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Abstract. An effective boundary condition (EBC) is intro- 1 Introduction

duced as a novel technique for predicting tsunami wave run-

up along the coast, and offshore wave reflections. Numeri-

cal modeling of tsunami propagation in the coastal zone hashallow water equations are widely used in the modeling
been a daunting task, since high accuracy is needed to captufd tsunamis, since their wavelengths (typically 200 km) are
aspects of wave propagation in the shallower areas. For ex@r greater than the depth of the ocean (typically 2-3km).
ample, there are complicated interactions between incomingd Sunamis also tend to have a small amplitude offshore, which
and reflected waves due to the bathymetry and intrinsicallys Why they generally are less noticeable at sea. Linear shal-
nonlinear phenomena of wave propagation. If a fixed walllow water equations (LSWE) therefore often suffice as a sim-
boundary condition is used at a certain shallow depth con®le model of tsunami propagatio€ifoi et al, 2011 Liu et

tour, the reflection properties can be unrealistic. To alleviatedl- 2009 Kanaglu and Synolakis1998. On the contrary,
this, we explore a so-called effective boundary condition, de-t turns out that the lack of dispersion is a shortcoming of
veloped here in one spatial dimension. From the deep oceaghallow water modeling when the tsunami reaches the shal-
to a seaward boundary, i.e., in the simulation area, we moddpwer coastal waters on the continental shelf, and thus disper-
wave propagation numerically over real bathymetry using ei-Sive models are often requirekiadsen et a).1991, Horrillo

ther the linear dispersive variational Boussinesq or the shal€t al. 2006. Numerical simulations based on these linear
low water equations. We measure the incoming wave at thignodels are desirable because they involve a small amount of
seaward boundary, and model the wave dynamics towards theomputation. However, as the tsunami approaches the shore,
shoreline analytically, based on nonlinear shallow water the-shoaling effects cause a decrease in the wavelength and an in-
ory over bathymetry with a constant slope. We calculate thecreéase in the amplitude. Here, the nonlinearity starts to play
run-up heights at the shore and the reflection caused by th@ Mmore important role, and thus the nonlinear terms must be
slope. The reflected wave is then influxed back into the simuJincluded in the model. To capture these shoaling effects in
lation area using the EBC. The coupling between the numerimore detail, a smaller grid size will be needed. Consequently,
ical and analytic dynamics in the two areas is handled usindonger computational times are required.

variational principles, which leads to (approximate) conser- Some numerical models of tsunamis use nested methods
vation of the overall energy in both areas. We verify our ap-With different mesh resolutions to preserve the accuracy of
proach in a series of numerical test cases of increasing conile solution near the coastal ar&at¢v et al, 2011 Wei et

plexity, including a case akin to tsunami propagation to the@l- 2008, while other models employ an impenetrable ver-
coastline at Aceh, Sumatra, Indonesia. tical wall at a certain depth contour as the boundary condi-

tion. Obviously, the reflection properties of such a boundary
condition can be unrealistic. We therefore wish to alleviate
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this shortcoming by an investigation of a so-called effective
boundary condition (EBC)Kristina et al, 2012, including
run-up. In one horizontal spatial dimension, an outline of
the desired mathematical modeling is sketched in Eidn
the deep ocean for € [B, L] with horizontal coordinate:
and seaward boundary point= B, denoted as theimula-
tion area we model the wave propagation numerically using
a linear model. In the coastal zone fore [xs(r), B] with
shoreline positions(r) < B, denoted as thmodel areawe
model the wave propagation analytically using a nonlinear
model by approximating the bathymetry as a planar beach. x=B x=1
We calculate the run-up heights at the shore and the reflection
caused by the slope. The reflected wave is then influxed backigure 1. At the seaward boundaty = B, we assigni#, «) data,
into the simulation area using the EBC. The coupling be-and we want to find a solution of the NSWE on the sloping region
tween the numerical and analytic dynamics in the two aread'éar the shoreline.
is handled using variational principles, which leads to (ap-
proximate) conservation of the overall energy in both areas.
Following Kristina et al. (2012, an observation and influx tion, we have verified that the method introduceddoi et
operator are defined at= B to measure the incoming wave al. (2011, 2012 performs as well as our EBC method, while
signal and to influx the reflected wave, respectively. the reflection wave comparisons show larger discrepancies
The shoreline position and wave reflection in the modeldue to the usage of a hard-wall boundary condition. The in-
area (sloping region) are determined using an analytical soteraction between incoming and reflected waves needs to be
lution of the nonlinear shallow water equations (NSWE) fol- predicted accurately, since subsequent waves may cause dan-
lowing the approach oAntuono and Brocchin{(2010 for ger at later timesStefanakis et a[2011) investigate the fact
unbroken waves. The decomposition of the incoming wavethat resonant phenomena between the incident wavelength
signal and the reflected one is also describefirituono and  and the beach slope are found to occur. The resonance hap-
Brocchini (2007, 2010 for the calculation of the shoreline pens due to incoming and reflected wave interactions, and
and the wave reflection. Nevertheless, the method in their pathe actual amplification ratio depends on the beach slope. It
per is applied by determining the incoming wave signal with explains why in some cases it is not the first wave that results
the solution of the Korteweg—de Vries (KdV) equation. The in the highest run-up.
novelty of our approach is the utilization of an observation Determination of the location of the seaward boundary
operator at the boundary = B to calculate the incoming point x = B is another issue that must be addres<etbi
wave elevation towards the shore from the numerical solu-et al. (2017 put the impermeable boundary conditions at a
tion of the LSWE in the simulation area. For any given wave 5—-10 m depth contour. In comparis@igdenkulova and Peli-
profile and bathymetry in the simulation area, the numericalnovsky (2008 show that their run-up formula for symmetric
solution can be calculated, and the signal arriving at B waves gives optimal results when the incoming wave sig-
can be observed. Afterwards, the data are used to calculateal is measured at a depth that is two-thirds of the maxi-
the analytical solution of the NSWE in the onshore regionmum wave height. We determine the location of this sea-
and the reflected waves. ward boundary as the point before the nonlinearity effect
A rapid method for estimating tsunami run-up heights arises, and examine the dispersion effect at that point as well.
is also suggested bghoi et al.(2011, 2012 by imposing  Considering the simple KdV equatioMéi, 1989, the mea-
a hard-wall boundary condition at= B. Giving the wa-  sures of nonlinearity and dispersion are given by the ratios
ter wave oscillations at this hard wall at= B, the max- e = A/h and u? = (kh)? for the wave amplitudet, water
imum run-up height of tsunami waves at the coast is sub-depthi, and wavenumbek. Provided with the information
sequently calculated separately by employing a linear apeof the initial wave profile, we can calculate the amplification
proach. It is claimed that the linear and nonlinear theoriesof the amplitude and the decrease in the wavelength in a lin-
predict the same maximal values for the run-up height if theear approach, and thereafter estimate the location of the EBC
incident wave is determined far from the shoByijolakis point.
1987. In contrast,Li and Raichlen(2001) show that there The EBC in this article will be derived in one spatial
is a difference in the maximum run-up prediction betweendimension for reasons of simplicity and clarity of expo-
linear and nonlinear theory. In addition to calculating only sure. The numerical solution in the simulation area is based
the maximum run-up height as in Choi's method, our EBC on a variational finite element method (FEM). In order to
also includes the calculation of reflected waves. The pointverify the EBC implementation that employs this asymp-
wise wave height in the whole domain (offshore and onshoretotic closed-form solution, we also numerically simulate the
area) is thus predicted accurately. For the inundation predicNSWE in the model area using a finite volume method

u(x,r)

N~

/i, (x,7)

&
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(FVM). Both cases are coupled to the simulation areato com- The approximation for the velocity potentid@ in Eq. (1)

pare the results. We also validate our approach against thean be of various kinds, but all are based on the idea of re-
laboratory experiment dynolakis(1987. In Sect.2, we in-  stricting the class of wave motions to a class that contains the
troduce the linear variational Boussinesq model (LVBM) and wave motions one is interestedvian Groesei{2006,Cotter
shallow water equations (SWE), both linear and nonlinear,and Bokhovg(2010, andGagarina et al(2013. Following
from their variational principles. The coupling conditions re- Klopman et al(2010, we approximate the velocity potential
quired at the seaward boundary point are also derived heras follows:

The solution of the NSWE using a method of characteris-

tics is shown in SecB, which includes the solution of the ®&,2,71) =¢(x, 1) + F(2)y(x,1) 2
shoreline position. In Sect, the effective boundary condi-
tion is derived. It pinpoints the newly derived coupling con-
ditions between the finite element simulation area and th
model area. Numerical validation and verification are shown
in Sect.5, and we conclude in Sed.

for a function F = F(z). Its suitability is determined by in-
sisting thatF' (n) = 0, such that is the potential at the loca-
ion z = n of the free surface and satisfies the slip flow con-
dition at the bottom boundag+-p(x) = 0. The latter kine-
matic condition yieldsd,® + 9, ®d,hp =0 at z = —hp(x).

For a slowly varying bottom topography, this condition is ap-
2 Water wave models proximated by

/
Our primary goal is to model the water wave motion to the (0:):——py(x) = F (o) ¥ = 0. ®)
shore analytically, instead of resolving the motion in these g ,pstitution of Eq.2) into Eq. () yields the variational

shallow regions numerically. We therefore introduce an arti'principle for Boussinesq equations, as followdapman et
ficial open boundary at some depth, and wish to determine agy; 2010): '

effective boundary condition at this internal boundary. Con-
sider motion in a vertical plane normal to the shore, with an T

offshore coordinate. The artificial boundary is then placed 0= 8f£[¢’ W, n, xg] dt
at x = B, while the real (time-dependent) boundary lies at

x = xg(t) with xs(t) < B. For example, at rest, land starts at

x = 0, where the total water dep#t0, r) is zero. This water rf 1 2 9 1 2
line is time dependent, as the wave can move up and down = 5// (‘Mf” T 28 ((h +0)° b ) 3 (1 + hp) |99
the beach. 0 xs

We will restrict our attention to the dynamics in a verti- v 1 0 1. 5
cal plane with horizontal and vertical coordinatesind z, — By - 5“'3"% - EV‘/’ )dth’ “)

respectively. Nonlinear potential flow water waves are suc- 5
cinctly described by variational principles as followaike, where functiong (x), a(x), andy (x) are given by

1967 Zakharoy 1968 Miles, 1977): .

n n
B(x)=/ Fdz, d(x):/dez, f(x)=/(F’)2dz. (5)
£[¢$ D, n, xS] dt —hp —hp —hp

The shallow water equations (SWE) are derived with the as-

L 1 sumption that the wavelengths of the waves are much larger
/(qsa,n—ég ((h +b)? —bz) than the depth of the fluid layer, so that the vertical varia-
s tions are small and will be ignored. In this case, there is no
1 dispersive effect. The velocity potential is approximated over

_ / %IV@Izdz)dxdt 1) depth by its value at the surface, such that) = 0. Hence,

_hb

0

O ~— 5 ©T—x

8

I
(oo

wheng =& = y = 0in Eq. @), the nonlinear shallow water
equations are obtained as a limiting system.

We a priori divide the domain into two intervals: e
[B, L], where we model the wave propagation linearly, and
x € [xs(2), B], where we keep the nonlinearity. To be pre-
cise, in the simulation areac [B, L], we linearize the equa-
tions, and thus the wave propagation in this domain is mo-
deled by the linear shallow water shallow water equations
or the linear yet dispersive Boussinesq model. In the model
areax € [xs(t), B], we only consider depth-averaged shal-
low water flow. The non-dispersive and nonlinear shallow

with velocity potential® = ®(x,z,¢) and surface poten-
tial ¢p(x,1) = ®(x,z=n,t), wheren = h — hy is the wave
elevation andh = h(x,r) the total water depth above the
bathymetryp = —hp(x), with hp(x) the rest depth. Time runs
fromt € [0, T']; partial derivatives are denoted by etc., the
gradient in the vertical plane by = (d,, d,)”, and the ac-
celeration of gravity by.
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water equations are thus used to model the wave propaga-

tion in this region. Hereafter, we wrigg andj for the linear
variables. Consequently, by applying the corresponding ap-
proximations to variational principlel), the (approximated)
variational principle becomes

T
oza/c[q“s,&,ﬁ,qs,n,xs] dr (62)
0
T L
=8/ /<¢8fn——gn ——hb|8x¢l — B0,V dcd
0 B
Lo e 1.2
2al3x1ﬂ| ZVW )dx
; 1
2 2
+f<¢8,n—§g<(h+b) —b)
1 2
50 o, a]ar. (6b)

We choose a parabolic profile functiol(z; hp) =
27/ hp + 22/ k2, in which thex dependence is considered to
be parametric when the total water depiths sufficiently
slowly varying. The coefficients in Eg5) simplify to their

linearized counterparts in the simulation area where the lin-y,¢ + ¢ + = 3x¢ 0,

W. Kristina et al.:
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Il
0
— (00 + 8B+ (01 @0 + 0. (B0, G) — )87 ) e
+ (hpds @ + BO.)P|x—p + (@35 + B0 )8V x—p

B

+ [ (@ 0+ o) 0.3 — g+ g1

Xs

/ (3077 + By (hody ) + 8 (0,956

B

1
+ Ea,§<z>>6n)olx — (1 + hp) D PSPl c—p

dxs
(@) mrs g = (B0 =S5, (8b)
where we used the endpoint conditiods(0) = §n(T) =
0, and no-normal through-flow conditions at=L and
h (xs(t),t) = 0. Since the variations are arbitrary, the linear
equations emerging from EIf) for x € [B, L] are as fol-

lows:

3t¢3+gﬁ=07 (ga)
377 + By (hpdxd) + 8, (B3 ¥) =0, (9b)
Ay (@3 Y) + 8y (Bd:d) — v =0, (9¢)

and forx € [xs(¢), B], we get the nonlinear equations of mo-
tion

(10a)

ear Boussinesq equations hold (while these coefficients dis-

appear in the model area where the nonlinear depth-averageti’? + dx (7 + /p) 9x¢) =

shallow water equations hold)

0

a(x) = /
—hp
0

p=pBx = / Fdz=—§hb,

8
= F?dz = —h,
iz 15 b

a

—hp
0
p=p@) = | (F)dz=o—. 7
y=7x) /()z T (7
—hp
The variations in Egs. (6) yield
1 T
oz|imog/5[«;3+e&;3,¢+ea¢,ﬁ+eaﬁ,¢+ea¢,
€—
0
’7+6577sxs+65xs]_£[¢;7 %»ﬁ»‘ﬁ, nvxs]dt (8a)
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(10b)

The last two terms in Eq.8b) are the boundary terms at
x = xs. They can be rewritten as follows:

T
d
/ [(¢>5n) |x:xsdif— (@9m) |x:xsaxs} dr
0

T
dx
:/|:<_¢3x (n+hb)d—:—¢3m> 5xsj| dr, (11)
0 X=Xg
since the total depth i%(xs, 1) = n(xs,t) + hp(xs) =0 at

the shoreline boundary. We therefore have the relatien 0
Sh (xs,t) = 8h + 0,hdxs = én+ 9, (n + hp) Sxs. Substituting
Eqg. (10b) into Eqg. (1), the boundary condition at the shore-
lineis
drs
dr
e., the velocity of the shoreline equals the horizontal ve-
locity of the fluid particle. The underlined terms in E§b)
apply at the seaward point, where we want to derive the cou-

pling of the effective boundary conditions. To derive the con-
dition for the linear model, the goal is to write these terms

=0y¢ at x =xs(1); (12)

www.nonlin-processes-geophys.net/21/987/2014/
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using the variations¢ andsy . Because the depth-averaged in which hq is the still water depth at the seaward boundary,

shallow water equations are considered, we have andug, lp, andrg are defined below as
0
3 *ho hoy Y [gho
T 1 7 ’3 7 ug = & ) lO = ) tO = - ) (19)
s =dwn =1 [ @wand=¢+ 0. (03 Ve o=
—hp

whereg =1 andy = 1 are dimensionless gravity accelera-
where the last equality arises from approximatignfér the  tion and beach slope, respectively. The NSWE in dimension-

velocity potential. The variation @dfp thus becomes less form are then given by

oy B - d:h+ 9y (hu) =0 (20a)
3¢_8¢+h_b81//' (14) Ou +udu =gy — goxh. (20b)
Substituting this into Eq.8b), we get the coupling condition
atx = B for the linear model as follows: The asymptotic solution of this system of equations for

L. wave propagation over sloping bathymetry has been given

hpdx¢ + Box Y = hox¢ (15a)  for several initial-value problems using a hodograph trans-
e .. B formation Carrier and Greenspati958 Synolakis 1987,
ady Y +Poxg = h—bh3x¢- (15b)  Pelinovsky and Mazoyd 992 Carrier et al, 2003 Kanadjlu,

2009, and also for the boundary-value problefnfuono
To derive the condition for the nonlinear shallow water and Brocchini 2007 Li and Raichlen 2001 Madsen and
model, we use the approximation for the velocity poten- Schaffer2010 that will be used in this article. Since the sys-
tial (2) again. SinceF(z =n) =0 at the surface, we have tem is hyperbolic, it has the following characteristic forms:
¢ = ¢ and thusi¢ = 8¢. From Eq. 8b), the coupling condi-
tion for a nonlinear model is given by dor

L EZO on%zu—c (21a)
—=0o0n—=u+c, (21b)
Note that the coupling conditiond%—(16) are used to & dr

transfer the information between the two domains. Coupling ; in whichc = /g%,
condition (L5) gives the information ofy and+ in the si-
mulation area, provided the informationg@from the model o —2¢ —y + gy, andB = 2c +u — gyt. (22)
area is given. Meanwhile, coupling conditiobgf gives the
infgrmatign of¢ in the model area, provided the information Variablesx andg are the so-called Riemann invariants, since
of ¢ andys from the simulation area is given. they do not change their value along the characteristic curves
in Eq. 21). Assuming the flow to be subcritical (that j8] <
¢), the first characteristic curves with— ¢ < 0 are called
3 Nonlinear shallow water equations “incoming”, since they propagate signals towards the shore.
The second ones with+ ¢ > 0 are called “outgoing”, since
they move towards the deeper waters (carrying information
on the wave reflection over the sloping region).

3.1 Characteristic form

We will start with the NSWE in the shore region. Using

n = —hp +h and velocityu = d;¢, we may rewrite EQ.X0) 32 A trivial solution of the characteristic curve
as follows (starred variables are used here for later conve-

nience): In the trivial case of no motionu(= n = 0), as well as in

the dynamic case presented later, we focus on the incoming
dph* + dr (R*u*) =0 (17a)  characteristic curve. In the rest case, it is given by
Dot + U Dt = —g* Dy (—h+ *) (17b) ar

o = Verx (23)

The dimensionless form of EqLY) for a still water depth
hiy = y*x* (wherey* = tand is the beach slope) is obtained For x £ 0, substitutingy = /gy results in the general so-
by using the scaling factor8(occhini and Peregrind 999 lution for variabley as follows:

h* u* x* t* 1
h__u—_,xz—’tz—, (18) = ——= t C, 24
o o o P y zgy +C2 (24)

www.nonlin-processes-geophys.net/21/987/2014/ Nonlin. Processes Geophys., 21198%-2014
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with a constanC,. When the curve intersects= B at time
t = t, with g the depth att = B such thathg =y B and
v(B) = /gy B = ¢y, the particular solution is given by

y= w. (25)

In the case of no motion, the boundary data «o(zr) and
B = Bo(r) are as follows:

g =2c0+gyT, fo=2c0—gyT. (26)
Transforming back to the variable while using these ex- Figure 2. Plot of the characteristic curves in the case of no motion
pressions, we get the incoming characteristic curve (n = u = 0) for the dimensionless NSWE over sloping bathymetry
2 b(x) = —x for x € [0, 1] and LSWE over flat bathymetryg = 1,
= i(gyt —ag)?= gy (2w — (1 —1)) (27)  B=1forxe[1.2]. The ‘incoming" and “outgoing” characteristic
4oy 4 curves are shown by the solid and dashed lines, respectively. The

] ) o shorelinex = 0 can be seen as the envelopes of the characteristic
with o =co/(gy). Along this characteristic curve, the ¢ resthemselves.

Riemann invariant is constant.
Figure 2 shows the characteristic curves of the dimen-
sionless NSWE over sloping bathymetrgx) = —x for x € waves traveling back into the deeper waters. If the sea is as-
[0,1], and LSWE over flat bathymetrig=1, B =1 for sumed in the rest state during the initial condition, the data
x € [1,2]. Asin our previous papeK(istina et al, 2012, the ~ aren(B,t) =u(B,t) =0fort < 0. In accordance to the pre-
characteristic curves of the LSWE are given by dr = +co. vious trivial case, the initial time where a characteristic meets
The “incoming” and “outgoing” characteristic curves are x = B is labeled ag, and we writex = x (¢, 7), S0 we have
shown by the solid and dashed lines, respectively. the datax = ag = 2¢(B, ) —u(B, v)+gyt along the incom-
For each characteristic curv@7), the location of the ing characteristic curves anftl= o = 2c(B, ) +u(B, 1) —
shoreline can be determined by looking for the= 5 for gyt along the outgoing characteristic curves. We can then
which the characteristic reaches the shoreline position, hereewrite Eq. 1) as

x =0, at timet. It is given by the condition
g y B—3aq

a = ag on curves such that,=u—c= +gyt, (29a)

0
3_x =0, sothatts=1 — 2w. (28)
T

380—
B = Bo on curves such that,=u+c= po a+gyt, (29b)
As displayed in Fig2, the incoming characteristic curves
that reach the shoreline at timéntersectt = B =1 attime  which means that the boundary values are carried by the in-

T =1—2(w=1linthis case). Since equals zero in the rest coming and outgoing characteristic curves. To be concise, we

case, the boundary conditioh3) is of course satisfied. write x, = 8,x andyx, = 3, x. Our aim is to obtain a closed
equation for the dynamics, and we focus on the incoming

3.3 Boundary value problem (BVP) characteristic by fixing: — eo. We can rewrite £q.208 as

Li and Raichler(2001) andSynolakis(1987 combine linear follows:

and nonlinear theory to reduce the difficulties in the ass.ign-/8 = 300+ 4(x, — gy1). (30)

ment of the boundary data for solving the BVP problem in
the NSWE. Later, it is shown that the proper way to solve theHere’ﬂ — :B(X ,1), since we are moving aiong an incoming
assignment problem without using linear theory at all is notcharacteristic curve. By taking the totadlerivative ofg, we
given in terms of;y or u (Antuono and Brocchini2007), but  gptain
in terms of the incoming Riemann varialkleThis article fol- a4 53
lows the approach éintuono and Brocchini2010, whouse %P _ _ —9%0
this incoming Riemann variable as boundary data and solved: Pt Puxe =Pt ( 4 +gyt> P
the dimensionless NSWE by direct use of physical variables = 4(y,, — gy) , (31)
instead of using the hodograph transformation introduced by
Carrier and Greenspaii958. We do, however, clarify the in which the last equality comes from E@Q]. In addition,
mathematics of the boundary condition at the shoreline. thet derivative of Eq. 80) gives

Given the data ofy andu at the seaward boundary= B, .
for all ime ¢, we want to find a solution of the NSWE in 28 = Bexr =360+ 41 = Pr= 30 + 4 (32)
the sloping region to the shoreline, including the reflected 97 Xz ’

Nonlin. Processes Geophys., 21, 981005 2014 www.nonlin-processes-geophys.net/21/987/2014/
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in which ag = 9; ag.
We still need an explicit expression f@f, which can be
obtained by rewriting Eq.Z1b) in the following way:

38 —
ﬂt+( ,34a0

Combining Egs. 31)—(33), we get the following differen-
tial equation for the incoming characteristic curves:

—i—gyt) By =0. (33)

2% (Xer—8Y) = (Axi+3c0) (gyt—ao—x;) fort > 1,

(34a)

with boundary conditions
Xli—c =B (34b)
Xt |r:rs =0. (34c)

EBC for tsunami wave run-up over sloping bathymetry
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We then make the change of variables —(2w —t+ 1) and
& =1, and Eq. 87) becomes

1 1
v (zwrﬁ; - Tgy) —2r®+ P =o. (38)
Denoting the Fourier transford(-) with respect ta,
PP =F(TP0,8) ) = / Y (v,€) e d, (39)
—0o0

we obtain from Eqg. 38) a differential equation related to a
Bessel equation:

The second boundary condition is the shoreline boundary,® (,, s) = eiSV(Al(s)[Jo(sv) _i]l(sv)]

condition. We haved= « + § from Eq. £2), which implies
B = —a at the shoreline = 0. Using Eq. 80), we note that
4c = ap+ B = 4o+ x: — gyt) = 0 at the shoreline. Hence,
the right-hand side of Eq36@9 is zero, such that for con-

v (Zis,o]gl) — ,05,1))) 2,0(1) +isp® =0, (40)
which has the general solution
+ A2() [ Yo(sv) + Ya(sv)] ), (41)

with Jo,1 andYp 1 the Bessel functions of the first and second

sistency,x. must be zero at the shoreline, since generally,kinds. To recovefY (v, ), we just need to take the inverse

Xit &Y.

3.3.1 Perturbation expansion

Fourier transform of Eq.41), and by usingr™® = @ +
vap,1/2, we get

o0

. L . 1 ;
Due to the nonlinearity iry, we use a perturbation method to @ (v, &) = o / eS0T (Al(s)[]o(sv) - iJl(sv)]
JT

solve Eq. 84). We expand it in a perturbation series around
the rest solutionZ7), with the assumption of small data at

x = B. Using the linearity raticc = A/ hg (A is the wave
amplitude), we say a wave is smalldf« 1, and expand as
follows:

a0 = 0,0+ €ap 1+ O(e?), (353)
x=xP+exP + 0, (35b)
s = 10(t) + €71(1) + O(€?), (35c)

in whichag o = 2co+gy T is the incoming Riemann invariant
in case of no motiony© is given by Eq. 27), and g =
t — 2w. By substituting Eq.35) into Eq. 84), we obtain at
first order ine:

— o, 1)

Qw—1+71) (Xz(fl)JrZX(l)) ( @

(36a)

+§(2w—t+t)d01=0,
x2 =0, (36b)
xQ )1+ x P (1, 10) = 0. (360)

By letting Y@ equal x® — (2w — 1 4+ 7)a0,1/2, we can
rewrite Eqg. 869 as
O+ =o0.

Co—t+1)(XP +27 D) — (37)

www.nonlin-processes-geophys.net/21/987/2014/

—00

+ 429)[Yolsv) + Y16v) | Jbs = Zaoa. (42)

withé =1 <1.
3.3.2 Boundary value assignment

In order to calculate the unknown functioAs(s) andAx(s),
we need to assign the boundary conditioB4)(In (v, £)
spacet = t corresponds t® = —2w, and by imposing the
first boundary condition, we get

—F (a0,1) 0™ = A1(s)[Jo (250) +iJ1 (25)]

+ A2(s) [i Yo (2sw) — Y1 (2sw)] . (43)

The second boundary condition is given by E&64@), in
which

XD = D4 P
o0
. ) J
:L/eu(eré)(Al(S)[SJo(sv)—isjl(sv)_ 1(sv)]
21 .
—0o0
JrAZ(S)[”YO(S")J”"Yl(sv)Jr 1(iV)])ds
@01 Vo1
2z | 44
+ > 5 ”
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is evaluated at = 10; i.e., v = 0 needs to be finite. Evalu- of Eq. @9) in Eq. (6) yields

ating Eq. 44) at v =0 gives us convergence when the co-

efficient Ax(s) is zero, which avoids an unbounded result. /T
0

. 1 1
Hence, from the first boundary conditioB6p), coefficient  0=4 [M Kk — zgMuimkm — §5K|¢>k¢>z

A1(s) is given by 2
) 1 1
Ax(s) = — f(oto,l)c?ez”‘" . (45) — Buvid — EAkI Vi — szll/kal
Jo(2sw) +iJ1(2sw) B
1 1
The solution of the incoming characteristic curves at first or- + / (q&am — Egnz — §h (3x¢)2>dx]dt (50a)
der is thus given by Y
x V.8 ; .
00 = / [(M kI — Sk ¢ —Bu )b — (Mg +gMiini ) dmy
=_i tv(v+§+2w)w]_—( ) Jo(sv) —iJa(sv) 0
2 Jo(Zsw) +iJ1(2sw)
) o0 — (A vi+Biagr + G ) 8y
— 5201 (46) 5
The shoreline position must satisfy|,—., = 0, and in the + / ((3177 + 0, (hx )8 — (3, + gn + ¢)577)
first-order approximation, it is given by Xs
dxs
xs(t) =x9 (1. 70) + € [xr(o) .o+ x P (. fo)] +(@Om) la=as g = (@9M) Lx=xsdxs
B
+0(€?). @7
( ) @7 /((am + 0y (hox ) @101 — (3:¢p + g1 + ¢)<ﬂ15771>dx
Sincet = g corresponds to = 0 andé = — 2w, we get Xs
B
- T~ @ —hox¢|x=pdp1 — h8x¢|x BV |dr, (50b)
N=-F1F : 48 xPlx=
xs(t) [ (x0,1) S (st)] (48) ]
where we introduced mass and stiffness matrides Sq,
4 Effective boundary condition Ak, B, and Gy, and used endpoint conditiody (0) =
Sni(T) =0, connection conditions$7(B,t) =3¢ (B,t) =
4.1 Finite element implementation 3y (B,t) =0, and no-normal through-flow conditionsxat

L. The matrices in Eq5Q) are defined as follows:
The regionx € [B, L] will be approximated using a classical
Galerkin finite element expansion. We use first-order spline
polynomials onV elementswithy = 1,..., N+1nodes. The My = /(pkga[dx, S = /haxwkaxw,dx,

L L

variational structure is simply preserved by substituting the 3

expansions L

G (x,1) = ¢ (Dg; (), Y (x,1) =¥;(Dg;(x), and :f Bcrdcpidx, B = /ﬁf’x‘PkE’xwdx

nn(x,t) =n;()e;(x) (49a) B

into Eq. @) for x € [B, L] concerningV elements andN + and Gy = f Vorpidx. (51)
1) basis functiong ;. We used the Einstein summation con-

vention for repeated indices. B

To ensure continuity and a unique determination, we em-Provided we let the size of the zeroth element go to zero such
ploy Eq. (L3) and substitute that the underlined terms in Ecp@b) vanish, the equations
arising from Eq. §0) are

_ i
D =00 DF PN+ YaDgr() and Muiit = Sady — Bt — 1 (h9) li=p- =0 (52a)
n(x, 1) =7(x, 1) +n()ea(x), (49b) Midi +gMim =0 (52b)

with ¢1 the basis function in element 0O fare [xs, B], and A +B +G 5 éhax el =0 52¢
with ¢ (B, 1) = 7j(B,t) = 0. For linear polynomials, the use k¥ ue kY kl(hb ¢)|X_B + (520)
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with Kronecker delta symbaly (one whenk =1, and zero
otherwise) and Eq1Q) for x € [xs, B] with boundary condi-

tion (12). Taking this limit does not jeopardize the time step,

995

solve for the perturbation expansion in the nonlinear area, but
we do not perturb the incoming wave data.
The valuegj andiz in Eq. (66) are obtained from the simu-

as this zeroth element lies in the continuum region, in whichlation areg B, L]. In this region, we only have the values of
the resolution is infinite. The time integration is solved using 7, ¢, andyr. The depth-averaged velociti BT, t) is deter-

ode45 in MATLAB, which uses its internal time step.
From Eq. 62), we note that we need the depthtand the
velocity u from the nonlinear model at = B, whose val-

ues are given at time= t in the characteristic space. The

definitions @2), while usinge = g and g in Eq. (30) with
expansions up to first order, yield

1
=20 = — 2
h=c/g 16g(a0 B)

= (c00+ 1 =gyt + €(ao1+ Xz(l)))z/g

t_
W—;w—gyﬁe(ao,ﬁxfl)))z/g

1
= (co+ Egy(r — 1) +e(ao1+ X;(l)))z/g (53a)

= (Oto,o +

u=gyt+ E(,B —ao) = e(oco,1~|—2xt(l)). (53b)

Note that fore = 0, we indeed find the rest depiip(x) =

yx. The functionx,(l) follows from evaluation of Eq.46),
and sincer = t is equivalent tov = —2w, we immediately
obtain

1
AP = = x P (—20,8)

o
_ _L is€ J1(2sw)
e | ¢ T (o) To(2s@) +iJ1(250)
—00
0,1
_qo1 54
. (54

The solutions ok andu atr = t are thus given as follows:

h(B,t) =hp+n
2
_ S, €01 Jo(2sw)
= 2 +€ 2 F I:]:(O[O,l) 7o (230))+i]1(250))i| (55a)
1 iJ1(2sw)
u(B,t) =—€eF |:.7:(0lo,1) Jo 2so) +iJ1(2sa))i| . (55b)

In order to calculate the solutions farandu at x = B

mined by using the approximatiof3) as follows:

a:ax¢”>+hﬁax¢ at x =BT, (57)
b
which is the limit from the right at node 1.

The solutions of; = h — hp andu in Eq. (65) account for
the reflected wave, so we may define

n=n|+nR and u = u' +uR, (58)

wheren' andnR are the wave elevations of the incoming and
reflected waves, respectively,at= B. This superposition is
also described iAntuono and Brocchini2007, 2010, and is
actually in line with our EBC concept, since linearity holds
in the simulation area. To obtain the expression for the re-
flected wave, we need to know the incoming one. Using the
knowledge of the incoming and outgoing Riemann invariants
in the LSWE as derived iKristina et al.(2012), the obser-
vation operator is given by

O = hii + cij = 2, (59)

which is calculated using approximatios7j. We can thus
calculate the incoming wave elevation for any given wave
signal atx = B. Implementation of this observation operator
allows us to have any initial waveform at the point of tsunami
generation, and to let it travel over the real bathymetry to the
seaward boundary point= B. From Eq. 65), the expres-
sions for the reflected wave are as follows:

R =M@

o g]: [f(eao’l)Jo(Zsa))+iJ1(2sa))] n (60a)
uR = M@

_ 1 lJ]_(zSC()) o

—_F [f(eao,l) Jo(2sa))+iJ1(25w)] ', (60b)

where the Fourier transform and its inverse for any incoming
wave signal are evaluated using the FFT and IFFT functions
in MATLAB.

The influxing operator is defined as the coupling condition

and the shoreline position, we need the data of the incoming, Eq. 52) to send the NSWE result to the simulation area. It

Riemann invariants at the first order as follows:

€0Q,1 ¥ o — Q0,0

= 2(\/8()/3 +1) — \/gVB> ly=p+ —ttlx=p+, (56)

is shown that we need the value/df, ¢, and hence
I =hoxd = (hp+n)u. (61)

In order to verify the EBC implementation, we perform nu-
merical simulations with a code that couples the LSWE in the

which is obtained by disregarding higher-order terms insimulation area to the NSWE in the model ar&akhove
Eq. 359. This expression is actually the incoming Riemann 2005 Klaver, 2009. For numerical simulation of the LSWE,

invariant in LSWE Kristina et al, 2012. By imposing the

we use a finite element method, while for the NSWE, we use

effective boundary condition (EBC) and choosing the loca-a finite volume method. The implementation of the finite vo-
tion x = B before the nonlinearity arises, we thus do actually lume method is explained in Appendix

www.nonlin-processes-geophys.net/21/987/2014/
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5 Study case 1.04
Three test cases are considered. The first one is a synthetic =~ _1.02 s
one concerning a solitary wave, such that we can compare it E |
with other results. Subsequently, we consider periodic wave
influx as the second case to test the robustness of the tech- 0.98 5 - 15 20
nigue when there is continuous interaction between the in- (a)
coming and reflected waves. The third case is a more realis- 1.04
tic one concerning tsunami propagation and run-up based on 102 Fres,
simplified bathymetry at the Aceh coastline. g

The location of the EBC point is determined from the R
linearity conditione = Ag/ ho < 1. From linear theory, the
wave amplification over depth is given by the ratlg = 0.98 5 10 15 20
AYh[ho, whereA andh are the initial wave amplitude and (b) .
depth. Hence, the EBC point must be located at depth 1'227
ho>> \J A%h/e4. (62) :g;
Since a dispersive model is also used in the simulation " Tt
area, we will discuss the dispersion effect at this EBC point 0.98 ‘ ‘
as well. The non-dispersive condition is given py = (©) 5 10 15 20
(koho)? < 1, wherekg = 21 /Ag is the wavenumber an 1.1
is the wavelength. In linear wave theory, the wavelength de- 1.08r
creases with the square root of the depth when running in ’51'82: .
shallower water, that i8g = A+/ho/h. Using this relation, oo i‘%%%m_
we can thus investigate the significance of the dispersion 1t ; =
given the information of the initial condition and bathymetry 0.98— 5 10 15 20
profile. (d x

1.04—— : :
5.1 Solitary wave 1.02 1
= T T )
The run-up of a solitary wave is studied by means of the well- g !
known case oBynolakis(1987. A solitary wave centered at 0.98
x = xg att = 0 has the following surface profile: © 0.96— ‘ 10 15 20
e X

n(x,00=A seclk (x — xo). (63)
. ) _ Figure 3. Run-up of a solitary wave over a canonical bathymetry
We benchmark the EBC implementation and the couplingat times(a) ¢ = 30, (b) = 40, (c) ¢ = 50, (d) ¢ = 60, and(e) ¢ =

of numerical solutions to experimental data $ynolakis  70. The solid line is LSWE, with EBC implementation.at= 10,
(1987 provided at the NOAA Center for Tsunami Research the dashed and dotted-dashed lines are the couplings of the LSWE
(http://nctr.pmel.noaa.gov/benchmarkBolitary wave run-  and NSWE models, respectively, and the symbols are the laboratory
up over a canonical bathymetry is considered with the scaledata ofSynolakis(1987).
amplitude A = 0.0185 andx = /3A/4=0.1178. The ini-
tial condition is centered afy = 37.35 over the bathymetry,
with a constant slopg = 1/19.85 for x < 19.85. The EBC
point is located atk = 10, such that the domain is divided not appear. Figur8 shows the time evolution of this profile
into the model area far € [—5, 10] and the simulation area for scaled time = 30-70 with 10 increments. It can be seen
for x € [10,80]. The spatial grid sizes atx = 0.25 in the  that the EBC implementation and the coupling of numerical
simulation area ancd\x = 0.0125 in the model area for the solutions agree well with the laboratory data. The compari-
numerical solution of NSWE. In all cases, several spatial resson of the shoreline movement between the simulation with
olutions have been applied to verify numerical convergence EBC implementation and the coupling of numerical solutions
For the time integration, we use the fourth-order ode45 solveiis shown in Fig4. For the simulation till the scaled physical
that uses its own time step in MATLAB. timer = 100, the computational time for the coupled numer-
The simulations with the EBC implementation and the ical solutions in both domains is 10.9 s, while the computa-
coupling of numerical solutions are only presented for thetional time of the simulation with the EBC implementation
LSWE model in the simulation area, since the initial condi- only takes about 18 % of that time. Hence, we notice that
tion has a long wavelength, and thus dispersion effects willthe simulation with the EBC reduces the computational time
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Figure 4. The shoreline movement of a solitary wave introduced in (¢) *{ml ximl
Synolakis(1987. The LSWE model coupled to the NSWE is shown 0005 - 0‘;5
by the dashed line, while the solid one is the shoreline movementof £ | ST gz R
the LSWE model with an EBC implementation. " oos " oo
7o 50 100 150 200 250 U0 50 100 150 200 250
(d) x[m] x[m]
0.15 : : : : Figure 6. Free-surface profiles of solitary wave propagation are

shown for the coupled linear model (left: LSWE; right: LVBM)

017 1 with the NSWE (dashed and dotted-dashed lines), and for the lin-
0.05- -/L ear model with an EBC implementation (solid line), at tinf@s =
10s,(b)t = 20s,(c)t = 30s, andd) r = 40 s. The solid and dashed
OF [ =-emmemeemenes lines are on top of one another.

-0.05

n(x.t) [m]

s s s ‘
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x [m]

Figure 5. A solitary wave initial condition for the NSWE (dotted-
dashed line) coupled to the linear model (dashed line), and the linear -1r
model with the EBC implementation (solid line) at= 50 m. The
solid and dashed lines are on top of one another.
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x,(t) [m]

V"'WWV""""""V

"’" QMWMM m'o'om
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QM
T .‘ il

\

e
significantly, down by approximately 82 %, compared with m’” ““" “ ”’W "’""‘W"“
the computational time in the whole domain. 10 ‘ 40

In order to show the dispersion effect, we consider a (a)
shorter wave with the profile given in E®3) for « = 0.04, 15
xo=150m, andA = 0.1 m. The bathymetry is given by a
constant depth of 10 m far > 50m, continued by a con-
stant slopey = 1/5 towards the shore. A uniform spatial
grid Ax = 1 mis used in the simulation area, and equals

0 "VV"WW"WW"W "W" ' ’."

0.015m in the model area for the numerical solution of the "
i .o'ﬂmw v m’ow' .

NSWE. Evaluating Eq.&2) for e = 0.02 < 1, the EBC point o ””0""’0”“0’0’"0”""

5r tﬂm‘

"V

must be located dtg >>> 3.3 m. Accordingly, we choose this m”
seaward boundary point Ay = 10 m at the toe of the slope, b 40
that is atx = B = 50 m. We therefore divide the domaininto  (b)

the simulation area far € [50, 250| m, and the model area

for x € [5,50/m model @ LSWE; b: LVBM) coupled to the NSWE (dashed line),

In Fig. 5, we can see the initial profile of the solitary wave. and the linear model with an EBC implementation (solid line). Paths
Comparisons between these two simulations at several timgg yhe first-order characteristic curves are shown by the thin lines.

steps can be seen in Fg)(left: LSWE; right: LVBM). Com-

paring the left and right figures, we can see that the wave

is slightly dispersed in the LVBM. Because we have flat

bathymetry in this case, the dispersion ratio in the simula-characteristic curves forming the shoreline are also presented
tion area is constant and given py = 0.39 < 1. Hence, itis  in this figure. We can see that the shoreline is formed by
shown that the long waves propagate faster than the shortehe envelope of the characteristic curves. The result with the
ones in LVBM simulations. In Fig7, the shoreline move- LVBM shows a lower run-up but higher run-down, with some
ment caused by this solitary wave is shown. The paths ofoscillations at later times.

Figure 7. The shoreline movement of a solitary wave for the linear
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-0.5 : ‘ ‘ : Figure 9. Free-surface profiles of solitary wave propagation are

0 10 20 t[s] 30 40 50 shown for the coupled LSWE with the NSWE (dashed and dotted-
dashed lines), for the LSWE with an EBC implementation (solid
Figure 8. Comparison of the shoreline movement ©fioi et al. line), and for the LSWE with the method &hoi et al.(201J)
(2011) (dashed line) and the LSWE with an EBC simulation (solid (solid line with the “0” marker) at timega) r = 10s,(b) t = 20,
line) for the solitary wave case. (c)r =30s, andd) r = 40s. The solid and dashed lines are on top

of one another.

For simulation till the physical time = 40s, the com-
putational time for the coupled numerical solutions in both
domains is 3.3 times the physical time for the LSWE and 2
2.2 times the physical time for the LVBM, while the com- 008
putational time of the simulation using an EBC only takes (@
0.12 times the physical time for the LSWE and 0.06 times o /\/ " /\/
that for the LVBM. Hence, we notice that the simulation with Z-o0q Z-005
the EBC reduces the computational time significantly, down o o
by approximately 97 %, compared with the computational ()

time for the numerical models in the entire domain. The com- oo /\/_/ e /\/

putational time for the LSWE with an EBC is slower than = Z-o0s| /

0.05 0.05

x,t) [m]
o
nexY [m]
&
& o

[m]

[m]

—of)

. . . = 0.1y}
the one with LVBM_and an EBC, begause the mterngl time ol s
step of the ode45 time step routine in MATLAB required a (© X X
smaller time stepAr (compared to the LVBM) to preserve £ O £
the stability. El \/\ B \/\
The shoreline movement of our result compares well with ot —. . = ot =" o

x [m] x[m]

the one ofChoi et al.(2011). We can see the comparison in (@)

z_lg._& ';he Eoluﬂon (I)_fChOk; et_al.(ZOl])fgll\Iles ahhlghgr pre- Figure 10.Free-surface profiles of periodic waves are shown for the
iction for the shoreline, but it cannot follow the subsequent ., a4 jinear model (left: LSWE; right: LVBM) with the NSWE

small positive wave. It may be caused by neglecting the réqashed and dotted-dashed lines), and for the linear model with an
flection wave and nonlinear effects in their formulation. We EBc implementation (solid line), at timéa) = 20's,(b) t = 40's,

also compare the free-surface profile for several time steps ifc) r = 60s, andd) = 75s. The solid and dashed lines are on top
Fig. 9. The implementation of the hard-wall boundary condi- of one another in several plots.

tion atx = B in the method ofChoi et al.(201]) causes in-

accuracies in the prediction of the point-wise wave height in

the entire domain. In this case, the effect of reflected wavegrid Ax = 1m in the simulation area antix = 0.015m in

for the shoreline movement prediction is small, but it may the model area for the numerical solution of the NSWE.
become important when a compound of waves arrives at the As in the previous case, we also choose the seaward

coastline. boundary point atip =10 m at the toe of the slope, that
o is, at x = B=50m. The simulation area is thus fare
5.2 Periodic wave [50, 250/ m and the model area is fare [—5, 50| m. Com-

ing th bath il in th . parisons between these two simulations at several time steps
Using the same bathymetry profile as in the previous case,., pe seen in Figlo (left: LSWE; right: LVBM). We

we influx a periodic wave at the right boundary= L) with can see in the comparison that the wave is slightly dis-

the profile persed in the LVBM. The dispersion ratio in the simulation

n(L.1) = A sin2rt/T), (64) area is given'byJ,2 = 0.0986§ 1, which is Igss dispersive
than the previous case. In Fifj1, the shoreline movement

in which A =0.05m is the amplitude an@ = 20s is the  caused by the periodic wave as well as the paths of char-

period. A smoothened characteristic function unt 10sis  acteristic curves forming the shoreline are shown. Observ-

used in influxing this periodic wave. We use a uniform spatialing the results of this case, we can conclude that the EBC
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tude A = 1 m and frequencw = 0.0009 rad 51 The solid line is
the run-up height calculated by employing the LSWE model in the

technique can deal robustly with consecutive interactions beSimulation area with the EBC implementation. The dashed one is

tween the incoming and reflected waves. the result of coupling the NSWE model in the model area to the
For simulation till the physical time =80s, the com- LSWE model in the simulation area.

putational time for the coupled numerical solutions in both

domains is 1.83 times the physical time for the LSWE, and

2.01 times the physical time for the LVBM, while the com- ¢5icylate the amplification of periodic waves. In our result,
putational time of the simulation using an EBC only takes tnhe NSWE model is employed in the last beach slope region.
0.07 times the physical time of the LSWE, and 0.06 timesTpe period of this wave is approximately 2 h, and it coin-
that of the LVBM. Obviously, we notice that in the simulation jdes with the observed tsunami at the Makran coast, accord-
with the EBC, the computational time decreases down by aPing to Neetu et al(2011). In nature, one would not expect a
proximately 97 %, compared with the computational time for (synami of a monochromatic wave train. The investigation of
whole domain simulation. . Stefanakis et a(2011) for the 25 October 2010 Mentawai Is-
As mentioned in the Introduction, resonant phenomenaangs tsunami showed that the period of the dominant mode
were investigated b$tefanakis et ak2011) for monochro-  yf the incident wave is within the resonant regime, and it ex-

matic waves on a planar beach. Subsequediigrsky et pjained the fact that the highest run-up is not driven by the
al. (2013 used three piece-wise linear profiles of unper- jeading and highest waves.

turbed depths (see Fidl2), akin to a real coastal bot-

tom topography, to find the analytical run-up amplification ) _ ) o

due to resonance effects. We follow this bathymetry pro-2-3 Simulation using simplified Aceh bathymetry

file, with tana = 0.0036, tar8 = 0.0414,ho = 2500 m, and

h1=200m. These choices roughly characterize the IndianThe bathymetry near Aceh, Indonesia, is displayed inHg.
coast bathymetryNeetu et al.2011). The EBC point is lo-  Figure 14a concerns bathymetry data from GEBCO (gen-
cated at the edge of the last beach slope. We influx a peeral bathymetric chart of the oceans), with a zero value on
riodic wave 64) with amplitudeA =1m andw =27/T = land. Figureldb concerns the cross-section at (858 E,
0.0009rad s*. As a result, we get 10.67 times amplification, 3.233% N)—(96.6583 E, 3.695% N) shown by the solid line.

as shown in the run-up heigRt(z) in Fig. 13, while the result ~ The 2004 Indian Ocean tsunami was a result of an earthquake
of Ezersky et al(2013 gives about 12 times amplification. of magnitude of\,y, = 9.1 at the epicenter point (9864 E,

It should be noted that they use a linear approximation t03.316° N), shown by the symbol in Figlda. Presently, we
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Figure 14. Bathymetry near Acelia) and the cross-sectiqfp) at

(950278 E, 32335 N)-(966583 E, 36959 N). The solid line () "*0 & 10,55 o o5
concerns the bathymetry data, and the dashed line concerns the ap- s 3
proximation used in the simulations. %2\ 22\
21 21
consider the following initialV-wave profile @ ° 7 el *F R T
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and where the initial velocity potential is zero. We take= 0‘\/‘_\ 5 O\/\

0.4 m, the position of the wave profile = 107.4 km, and a "-oal a " o Tl " - 4
width wo = 35 km. ® e e

The location of the EBC point is also determined from rigyre 16. Free-surface profiles of Aceh simulations with the linear
Eq. 62). For e =0.02« 1, the linear model is valid for model (left: LSWE; right: LVBM) coupled to the NSWE are shown
ho > 25.1 m. Hence, we choose the EBC point at dépth= by the dashed and dotted-dashed lines, and for simulations for a lin-
41.4m, which is located at = B =124 km. The simula- ear model with an EBC implementation, are shown by the solid line
tion area is thus for € [12.4,1624] km, where we follow  at times(a) r = 800s,(b) 1600s,(c) 2700s,(d) 3200s,(e) 40005,
the real bathymetry of Aceh to calculate the wave propagaﬁnd(f) 5400s. The solid and dashed lines are on top of one another.
tion. It is coupled to the model area fore [—8.6, 12.4] km,
where a uniform slope with gradiemt= 1/300 is used to
calculate the reflection and shoreline position. We use a non- In Fig. 15, we show the initial profile. Comparisons be-
uniform grid according to the depth, with ratigho/h asthe  tween these two simulations at several time steps can be seen
decrease in the wavelength when traveling from a deep rein Fig. 16. In this case, the wave elevation measures aas
gion with depth: to a shallower region with depfly in lin- changed from its initial condition due to the reflection from
ear wave theory. The grid size used in the simulation area ishe bathymetry before entering the model area; seelfa.
Ax = 305 m at the shallowest point neate= B. This choice  and b. We hardly see any differences between the LSWE and
of spatial resolution is fairly close to other numerical tsunami LVBM simulations because the wavelength is much greater
simulations Horrillo et al, 2006 use Ax = 100 m offshore  than the depth. The dispersion ratio at the initial condition
and Ax = 10m onshore in one-dimensional (1-D) simula- is given byu? = 0.002« 1, and at the EBC point, it is ap-
tions). For the numerical solution of the NSWE in the model proximately u?2 = 7.5 x 10~° « 1. The dispersion effect is
area, a uniform grid withtAx = 3 m is used. therefore not significant in this case. In Fig, the shoreline

(x.t) [m]
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Figure 18. Shoreline movemenfa) and an inse{b) of a break-

Figure 17. Shor.elirl1e movement in the Aceh case for the linear j, \vave simulation. The linear model coupled to NSWE is shown
model @ LSWE; b: LVBM) coupled to the NSWE (dashed line), y 'the dashed line, while the solid one is the shoreline movement

and for the linear model with an EBC implementation (solid line). 4t 5 jinear model simulation with EBC implementation. Paths of

Paths of the first-order characteristic curves are shown by thin linesy.« first-order characteristic curves are shown by thin lines. Break-

ing occurs when two incoming characteristic curves intersect before
reaching the shoreline. It is indicated by the red oval at approxi-
position is displayed. From this plot, it is shown that the wave Matelyr = 45 min.
runs up 1km in the horizontal direction in approximately
10 min, roughly in the time interval from 50 to 60 min. For
the given slope, it corresponds to 8 & run-up height. :
For simulation till the physical time= 120 min, the com- 6 Conclusions
putational time for the coupled numerical solutions in both
domains is 0.03 times the physical time for the LSWE and
0.03 times the physical time for the LVBM, while the com-
putational time of the simulation using an EBC only takes
0.003 times the physical time for the LSWE and 0.004 times
that for the LVBM. We again notice that the simulations us-
ing the EBC decrease the computational times down by ap
proximately 92 % of the computational times with the cou-
pled model in the entire domain. In this case, the simulation
with the LSWE is faster, as expected, since the LVBM in
volves more calculations within the same time step.
For the case when breaking occurs, we use the same pr

file, with an amplitude twice as higta(= 0.8 m). In Fig.18, tuono and Brocchinf2007, 2010. The advantages of using

f[he shoreline pogltlon is presented. Compared to t_he NUMEhhis EBC are the ability to measure the incoming wave signal
ical NSWE solution, it can be seen that the shoreline move-

; S .~ at the boundary point = B for various shapes of incom-
ment is well represented by the characteristic curves, whﬂqng waves, and thereafter to calculate the wave run-up and
the shoreline positions(r) given by Eqg. 48) gives a less ‘

> ? . reflection from these measured data. To solve the tsunami
accurate result. Breaking occurs when two incoming char-

teristi int t bef hing the shoreli AWave run-up in the nearshore area analytically, we employ
acteristic curves Intersect betore reaching the shoretine. e asymptotic technique for solving the NSWE over slop-
can be seen in the right figure, the first breaking takes place

§hg bathymetry derived byntuono and Brocchin{201
at approximately = 45 min. The corresponding free-surface g y y Jerv Antu (2010,

i . . applied to any given wave signal at= B.
profiles for several times before and after breaking are shown PP 9 g

in Fig. 19.

We have formulated a so-called effective boundary condi-
tion (EBC), which is used as an internal boundary condition
within a domain divided into simulation and model areas.
The simulation area from the deep ocean up to a certain
depth at a seaward boundary poinkat B is solved nume-
rically using the linear shallow water equations (LSWE) or
the linear variational Boussinesq model (LVBM). The non-
linear shallow water equations (NSWE) are solved analyti-
cally in the model area from this boundary point towards the
" coastline over linearly sloping bathymetry. The wave eleva-
tion at the seaward boundary point is decomposed into the
c?ﬁcoming signal and the reflected one, as describefinn

www.nonlin-processes-geophys.net/21/987/2014/ Nonlin. Processes Geophys., 21198%-2014
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An extension of this EBC technique to the case where the
NSWE model is used both in the simulation and the model
areas follows directly from the variational methodology. The
analytical benchmark for this case is provided@grrier et
al. (2003 andKéanajlu (2004. The two-dimensional (2-D)
extension of this technique can be formulated asymptotically
using an approach bRyrie (1983. For waves incident at a
small angle to the beach normal, the onshore problem can be
calculated using the analytical 1-D run-up theory of the non-
linear model, and independently, the longshore velocity can
be computed asymptotically. By using a 2-D linear model
in the open sea towards the seaward boundary line (i.e., in
the simulation area), and by employing this approach in the
model area, we can in principle apply the EBC method for
this 2-D case as well. This will be approximately valid for
2-D flow with slow variations along the EBC line. The EBC
formulation for the case when the shoreline is fronted by a
vertical wall as presented dganajlu and Synolaki§1999
can be obtained by requiring the normal velocity at the shore-
line wall boundary to be zero. Another characteristic of the
outgoing or reflected waves must be derived (either for the

Figure 19. Free-surface profiles of a breaking wave simulation for _LSWE model or the NSWE model), but the coupling be-

lines) and for the linear model with an EBC implementation (solid as that derived in this article.

line) atr =40-70 min. The solid and dashed lines are on top of one
another.

The EBC implementation has been verified in several test
cases by comparing simulations in the whole domain (using
numerical solutions of the LSWE/LVBM in the simulation
area coupled to the NSWE in the model area) with ones us-
ing the EBC. We have also validated our approach with the
laboratory experiment @ynolakis(1987) for the run-up of a
solitary wave over a plane beach. The location of the bound-
ary pointx = B is considered before the nonlinearity plays
an important role in the wave propagation. The comparisons
between both simulations show that the EBC method gives a
good prediction of the wave run-up as well as the wave re-
flection, based only on the information of the wave signal at
this seaward boundary point. It is also shown that the EBC
technique can capture the resonance effect that occurs due to
the incoming and reflected wave interactions. The computa-
tional times needed in simulations using the EBC implemen-
tation show a large reduction compared to times required for
the corresponding full numerical simulations. Hence, with-
out losing the accuracy of the results, we could compress
the time needed to simulate wave dynamics in the nearshore
area.

Nonlin. Processes Geophys., 21, 981005 2014
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Appendix A: Finite volume implementation

The conservative form of NSWE is given by

du AW _ o (A1)
Jat 0x
with

21,32
u:<hhu>’ f(u):(h” J}:uzgh ) (A2)
and the topographic term

s:( —gh g"’/dx ) (A3)

The system A1) is discretized using a Godunov finite
volume scheme. First, the domaid,[ B] with some fixed
A < x5(¢) is partitioned intoN grid cells, with grid cellk
occupyingxk_% <X <X The Godunov finite volume

scheme is derived by defining a space—time mesh with el-t,,1 x+3

ementhki% <X <Xyl ands, <t < t,4+1, and integrating
Egs. A1) over this space—time element:

X1 X1
k+3 k+5

u(x, tp1)dx— / u(x, t,)dx=
Xk

-3
In+1 In+1
/f(u(xk_%,t))dt—/f(u(xk+%,t))dt
In In
tn+lxk+%
+ / / sdxdr. (A4)
tn xk—%

In the grid cells, we define the mean cell averbige= Uy (¢)
as

T+
1
Uir(@®) := — / u(x,t)dx,
hi

X1

2

(A5)

with cell lengthh; = Xpyd — X3 The functionUy, is piece-
wise constant in each cell. A numerical fléxis defined to
approximate the flux:

Iny1

1
F(UL UL~ - [ ft, g s

In

(A6)

By using Egs. A5)—(A6), expressionA4) then becomes
At
1
UpH =Uj = o (F (UL Ul) = F (U0 D)
tn+lxk+%

/ sdxdr, (A7)

k
th x
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which is a forward Euler explicit method.

To ensure that the depth is non-negative and that the steady
state of a fluid at rest is preserved, the approachurfusse
et al.(2004) is used. The numerical flux is then defined as

F (UZ’ Z-}—l) = Fk-‘,—% (Uzk-ﬁ—l)_’ Uzk+l)+> ’ (A8)
2 2
where the interface values are given by
h u
N
U(H%),_ p 21 and
(++1)-
hy 1\, Uk+1
u'&k+l)+ _ (’;z)+ , (A9)
2 (k+3)+

The topographic termis discretized as

1 2 1 12
sgh —5gh
dedt%Sszt< 28 (k+%)‘ 0 28 (kf%)+ >,

I

Nl

(A10)

with the water deptha(H%)_ and h(k+%)+ chosen as fol-
lows, to ensure the non-negativity of these depths:

Bt) = max(h + b by, 3.0).

h(k+%)+ = max(hk+1+bk+1—bk+%,0> s (A11)
and
biyy =max(bi, bi+). (A12)

The discretization of the shallow water equations thus
reads

At
R S CEE AR S
At
R (U’Ek_%)_, U’Ek_%y)) oSk (A13)

The Harten—Lax—van Leer (HLL) fludH{arten et al. 1983
Toro et al, 1999 is used as the numerical flux. It is given by

FL if 0 < .S
Pty — 3 SRRLSPRdSUSRR-TL i 5 <0< Sk.
2 .
Fr if 0> Sk

(A14)

The wave speed§; andSg are approximated as the smallest
and largest eigenvalues at the corresponding node. To ensure
the stability of this explicit scheme, a Courant—Friedrichs—
Lewy (CFL) stability condition per cell is used for all eigen-
values) , at eachUy’:

‘ At

e (U] =1 (A15)
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Appendix B: Coupled model Choi, B. H., Kaistrenko, V., Kim, K. O., Min, B. 1., and Peli-
novsky, E.: Rapid forecasting of tsunami runup heights from 2-D

The (continuous Galerkin) finite element implementation of numerical simulations, Nat. Hazards Earth Syst. Sci., 11, 707—

LSWE or LVBM uses linear polynomials for solving, v, 714, doi10.5194/nhess-11-707-2012011.

andn approximately, while the finite volume implementation Choi, B. H., Pelinovsky, E., Kim, K. O., and Min, B. |.: Estima-

for NSWE approximates andu with a constant value. Since  tion of run-up Heights of the 2011 off the Pacific Coast of To-

u = 3¢, the velocity of the two models is approximated with hoku Earthquake Tsunami Based on Numerical Simulations, The

the same order of polynomials. By coupling both models, in Open Oceanography Journal, 6, 5-13, 2012, ,
. . . Cotter, C. J. and Bokhove, O.: Variational water-wave model with
the simulation area, we can rewrite E§2( as

accurate dispersion and vertical vorticity, J. Eng. Math., 67, 33—

. 54, 2010.
M7 — Sadr — By — Slfl(huﬂx:B* =0 (Bla) Didenkulova, |. and Pelinovsky, E.: Run-up of long waves on a
Muox +gMunr =0 (B1b) beach: the influence of the incident wave form, Oceanology, 48,

~ 1-6, 2008.
Ak + B + Gy — Sk (ﬁhu> l,—p- =0. (Blc) Ezersky, A., Tiguercha, D., and Pelinovsky, E.: Resonance phenom-
hp ena at the long wave run-up on the coast, Nat. Hazards Earth Syst.
Sci., 13, 2745-2752, ddi0.5194/nhess-13-2745-2Q12913.
In the finite volume implementation, the boundary condition Gagarina, E., van der Vegt, J., and Bokhove, O.: Horizontal circula-

is inserted through the numerical fluxaat B by using the tion and jumps in Hamiltonian wave models, Nonlin. Processes
coupling condition 16) as follows: Geophys., 20, 483-500, db0.5194/npg-20-483-2012013.
Harten, A., Lax, P. D., and Van Leer, B.: On upstream differencing
( hu ) B ( hbded + Loy ) (82) and Godunov-type schemes for hyperbolic conservation laws,
h - hp+ 7 ’ SIAM Rev., 25, 35-61, 1983.
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