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We summarize the basic steps and properties of the 3D orthogonal normal modes

derived in Kasahara and Puri (1981, KP1981 hereafter). This summary closely follows

notes by Kasahara (2014, monograph in preparation, K2014 hereafter). Then we use it to

show that the ensemble variance computed in the modal space corresponds to the total

variance of the wind and geopotential fields in physical space.

1. Projection of 3D model-level data onto normal-mode functions

The normal-mode function (NMF) expansion of 3D data assumes that solutions to

the adiabatic and inviscid linearized equations at time t are characterized by the separa-

bility of the vertical and horizontal dependences of the dependent variables. The NMF

derivation in KP1981 introduced a geopotential variable P defined as P = Φ +RToln(ps)

which allowed derivation of 3D orthogonal NMF. All parameters here have their usual

meaning; i.e. Φ = gh is the geopotential, ps is the surface pressure, the globally averaged

temperature on model levels is denoted by To, R is the gas constant and g is gravity.

A discrete input dataset of the zonal and meridional winds (u, v) and geopotential

height h = P/g at time step t is defined on the horizontal regular Gaussian grid and

vertical σ levels. The projection is performed on the precomputed vertical structure

functions Π, the horizontal Hough vector functions in the meridional direction and waves

in the longitudinal direction. For a detailed derivation, discussion of the Hough functions

and treatment of the zonally average state, the reader is referred to KP1981 and references

therein as well as K2014. Here we simply make use of the orthogonality relationships

derived in those papers.

The procedure is summarized as follows. Input data on j-th σ level are first represented

by a series of the vertical structure function Πm(j). For a single data point (λ, ϕ, σj) the

expansion is ∣∣∣∣∣∣
u (λ, ϕ, σj)

v (λ, ϕ, σj)

h (λ, ϕ, σj)

∣∣∣∣∣∣ =
M∑
m=1

SmXm (λ, ϕ) Πm(j) . (1)

The scaling matrix Sm in (1), which makes the vector Xm (λ, ϕ) for the input to the

horizontal structure equation dimensionless, is defined as√gDm 0 0

0
√
gDm 0

0 0 Dm


The integer subscript m identifies the vertical mode which spans from the external mode

m = 1 to the total number of vertical modes M . Functions Πm(j) defined for the finite

difference method for the σ vertical levels are orthogonal (KP1981):

J∑
j=1

Πm(j)Πm′(j) = δmm′ . (2)

Here, J is the number of vertical levels.
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The horizontal coefficient vector Xm (λ, ϕ) is calculated by the reverse transform of

(1) through multiplication of (1) by Πm′(j) and summation of the result from j = 1 to J

with the use of the orthogonality condition (2). The result becomes

Xm (λ, ϕ) = S−1
m

J∑
j=1

(u, v, h)TΠm(j) . (3)

Equations (1) and (3) are the vertical transform pair.

The horizontal coefficient vector Xm (λ, ϕ) for a given vertical mode m can now be

projected onto the Hough harmonics defined as

Hr
k (λ, ϕ;m) = Θr

k (ϕ;m) eikλ . (4)

In this equation, we use the subscript r for the meridional mode to indicate all combined

meridional normal modes including rotational (ROT), and eastward and westward propa-

gating inertio-gravity (EIG and WIG) modes. The subscript r is thus a tag index ranging

from 1 to integer R defined by

R = NR +NWIG +NEIG (5)

where ROT mode: nR = 0, 1, 2, ..., NR − 1, EIG mode: nEIG = 0, 1, 2, ..., NEIG − 1, WIG

mode: nWIG = 0, 1, 2, ..., NWIG−1 . The Hough harmonics are therefore characterized by

the two indices for combined meridional mode r and the zonal wavenumber k for every

given vertical mode m.

The horizontal coefficient vector Xm (λ, ϕ) for a vertical mode m is projected onto the

Hough harmonics as

Xm (λ, ϕ) =
R∑
r=1

K∑
k=−K

χrk(m)Hr
k (λ, ϕ;m) (6)

where the maximal number of zonal waves is denoted by K, including zero for the mean

zonal state. Vector Xm is defined for every vertical mode as Xm (λ, ϕ) = (um, vm, hm)T

following (1).

As discussed in details in K2014 and references therein, the global orthogonality of

the Hough functions written as:

1

2π

∫ 2π

0

∫ 1

−1

Hr
k · [Hr′

k′ ]
∗ dµ dλ = δkk′δrr′ , (7)

applies with the global inner product defined as

< Wi,W
∗
j >=

1

2π

∫ 2π

0

∫ 1

−1

(
ũiũ

∗
j + ṽiṽ

∗
j + h̃ih̃

∗
j

)
dµ dλ . (8)

Here, µ = sin(ϕ), and subscripts i and j correspond to two modal indices, each defined

by a combination of the zonal wavenumber k and the meridional mode r. Vector W =

2



(
ũi, ṽi, h̃i

)T
=
(
um/
√
gDm, vm/

√
gDm, hm/D

)T
contains now non-dimensional variables

describing shallow-water motions for every equivalent depth Dm.

The scalar complex coefficient χrk(m) can be obtained from (6) by multiplying (6) by

[Hk
r ]

∗, the complex conjugate of Hk
r , and integrating the resultant equation with respect to

λ from 0 to 2π , and with respect to ϕ from −π/2 to +π/2, and using the orthonormality

condition (7). The result is

χrk(m) =
1

2π

∫ 2π

0

∫ 1

−1

Xm (λ, ϕ) · [Hk
r ]

∗ dµ dλ . (9)

Equations (6) and (9) are the horizontal transform pair.

2. Application of NMF expansion to the ECMWF ensemble and computa-

tion of the ensemble spread

Dynamical variance of the ECMWF ensemble is defined for a 3D baroclinic atmo-

sphere transformed to the M layers of shallow-water system (m = 1, ...,M , each with the

equivalent depths Dm) by the vertical transform (3).∑
i

∑
j

∑
m

Σ2
ps , (10)

where i, j, and m represent indices in the zonal, meridional and vertical directions, re-

spectively, and variance Σ2
ps is defined as

Σ2
ps(i, j,m) =

1

N − 1

N∑
i=1

(
u2i + v2i +

g

Dm

h2i

)
. (11)

Here, ui, vi and hi denote departures of the ensemble member i from the ensemble mean

for wind components and geopotential height on σ model levels. The size of the ensemble

is denoted by N . The normalization constant Dm is the equivalent height, defined for

every vertical mode m. The total variance in the modal space is defined as∑
k

∑
r

∑
m

Σ2
ms , (12)

where variance Σ2
ms is defined as

Σ2
ms(k, r,m) =

1

N − 1

N∑
i=1

gDm

(
χrk(m; i)[χrk(m; i)]∗

)
. (13)

The variable h in equation (11) is defined in the first section, h = P
g

. Both modal-space

and physical-space variance are in units ms−1 i.e. J/kg.
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In order to show that equations (10) and (12) provide the same total variance, we

write the NMF expansion for deviations of a single ensemble member i from the ensemble

mean as

χrk(m; i) =
1

2π

∫ 2π

0

∫ 1

−1

(
S−1
m

J∑
j=1

(ui, vi, hi)
TΠm(j)

)
· [Hk

r ]
∗ dµ dλ . (14)

First we multiply equation (14) by Hr
k, integrate the result with respect to λ from 0 to

2π , and with respect to ϕ from −π/2 to +π/2, and use the orthonormality condition (7)

to get the following expression:

1

2π

∫ 2π

0

∫ 1

−1

χrk(m; i)Hr
k dµ dλ = S−1

m

J∑
j=1

(ui, vi, hi)
TΠm(j) . (15)

Now we multiply (15) by Πm′(j) and sum over all levels with the use of (2) to obtain

1

2π

∫ 2π

0

∫ 1

−1

J∑
j=1

χrk(m; i)Hr
kΠm(j) dµ dλ = S−1

m (ui, vi, hi)
T . (16)

Finally, multiplying (16) by gDm (ui, vi, hi) Sm, and noticing that

[χrk(m; i)]∗ =
1

2π

∫ 2π

0

∫ 1

−1

Hk
rS

−1
m

J∑
j=1

(ui, vi, hi) Πm(j) dµ dλ , (17)

the left-hand side of equation (16) becomes

gDmχ
r
k(m; i)[χrk(m; i)]∗ , (18)

the modal-space variance for mode (k, r,m). The right hand side correspond to

gDm

(
(ui, vi, hi) S−2

m (ui, vi, hi)
T

)
= u2i + v2i +

g

Dm

h2i . (19)

After averaging (18) over the ensemble and summing over the whole modal space, we

obtain the total variance defined by equation (12) corresponding to the sum of the u, v,

and h variances in the physical space as defined by equation (10). If we need to refer to

the model (σ) levels instead of vertical modes, we need to apply transformation (1).
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