

and ∆x= 10 m onshore in one dimensional simulations).
For the numerical solution of the NSWE in the model area, a
uniform grid with ∆x= 3 m is used.

In Fig. 15, we show the initial profile. Comparisons be-
tween these two simulations at several time steps can be seen920

in Fig. 16. In this case, the wave elevation measured at B
has been deformed from its initial condition due to the re-
flection from the bathymetry before entering the model area,
see Fig. 16a and b. We hardly see any differences between
the LSWE and LVBM simulations because the wavelength is925

much larger than the depth. The dispersion ratio at the ini-
tial condition is given by µ2 = 0.002� 1, and at the EBC
point is approximately µ2 = 7.5× 10−5� 1. Therefore, the
dispersion effect is not significant in this case. In Fig. 17, the
shoreline position is displayed. From this plot, it is shown930

that the wave runs up 1 km in the horizontal direction in ap-
proximately 10 min, roughly in the time interval from 50 to
60 min. For the given slope, it corresponds with a 3.3 m run-
up height.

For simulation till the physical time t= 120 min, the com-935

putational time for the coupled numerical solutions in both
domains is 0.03 times the physical time for the LSWE and
0.03 times the physical time for the LVBM. While the com-
putational time of the simulation using an EBC only takes
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Fig. 16. Free-surface profiles of Aceh simulations with the linear
model (left: LSWE, right: LVBM) coupled to the NSWE are shown
by the dashed and dotted-dashed lines and of simulations for a linear
model with an EBC implementation are shown by the solid line at
times (a) t= 800 s, (b) 1600 s, (c) 2700 s, (d) 3200 s, (e) 4000 s,
(f) 5400 s. The solid and dashed lines are on top of another.
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Fig. 17. Shoreline movement in the Aceh case for the linear model
(a: LSWE, b: LVBM) coupled to the NSWE (dashed line) and for
the linear model with an EBC implementation (solid line). Paths of
the first order characteristic curves are shown by thin lines.

Figure 15.The initial condition for the Aceh case is shown for the
linear model coupled to the NSWE (dashed and dotted-dashed lines)
and for the linear model with an EBC implementation (solid line).
The solid and dashed lines are on top of one another.
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Fig. 15. The initial condition for the Aceh case is shown for the
linear model coupled to the NSWE (dashed and dotted-dashed lines)
and for the linear model with an EBC implementation (solid line).
The solid and dashed lines are on top of another.

The location of the EBC point is also determined from900

Eq. (62). For ε= 0.02� 1, the linear model is valid for
h0� 25.1 m. Hence, we choose the EBC point at depth h0 =
41.4 m, which is located at x=B = 12.4 km. Thus, the sim-
ulation area is for x ∈ [12.4,162.4] km, where we follow the
real bathymetry of Aceh to calculate the wave propagation.905

It is coupled with the model area for x ∈ [−8.6,12.4] km,
where a uniform slope with gradient γ = 1/300 is used to
calculate the reflection and shoreline position. We use an ir-
regular grid according to the depth with ratio

√
h0/h as the

decrease of the wavelength when traveling from a deep re-910

gion with depth h to a shallower region with depth h0 in lin-
ear wave theory. The grid size used in the simulation area is
∆x= 305 m at the shallowest point near x=B. This choice
of spatial resolution is fairly close to a tsunami numerical
simulation (Horrillo et al., 2006 use ∆x= 100 m offshore915

and ∆x= 10 m onshore in one dimensional simulations).
For the numerical solution of the NSWE in the model area, a
uniform grid with ∆x= 3 m is used.

In Fig. 15, we show the initial profile. Comparisons be-
tween these two simulations at several time steps can be seen920

in Fig. 16. In this case, the wave elevation measured at B
has been deformed from its initial condition due to the re-
flection from the bathymetry before entering the model area,
see Fig. 16a and b. We hardly see any differences between
the LSWE and LVBM simulations because the wavelength is925

much larger than the depth. The dispersion ratio at the ini-
tial condition is given by µ2 = 0.002� 1, and at the EBC
point is approximately µ2 = 7.5× 10−5� 1. Therefore, the
dispersion effect is not significant in this case. In Fig. 17, the
shoreline position is displayed. From this plot, it is shown930

that the wave runs up 1 km in the horizontal direction in ap-
proximately 10 min, roughly in the time interval from 50 to
60 min. For the given slope, it corresponds with a 3.3 m run-
up height.

For simulation till the physical time t= 120 min, the com-935

putational time for the coupled numerical solutions in both
domains is 0.03 times the physical time for the LSWE and
0.03 times the physical time for the LVBM. While the com-
putational time of the simulation using an EBC only takes
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Fig. 16. Free-surface profiles of Aceh simulations with the linear
model (left: LSWE, right: LVBM) coupled to the NSWE are shown
by the dashed and dotted-dashed lines and of simulations for a linear
model with an EBC implementation are shown by the solid line at
times (a) t= 800 s, (b) 1600 s, (c) 2700 s, (d) 3200 s, (e) 4000 s,
(f) 5400 s. The solid and dashed lines are on top of another.
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Fig. 17. Shoreline movement in the Aceh case for the linear model
(a: LSWE, b: LVBM) coupled to the NSWE (dashed line) and for
the linear model with an EBC implementation (solid line). Paths of
the first order characteristic curves are shown by thin lines.

Figure 16.Free-surface profiles of Aceh simulations with the linear
model (left: LSWE; right: LVBM) coupled to the NSWE are shown
by the dashed and dotted-dashed lines, and for simulations for a lin-
ear model with an EBC implementation, are shown by the solid line
at times(a) t = 800 s,(b) 1600 s,(c) 2700 s,(d) 3200 s,(e) 4000 s,
and(f) 5400 s. The solid and dashed lines are on top of one another.

In Fig. 15, we show the initial profile. Comparisons be-
tween these two simulations at several time steps can be seen
in Fig. 16. In this case, the wave elevation measured atB has
changed from its initial condition due to the reflection from
the bathymetry before entering the model area; see Fig.16a
and b. We hardly see any differences between the LSWE and
LVBM simulations because the wavelength is much greater
than the depth. The dispersion ratio at the initial condition
is given byµ2

= 0.002� 1, and at the EBC point, it is ap-
proximatelyµ2

= 7.5× 10−5
� 1. The dispersion effect is

therefore not significant in this case. In Fig.17, the shoreline
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Fig. 15. The initial condition for the Aceh case is shown for the
linear model coupled to the NSWE (dashed and dotted-dashed lines)
and for the linear model with an EBC implementation (solid line).
The solid and dashed lines are on top of another.

The location of the EBC point is also determined from900

Eq. (62). For ε= 0.02� 1, the linear model is valid for
h0� 25.1 m. Hence, we choose the EBC point at depth h0 =
41.4 m, which is located at x=B = 12.4 km. Thus, the sim-
ulation area is for x ∈ [12.4,162.4] km, where we follow the
real bathymetry of Aceh to calculate the wave propagation.905

It is coupled with the model area for x ∈ [−8.6,12.4] km,
where a uniform slope with gradient γ = 1/300 is used to
calculate the reflection and shoreline position. We use an ir-
regular grid according to the depth with ratio

√
h0/h as the

decrease of the wavelength when traveling from a deep re-910

gion with depth h to a shallower region with depth h0 in lin-
ear wave theory. The grid size used in the simulation area is
∆x= 305 m at the shallowest point near x=B. This choice
of spatial resolution is fairly close to a tsunami numerical
simulation (Horrillo et al., 2006 use ∆x= 100 m offshore915

and ∆x= 10 m onshore in one dimensional simulations).
For the numerical solution of the NSWE in the model area, a
uniform grid with ∆x= 3 m is used.

In Fig. 15, we show the initial profile. Comparisons be-
tween these two simulations at several time steps can be seen920

in Fig. 16. In this case, the wave elevation measured at B
has been deformed from its initial condition due to the re-
flection from the bathymetry before entering the model area,
see Fig. 16a and b. We hardly see any differences between
the LSWE and LVBM simulations because the wavelength is925

much larger than the depth. The dispersion ratio at the ini-
tial condition is given by µ2 = 0.002� 1, and at the EBC
point is approximately µ2 = 7.5× 10−5� 1. Therefore, the
dispersion effect is not significant in this case. In Fig. 17, the
shoreline position is displayed. From this plot, it is shown930

that the wave runs up 1 km in the horizontal direction in ap-
proximately 10 min, roughly in the time interval from 50 to
60 min. For the given slope, it corresponds with a 3.3 m run-
up height.

For simulation till the physical time t= 120 min, the com-935

putational time for the coupled numerical solutions in both
domains is 0.03 times the physical time for the LSWE and
0.03 times the physical time for the LVBM. While the com-
putational time of the simulation using an EBC only takes
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Fig. 16. Free-surface profiles of Aceh simulations with the linear
model (left: LSWE, right: LVBM) coupled to the NSWE are shown
by the dashed and dotted-dashed lines and of simulations for a linear
model with an EBC implementation are shown by the solid line at
times (a) t= 800 s, (b) 1600 s, (c) 2700 s, (d) 3200 s, (e) 4000 s,
(f) 5400 s. The solid and dashed lines are on top of another.
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Fig. 17. Shoreline movement in the Aceh case for the linear model
(a: LSWE, b: LVBM) coupled to the NSWE (dashed line) and for
the linear model with an EBC implementation (solid line). Paths of
the first order characteristic curves are shown by thin lines.

Figure 17. Shoreline movement in the Aceh case for the linear
model (a: LSWE; b: LVBM) coupled to the NSWE (dashed line),
and for the linear model with an EBC implementation (solid line).
Paths of the first-order characteristic curves are shown by thin lines.

position is displayed. From this plot, it is shown that the wave
runs up 1 km in the horizontal direction in approximately
10 min, roughly in the time interval from 50 to 60 min. For
the given slope, it corresponds to a 3.3 m run-up height.

For simulation till the physical timet = 120 min, the com-
putational time for the coupled numerical solutions in both
domains is 0.03 times the physical time for the LSWE and
0.03 times the physical time for the LVBM, while the com-
putational time of the simulation using an EBC only takes
0.003 times the physical time for the LSWE and 0.004 times
that for the LVBM. We again notice that the simulations us-
ing the EBC decrease the computational times down by ap-
proximately 92 % of the computational times with the cou-
pled model in the entire domain. In this case, the simulation
with the LSWE is faster, as expected, since the LVBM in-
volves more calculations within the same time step.

For the case when breaking occurs, we use the same pro-
file, with an amplitude twice as high (A= 0.8 m). In Fig.18,
the shoreline position is presented. Compared to the numer-
ical NSWE solution, it can be seen that the shoreline move-
ment is well represented by the characteristic curves, while
the shoreline positionxs(t) given by Eq. (48) gives a less
accurate result. Breaking occurs when two incoming char-
acteristic curves intersect before reaching the shoreline. As
can be seen in the right figure, the first breaking takes place
at approximatelyt = 45 min. The corresponding free-surface
profiles for several times before and after breaking are shown
in Fig. 19.

Figure 18. Shoreline movement(a) and an inset(b) of a break-
ing wave simulation. The linear model coupled to NSWE is shown
by the dashed line, while the solid one is the shoreline movement
of a linear model simulation with EBC implementation. Paths of
the first-order characteristic curves are shown by thin lines. Break-
ing occurs when two incoming characteristic curves intersect before
reaching the shoreline. It is indicated by the red oval at approxi-
matelyt = 45 min.

6 Conclusions

We have formulated a so-called effective boundary condi-
tion (EBC), which is used as an internal boundary condition
within a domain divided into simulation and model areas.
The simulation area from the deep ocean up to a certain
depth at a seaward boundary point atx = B is solved nume-
rically using the linear shallow water equations (LSWE) or
the linear variational Boussinesq model (LVBM). The non-
linear shallow water equations (NSWE) are solved analyti-
cally in the model area from this boundary point towards the
coastline over linearly sloping bathymetry. The wave eleva-
tion at the seaward boundary point is decomposed into the
incoming signal and the reflected one, as described inAn-
tuono and Brocchini(2007, 2010). The advantages of using
this EBC are the ability to measure the incoming wave signal
at the boundary pointx = B for various shapes of incom-
ing waves, and thereafter to calculate the wave run-up and
reflection from these measured data. To solve the tsunami
wave run-up in the nearshore area analytically, we employ
the asymptotic technique for solving the NSWE over slop-
ing bathymetry derived byAntuono and Brocchini(2010),
applied to any given wave signal atx = B.
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Figure 19. Free-surface profiles of a breaking wave simulation for
the linear model coupled to the NSWE (dashed and dotted-dashed
lines) and for the linear model with an EBC implementation (solid
line) att = 40–70 min. The solid and dashed lines are on top of one
another.

The EBC implementation has been verified in several test
cases by comparing simulations in the whole domain (using
numerical solutions of the LSWE/LVBM in the simulation
area coupled to the NSWE in the model area) with ones us-
ing the EBC. We have also validated our approach with the
laboratory experiment ofSynolakis(1987) for the run-up of a
solitary wave over a plane beach. The location of the bound-
ary pointx = B is considered before the nonlinearity plays
an important role in the wave propagation. The comparisons
between both simulations show that the EBC method gives a
good prediction of the wave run-up as well as the wave re-
flection, based only on the information of the wave signal at
this seaward boundary point. It is also shown that the EBC
technique can capture the resonance effect that occurs due to
the incoming and reflected wave interactions. The computa-
tional times needed in simulations using the EBC implemen-
tation show a large reduction compared to times required for
the corresponding full numerical simulations. Hence, with-
out losing the accuracy of the results, we could compress
the time needed to simulate wave dynamics in the nearshore
area.

An extension of this EBC technique to the case where the
NSWE model is used both in the simulation and the model
areas follows directly from the variational methodology. The
analytical benchmark for this case is provided byCarrier et
al. (2003) andKânŏglu (2004). The two-dimensional (2-D)
extension of this technique can be formulated asymptotically
using an approach byRyrie (1983). For waves incident at a
small angle to the beach normal, the onshore problem can be
calculated using the analytical 1-D run-up theory of the non-
linear model, and independently, the longshore velocity can
be computed asymptotically. By using a 2-D linear model
in the open sea towards the seaward boundary line (i.e., in
the simulation area), and by employing this approach in the
model area, we can in principle apply the EBC method for
this 2-D case as well. This will be approximately valid for
2-D flow with slow variations along the EBC line. The EBC
formulation for the case when the shoreline is fronted by a
vertical wall as presented byKânŏglu and Synolakis(1998)
can be obtained by requiring the normal velocity at the shore-
line wall boundary to be zero. Another characteristic of the
outgoing or reflected waves must be derived (either for the
LSWE model or the NSWE model), but the coupling be-
tween the numerical and analytical models remains the same
as that derived in this article.
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Appendix A: Finite volume implementation

The conservative form of NSWE is given by

∂u
∂t

+
∂f(u)
∂x

= s, (A1)

with

u =

(
hu

h

)
, f(u)=

(
hu2

+
1
2gh

2

hu

)
(A2)

and the topographic term

s=

(
−gh db/dx

0

)
. (A3)

The system (A1) is discretized using a Godunov finite
volume scheme. First, the domain [A, B] with some fixed
A< xs(t) is partitioned intoN grid cells, with grid cellk
occupyingx

k− 1
2
< x < x

k+ 1
2
. The Godunov finite volume

scheme is derived by defining a space–time mesh with el-
ementsx

k− 1
2
< x < x

k+ 1
2

andtn < t < tn+1, and integrating
Eqs. (A1) over this space–time element:
x
k+ 1

2∫
x
k− 1

2

u(x, tn+1)dx−

x
k+ 1

2∫
x
k− 1

2

u(x, tn)dx=

tn+1∫
tn

f(u(x
k− 1

2
, t))dt−

tn+1∫
tn

f(u(x
k+ 1

2
, t))dt

+

tn+1∫
tn

x
k+ 1

2∫
x
k− 1

2

s dxdt. (A4)

In the grid cells, we define the mean cell averageUk = Uk(t)
as

Uk(t) :=
1

hk

x
k+ 1

2∫
x
k− 1

2

u(x, t)dx, (A5)

with cell lengthhk = x
k+ 1

2
−x

k− 1
2
. The functionUk is piece-

wise constant in each cell. A numerical fluxF is defined to
approximate the fluxf:

F
(
Unk ,U

n
k+1

)
≈

1

1t

tn+1∫
tn

f(u(x
k+ 1

2
, t))dt. (A6)

By using Eqs. (A5)–(A6), expression (A4) then becomes

Un+1
k =Unk −

1t

hk

(
F
(
Unk ,U

n
k+1

)
− F

(
Unk−1,U

n
k

))

+
1

hk

tn+1∫
tn

x
k+ 1

2∫
x
k− 1

2

s dxdt, (A7)

which is a forward Euler explicit method.
To ensure that the depth is non-negative and that the steady

state of a fluid at rest is preserved, the approach ofAudusse
et al.(2004) is used. The numerical fluxF is then defined as

F
(
Unk ,U

n
k+1

)
= F

k+ 1
2

(
Un(

k+ 1
2

)− ,Un(
k+ 1

2

)+

)
, (A8)

where the interface values are given by

Un(
k+ 1

2

)
−

=

 h(
k+ 1

2

)
−
uk

h(
k+ 1

2

)
−

 and

Un(
k+ 1

2

)
+

=

 h(
k+ 1

2

)
+
uk+1

h(
k+ 1

2

)
+

 . (A9)

The topographic terms is discretized as

tn+1∫
tn

x
k+ 1

2∫
x
k− 1

2

s dxdt ≈ Sk =1t

(
1
2gh

2
(k+ 1

2 )
−

−
1
2gh

2
(k− 1

2 )
+

0

)
,

(A10)

with the water depthsh
(k+ 1

2 )
− andh

(k+ 1
2 )

+ chosen as fol-
lows, to ensure the non-negativity of these depths:

h(
k+ 1

2

)− = max
(
hk + bk − b

k+ 1
2
,0
)
,

h(
k+ 1

2

)+ = max
(
hk+1 + bk+1 − b

k+ 1
2
,0
)
, (A11)

and

b
k+ 1

2
= max(bk,bk+1). (A12)

The discretization of the shallow water equations thus
reads

Un+1
k = Unk −

1t

hk

(
F
k+ 1

2

(
Un(

k+ 1
2

)− ,Un(
k+ 1

2

)+

)
− F

k− 1
2

(
Un(

k− 1
2

)− ,Un(
k− 1

2

)+

))
+
1t

hk
Sk. (A13)

The Harten–Lax–van Leer (HLL) flux (Harten et al., 1983;
Toro et al., 1994) is used as the numerical flux. It is given by

FHLL
k+ 1

2
=


FL if 0 < SL
SRFL−SLFR+SLSR(UR−UL)

SR−SL
if SL ≤ 0 ≤ SR .

FR if 0 > SR

(A14)

The wave speedsSL andSR are approximated as the smallest
and largest eigenvalues at the corresponding node. To ensure
the stability of this explicit scheme, a Courant–Friedrichs–
Lewy (CFL) stability condition per cell is used for all eigen-
valuesλp at eachUnk :∣∣∣∣1thk λp (Unk)

∣∣∣∣≤ 1. (A15)
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Appendix B: Coupled model

The (continuous Galerkin) finite element implementation of
LSWE or LVBM uses linear polynomials for solvingφ, ψ ,
andη approximately, while the finite volume implementation
for NSWE approximatesh anduwith a constant value. Since
u= ∂xφ, the velocity of the two models is approximated with
the same order of polynomials. By coupling both models, in
the simulation area, we can rewrite Eq. (52) as

Mkl η̇l − Sklφl − Bklψl − δk1(hu)|x=B− = 0 (B1a)

Mkl φ̇k + gMklηk = 0 (B1b)

Aklψl + Bklφl + Gklψl − δk1

(
β̃

hb
hu

)
|x=B− = 0. (B1c)

In the finite volume implementation, the boundary condition
is inserted through the numerical flux atx = B by using the
coupling condition (16) as follows:(
hu

h

)
=

(
hb∂x φ̆+ β̆∂xψ̆

hb + η̆

)
. (B2)
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