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Abstract. Dynamical networks – networks inferred from
multivariate time series – have been widely applied to climate
data and beyond, resulting in new insights into the underly-
ing dynamics. However, these inferred networks can suffer
from biases that need to be accounted for to properly inter-
pret the results. Here, we report on a previously unrecognized
bias in the estimate of time delays between nodes in dynami-
cal networks inferred from cross-correlations, a method often
used. This bias results in the maximum correlation occurring
disproportionately often at large time lags. This is of partic-
ular concern in dynamical networks where the large num-
ber of possible links necessitates finding the correct time lag
in an automated way. We show that this bias can arise due
to the similarity of the estimator to a random walk, and are
able to map them to each other explicitly for some cases. For
the random walk there is an analytical solution for the bias
that is closely related to the famous Lévy arcsine distribution,
which provides an upper bound in many other cases. Finally,
we show that estimating the cross-correlation in frequency
space effectively eliminates this bias. Reanalysing large lag
links (from a climate network) with this method results in
a distribution peaked near zero instead, as well as additional
peaks at the originally assigned lag. Links that are reassigned
smaller time lags tend to have a smaller distance between
them, which indicates that the new time delays are physically
reasonable.

1 Introduction

Complex networks are increasingly being used to study geo-
physical systems (Baiesi and Paczuski, 2004; Davidsen et al.,
2006, 2008; Peixoto and Davidsen, 2008; Peixoto et al.,
2010; Gu et al., 2013; Zaliapin and Ben-Zion, 2013; Zanardo
et al., 2013; Dodds and Rothman, 2000; Mantilla et al., 2006;

Feng and Dijkstra, 2014; Bassett et al., 2012). Climate dy-
namics in particular have been an object of much attention
where dynamical networks (also called functional or interac-
tion networks) have been used to study phenomena such as:
long-range correlation in the atmosphere known as telecon-
nections (Tsonis et al., 2008; Kawale et al., 2011); climate
models (Donges et al., 2009a, b); El Niño Southern Oscilla-
tion (Yamasaki et al., 2008; Tsonis and Swanson, 2008; Mar-
tin et al., 2013); with more analyses continuously being car-
ried out (Steinhaeuser et al., 2012; Ebert-Uphoff and Deng,
2012; Deza et al., 2013). The dynamics are mapped to net-
works by taking a set of global positions as nodes, and creat-
ing a link between any two satisfying a given criteria based
on recorded time series. These methods – particularly when
used to analyse climate data – can have inherent biases that
are increasingly coming to light.

The widespread use of dynamical networks to geophysi-
cal systems makes understanding their associated biases an
important question. In previous work, we showed how ad-
justing the timescale of the analysis can reverse the findings
of some climate networks (Martin et al., 2013), andPaluš
et al.(2011) showed that autocorrelations, inherent in climate
data, can result in erroneous links. In addition, the transitiv-
ity of many of the metrics used to construct climate networks
results in them being biased towards “small world” networks
(Hlinka et al., 2012). These analyses are further hindered by
the lack of stationarity in the systems (where probability dis-
tributions change in time), forcing us to restrict ourselves to
smaller timescales where stationarity is a plausible assump-
tion. However, compensating for this effect by adopting new
methods and criteria to establish links in a dynamical net-
work can result in new biases, as we show here.

One of the methods often used for constructing dynam-
ical networks is the pairwise cross-correlation. The cross-
correlation function, also called the covariance, of two
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stationary time series is defined as

E
[
(ω(t) − µω)

(
ξ (t + τ) − µξ

)]
, (1)

whereξ(t) andω(t) are the time series of interest,µξ and
µω are their respective means,τ is the time lag betweenξ(t)

andω(t) andE[. . .] is the expected value. The Pearson cor-
relation can be calculated by dividing Eq. (1) by the standard
deviations ofξ(t) andω(t).

Equation (1) is often estimated as

C(τ) =
1

T − τ

T −τ∑
i=1

ω(i)ξ(i + τ). (2)

HereT is the number of points in the time series, and both
ξ(t) and ω(t) have zero mean either by definition or by
construction. Unfortunately, for larger absolute values of the
time lag there are fewer points in the calculation leading to
larger statistical fluctuations (compared to theτ = 0 case)
that need to be taken into account. This is especially true if
one aims to identify the physical time lag as the maximum of
the cross-correlation.

One possibility to circumvent this problem of non-uniform
statistical fluctuations, and also suitable in a non-stationary
setting, is to use the non-stationary version of the cross-
correlation function that includes the same number of points
for every time lag used. It is calculated as

C(τ, t) =
1

�

t+�−1∑
i=t

ω(i)ξ(i + τ). (3)

Now the cross correlation is normalized by the number of
points used (�). We also note that for different values ofτ ,
with t constant, the values ofω(t) used will not change while
the values ofξ(t) will.

This method has been used in various dynamical network
analyses, climate (Yamasaki et al., 2008; Tirabassi and Ma-
soller, 2013) and otherwise (Bashan et al., 2012). To build a
network in this way, a specific time delay must be chosen at
which to evaluate Eq. (3) for a given pair of time series. Typ-
ically, the value that maximizes Eq. (3), or its absolute value,
is used. As this is the quantity that we will focus on in this
paper, we define it here as

T τf
τi

(
ω(t),ξ(t)

)
= τ ∗ (4)

|T |
τf
τi

(
ω(t),ξ(t)

)
= τ

′

, (5)

with the property that

C(τ ∗, t) = Maxτ=τi ,...,τf C(τ)

C(τ ′, t) = Maxτ=τi ,...,τf |C(τ)|.

Hereτi andτf are the smallest and largest lags considered
respectively. Throughout this paperτi andτf are equal and

opposite, but this need not always be the case. These lags
together with� are typically determined by the requirement
of quasi-stationarity mentioned above.

In the context of climate, Eq. (3) is a reasonable choice
of metric since the correlation structure of daily temperature
anomaly data, for example, is linear to a good approximation,
resulting in linear methods – like Eq. (3) – generally outper-
forming non-linear ones (Hlinka et al., 2013b, a). However,
Eq. (3) has a predilection for reaching a maximum at large

absolute values of the time lag
(∣∣T τf

τi
(ω(t),ξ(t))

∣∣ � 0 and∣∣|T |
τf
τi
(ω(t),ξ(t))

∣∣ � 0
)
, which complicates the estimation

of the physical time lag. We illustrate this using a climate net-
work example. Specifically, we consider daily average tem-
perature anomaly time series (average temperature of that
day minus the average temperature on that day over all years
used) at 2 m a.g.l., with an angular resolution of≈ 2◦ (1). As
in Yamasaki et al.(2008), we look at the region from 30◦ N to
30◦ S, and from 120 to 285◦ E; the time range is 1979–2008.

Creating a dynamical network from these temperature data
using Eq. (3) as the basic measure (as outlined in detail by
Yamasaki et al., 2008) results in a network with links that
have a time delay distribution as shown in Fig.1. The cli-
mate network, constructed by the methodology inYamasaki
et al. (2008), uses sophisticated thresholding techniques to
identify significant correlations and links, yet still exhibits an
unphysical peak at large

∣∣|T |
τf
τi
(ω(t),ξ(t))

∣∣ (2). The unphys-
ical nature directly follows from the observation that these
peaks occur atτi andτf , independent of their specific values
(not shown). For comparison we also show the distribution
of |T |

τf
τi
(ω(t),ξ(t)) obtained for all pairs of the temperature

anomaly series in Fig.1, which shows a similar behaviour.
The inset in Fig.1 shows a representative plot of the absolute
value of Eq. (3) as a function of lag, for the same data, where
the maximum occurs atτ = 200.

In this paper, we will explore the origin of this effect in
detail and discuss properties affecting it. To this end, we will
make extensive use of synthetic data to illustrate expected
behaviour in simplified situations, some of which are ana-
lytically tractable, by mapping them to a random walk, and
in ones more closely approximating the statistics of tempera-
ture time series. Finally, we discuss a method for overcoming
the resulting bias in the estimation of physical time delays by
estimating the cross-correlation in frequency space, and test
its applicability for climate networks.

1NCEP Reanalysis 2 data (Kanamitsu et al., 2002) provided by
the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their
web site at http://www.esrl.noaa.gov/psd/.

2Because this method requires that a link exceeds a cer-
tain correlation over multiple time periods – and the time lag
which maximizes Eq. (3) can change from period to period
due to non-stationarities and/or statistical fluctuations – we use
|T |

τf
τi

(ω(t),ξ(t)) from the final period in Fig.1.
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Figure 1. Distribution of links having a given|T |
200
−200(ω(t),ξ(t))

for � = 365 days over all timest (Network). The climate network
was constructed from temperature anomaly time series using the
method and parameters outlined byYamasaki et al.(2008)2, as dis-
cussed in the Introduction. We also show|T |

200
−200(ω,ξ) over all

possible pairs (All) for comparison. In both cases we can see peaks
at τ = ±200 – which is the bias we are investigating in this paper –
as well as an expected peak at about zero. Inset: a sample absolute
cross-correlation as a function of time lag with a peak atτ = 200.

2 Illustration of bias in the absence of cross-correlations

To better understand the observed phenomenon, we first ex-
amine synthetic time series where no cross-correlations are
present. Due to the absence of a physical time delay in this
case, one would expect that all time delays are equally likely
to maximize Eq. (3) and, hence, there should be no bias. The
fact that a bias still persists, as we will show below, indi-
cates that it is not necessarily due to real cross-correlations in
the data. Instead, the bias can be affected by properties such
as power-law autocorrelations in the individual time series.
This makes this bias of particular relevance to geophysical
data – including climate data – where these types of correla-
tions are common (Pelletier and Turcotte, 1997; Koscielny-
Bunde et al., 1998; Huybers and Curry, 2006; Kantelhardt
et al., 2006; Vyushin et al., 2009).

2.1 Influence of non-trivial autocorrelations

To create power-law autocorrelated time series we first gen-
erate an independent identically distributed (i.i.d.) time se-
ries of Gaussian-distributed numbers, i.e. white noise. This
is then transformed into a time series with a power spectrum
that decays asf −β and 0< β < 1, wheref is the frequency,
as outlined bySchumann(2011). The final time series has
power-law autocorrelations which scale asC(τ) = τβ−1, and
is still Gaussian distributed and stationary. We generate one
long time series with the desired power spectrum, and then
cut it into non-overlapping segments to create different re-
alizations; this results in the time series having non-periodic
boundary conditions. The caseβ = 0 which we will also con-
sider in the following corresponds to the i.i.d. case.

Figure2 illustrates that asβ increases in one or both series
so does the bias in Eq. (5), as well as in Eq. (4) (inset). We
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Figure 2.Distribution of|T |
8
−8(ω(t),ξ(t)) andT 8

−8(ω(t),ξ(t)) (in-
set), whereω(t) andξ(t) have long-range autocorrelations:βξ and
βω are the exponents of the power spectra ofξ(t) andω(t) respec-
tively. Since the time series are stationary,C(τ, t) = C(τ). We can
see that asβ gets larger, increasing the persistence in the time se-
ries, the bias also increases. This occurs despiteξ(t) andω(t) hav-
ing Gaussian distributions centred at zero. Fixed parameters are:
� = 16, withN = 221 realizations.

can also see that increasingβ in ω(t) strengthens the bias
more than when it is increased inξ(t). Since geophysical
data commonly have power-law autocorrelations, as previ-
ously discussed, this could make networks based on this data
sensitive to false positive links at extremal time lags.

In addition, Runge et al.(2014) showed that for some
simple autoregressive processes the theoretical maximum of
Eq. (1) does not correspond to the true time lag given by the
autoregressive process. This implies that using the maximum
cross-correlation is an inappropriate way to determine time
delays in these cases. Thus, the bias noted inRunge et al.
(2014), has a different origin to the one discussed in this pa-
per.

We also note that increasing the size of� will not reduce
the bias. If the size of� was increased, and the curves in
Fig. 2 recomputed, the figure would remain unchanged. The
fact that the bias remains the same despite the change in� is
a general feature of this bias, and is not specific to data with
power-law autocorrelations. This is true as long asτf − τi ≤

�, for reasons that we explain in Sect.2.4. If we hold �

fixed and instead compute more (fewer) time lags the curves
in Fig. 2 would appear to be stretched (compressed).

2.2 Independent and identically distributed variables

Even for i.i.d. Gaussian variables – where no autocorrela-
tions are present andβ = 0 – the phenomenon persists. This
is a result of the time seriesω(t) having a non-zero sample
mean. In calculating the cross-correlation we assume that the
underlying stochastic process that generates the time series
has zero mean. However, any finite portion of the time se-
ries will have a non-zero sample mean with probability one.
To examine the effect of non-zero means we now look at the
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Figure 3.Distribution of|T |
8
−8(ω(t),ξ(t)) andT 8

−8(ω(t),ξ(t)) (in-
set) in the i.i.d. case for different CV (σ/µ) for the time seriesω(t).
Both time series are Gaussian distributed, withξ(t) drawn from a
distribution with zero mean and unit variance, andω(t) drawn from
a distribution with the displayed mean and standard deviation. This
means they are stationary and we can again writeC(τ, t) = C(τ).
We can see that where the CV ofω(t) are the same the curves are
identical irrespective of their different means (µ) and standard devi-
ations (σ ). This shows that it is the only quantity affecting the bias
for Gaussian variables. Fixed parameters are:� = 64, withN = 221

realizations.

case whereω(t) is drawn from a distribution with non-zero
mean.

We find that the parameter of interest in this case is the co-
efficient of variation (CV) – the standard deviation divided
by the mean. Specifically, it is the CV of the time series
ω(t), and the bias is independent of the CV ofξ(t). The rea-
son for this is due to the similarity of Eq. (3) to a random
walk, which we further elaborate on in Sect.2.4. Figure3
shows that as the CV ofω(t) decreases the bias in Eq. (5)
increases, as well as in Eq. (4) (inset). For each CV in Fig.3
two choices of mean and standard deviation are given, and
in all cases we see that the same CV inω(t) results in the
same curve. We find that this result holds for Gaussian and
uniformly distributed i.i.d. variables, but not in general (e.g.
Student’st distribution with three degrees of freedom).

This would suggest that a simple solution, for i.i.d. time se-
ries, is to maximize the CV ofω(t), i.e. ensure that the mean
is set to zero. While setting the mean to zero does drasti-
cally reduce the bias it does not eliminate it entirely. In Fig.4
we show the effect on Eqs. (5) and (4) (inset) of setting the
mean to zero in various ways: “Dist.”, drawing our time se-
ries from a normal distribution (zero mean unit variance);
“Strictly Zero”, drawing it from a normal distribution, and
then removing the sample mean from each series so it is ex-
actly zero; “Pearson”, drawing it from a normal distribution,
then removing the sample mean and dividing by the sample
standard deviation for each series, for eachτ .

We can see that bias is still present, though the Pearson
correlation shows an inverted behaviour relative to the previ-
ous bias, although in this case the bias is minuscule, as can
be seen from they axis. Therefore, whenω(t) has a very
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Figure 4. Probability distribution of |T |
8
−8(ω,ξ) and

T 8
−8(ω(t),ξ(t)) (inset) for various i.i.d. series, setting the

means to zero in different ways. For “Dist.” the time seriesω(t)

andξ(t) are drawn from a normal distribution with zero mean; for
“Strictly Zero” the sample means (ω̄, ξ̄ ) are then removed from the
corresponding series; for “Pearson” the sample means and standard
deviations are calculated over the� points that enter into the
calculation for eachτ , and then their means are removed and the
series are divided by their standard deviations. Fixed parameters
are:� = 16, withN = 223 realizations.

large CV, as in Fig.4, most of the bias is eliminated in the
i.i.d. case. However, this is not true for the case of power-law
autocorrelations, which we discuss in Sect.3. In that case
the Pearson correlation gives the best performance of these
estimators as well. However, in that case it is also peaked
at extreme lags, as well as showing the peak at zero seen in
Fig. 4.

2.3 Independent identically distributed case: mapping
to a random walk

So why does this bias exist even in the i.i.d. case? In this
section we will show that it is due to the similarity between
Eq. (3) and a random walk. We will first define a normal ran-
dom walk, and then show how, in some circumstances, it can
be mapped directly to Eq. (3). Finally, we will discuss pre-
vious results showing how this translates into the observed
bias.

Since the seminal work ofEinstein(1905), random walks
have been studied extensively (Feller, 1950; Spitzer, 1976),
and have provided insight into a wide array of problems
(Bouchaud and Georges, 1990; Brockmann et al., 2006). A
random walk starts from an initial positionS(0) = S0, and
the position of the walker at stepn is

S(n) = S0 +

n∑
i=1

x(i) (6)

= S(n − 1) + x(n). (7)

Herex(t) denotes the random jump the walker takes at timet ,
in this work drawn from a continuous distribution symmetric
about zero.

Nonlin. Processes Geophys., 21, 929–937, 2014 www.nonlin-processes-geophys.net/21/929/2014/



E. A. Martin and J. Davidsen: Estimating time delays 933

When the time seriesω(t) in Eq. (3) is a constant-valued
time series it can be mapped directly to Eq. (6). Without loss
of generality we use the case thatω(t) is one for all times,
and rewrite Eq. (3) as

C(τ, t) =
1

�

t+�−1∑
i=t

ξ(i + τ). (8)

Since we are comparing differentτ with fixed t we can set
t = 0 without loss of generality and rewrite Eq. (8) as

C(τ) =
1

�

τ+�−1∑
i=τ

ξ(i). (9)

In this form we can map Eq. (3) to a random walk, but
first we must define incrementsx(t). The difference between
Eq. (9) at τ = 0 andτ = 1 is

x(1) =
1

�

(
ξ(�) − ξ(0)

)
. (10)

From this we can see that in general the difference forτ =

i − 1 andτ = i is

x(i) =
1

�

(
ξ(i + � − 1) − ξ(i − 1)

)
. (11)

Using these increments, and the initial conditionC(τi) = C0,
the final mapping is (forτ > τi),

C(τ) = C0 +

τ∑
i=τi+1

x(i). (12)

The increments of this equation are all uncorrelated as long
asτf−τi ≤ �. This condition means that no value ofξ(t) will
appear in more than one increment,x(i), and therefore all in-
crements will be uncorrelated as long as the values ofξ(t) are
themselves uncorrelated. This then means that Eq. (12), with
the increments given by Eq. (11), is exactly an i.i.d. random
walk as in Eq. (6).

2.4 Independent identically distributed case: compari-
son with analytical results

In the case of a random walk (with continuous steps, drawn
from a symmetric distribution), the solution to the probabil-
ity of the maximum occurring at a givenτ has been solved
analytically byMajumdar(2010). He showed that the prob-
ability that a random walk ofL steps will have reached its
maximum at stepn is

P(n|L) =

(
2n

n

)(
2(L − n)

(L − n)

)
2−2L. (13)

However, this only holds for the maximum of the random
walk, and not the absolute value of the maximum. This equa-
tion is closely related to the Lévy arcsine distribution (Lévy,
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Figure 5. Comparison of Eqs. (13) and (12). We have calculated
τ from −8 to 8, then shifted it to start at 0 to compare with the
Eq. (13) which starts at 0. We can see that as� gets larger the
distribution approaches the analytical result for the random walk,
becoming exact forτf − τi ≤ �.

1939) that describes the probability thatS(n) is positive for
different fractions of the random walk. Free boundary condi-
tions are assumed here as well. For periodic boundary condi-
tions, one has translational invariance such that Eq. (13) no
longer applies andP(n|N) ≡ const. This corresponds to the
case where the mean of the incrementsx(i) is exactly zero
over N steps. We utilize this fact to correct for the bias in
Sect.3.

Equation (13) also applies to the random walk we defined
in Eq. (12) as long asτf −τi ≤ � (the regime where all incre-
ments are uncorrelated). In Fig.5 we show how the random
walk deviates increasingly from this result as� gets smaller
thanτf − τi .

With this result we can now understand the origin of the
bias in the cross-correlation for i.i.d. variables. As we saw
previously in Fig.3, the bias in Eq. (3) increases as the CV of
ω(t) approaches zero; in this limit Eq. (3) can be mapped to
a random walk. We can see how this arises by rewritingω(t)

in terms of its mean value,µω, plus a random fluctuation,
ω(i) = µω+ε(i). In the limit that the CV ofω(t) approaches
zero,ω(i) = µω – a constant valued time series – and Eq. (3)
can be mapped to a random walk as discussed in Sect.2.3.

Therefore, as the CV decreases the bias in the cross-
correlation should approach the theoretical result of Eq. (13);
Fig. 6 shows this is indeed the case. While we have only
tested this for Gaussian and uniformly distributed variables,
it is very likely that Eq. (13) gives the limiting behaviour of
the cross-correlation independent of specific distribution and,
hence, is an upper bound on the observable bias for i.i.d. vari-
ables.

The bias for long-range autocorrelations can also be (par-
tially) understood now: asβω approaches 1,ω(t) approaches
a constant-valued series. In the case thatξ(t) is an i.i.d. se-
ries, this can be mapped to a random walk again as before. In
Fig. 7 we show how the limit of Eq. (13) is approached from
below for increasingβω, whereξ(t) is a Gaussian-distributed
i.i.d. series. This indicates again that Eq. (13) provides an
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a constant-valued series. Fixed parameters are:� = 32, with N =

218 realizations.

upper bound on the observable bias. It is important to real-
ize, though, that Eq. (13) is not necessarily the limit when
ξ(t) is not i.i.d.. This is particularly true when 0< βξ < 1,
which corresponds to a random walk with correlated steps.

3 Estimating the cross-correlation in the frequency
domain

As we show in the following, the bias discussed above
can be effectively compensated for by measuring the cross-
correlation in the frequency domain, i.e. by using a different
estimator. This approach is based on the cross-correlation
theorem, which states that the inverse Fourier transform of
the product of the Fourier transforms of the individual time
series is related to the cross-correlation as

C(τ) =

�−1∑
ν=0

ω̃∗(ν)̃ξ(ν)exp(2πiτν/�). (14)

Here we use the notation that̃ω(ν) is the Fourier transform
of ω(t), andω∗(t) is the complex conjugate ofω(t). In order
for this to be well defined,ξ(t) andω(t) must be stationary
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Figure 8.The distribution of|T |
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(inset) for different time delay estimates when (i) both signals have
long-range autocorrelations,βξ = βω = 0.9 and (ii) both signals are
i.i.d. andω(t) has a CV of 0.01. We can see that the frequency
domain estimator (Spectral), Eq. (14), is free of the bias seen for
the estimator given by (Temporal), Eq. (3). We also show the result
of using the Pearson correlation (Pearson) – here the bias is greatly
reduced, but still peaked at extreme lags. Fixed parameters are:� =

17, withN = 216 realizations.

and periodic over the interval�. Equation (14) is a simple ex-
tension of the Wiener–Khinchin theorem (Schumann, 2011),
which uses the Fourier transform to compute the autocorre-
lation of a function.

Estimating the cross-correlation in this way results in lags
computed over the range [−�/2, �/2− 1] (� even), or
[−(� − 1)/2, (� − 1)/2] (� odd). Using the Fourier trans-
form to estimate the cross-correlation effectively eliminates
the bias in Eq. (3) by enforcing thatC(τ) is periodic over this
interval. However, this is only the case when we consider all
time lags calculated. It is important to realize that the true
cross-correlation need not be periodic and neither are typ-
ically the underlying time series, but periodicity is often a
reasonable first-order approximation.

We also note thatC(τ) is not necessarily symmetric about
0, so it can still distinguish the directionality of the corre-
lation. Figure8 shows that estimating the cross-correlation
in this way results in Eqs. (5), and (4) (inset), being uni-
formly distributed when the time series are i.i.d. with small
CV. Similarly, for power-law autocorrelations this estimator
gives very uniform results, though there is a slight peak about
zero. This indicates that Eq. (14) does not have the bias inher-
ent in Eq. (3). For power-law autocorrelation we also com-
pare Eq. (14) to the Pearson correlation. We can see that for
the Pearson correlation Eq. (5) is still biased towards extreme
delays, and this is also true for Eq. (4) (not shown).

The bias is also eliminated when cross-correlations are
present. To show this, we consider again the temperature data
discussed in the Introduction. We focus on the pairs assigned
an extreme lag (largest or smallest possible lag) by Eq. (3),
as that is where the bias is most significant and the time lag
most likely to be misclassified. Figure9 shows the new dis-
tribution of lags, originally classified asτ = ±200, when
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Figure 9. Reanalysis of the±200-day lag pairs from Fig.1 using
Eq. (14). This was done for 10 % of the±200-day lag links in the
network, and 5 % of the 200-day lag points for all pairs, which were
randomly chosen. These are compared to a uniform distribution for
reference. Both of these plots show a peak about zero, which is more
physically reasonable then a lag of±200 days, and therefore more
likely to be the correct time delay. For these we used a value of
� = 441 to analyse the peaks aboutτ = ±200. The inset shows a
reanalysis of all links using Eq. (14). We can see that there is no
bias in that figure, as well as a larger peak about zero than in Fig.1.
Here a value of� = 365 was used for comparison with the original
results.

using Eq. (14) (the reanalysis of all links is shown in the in-
set). Evidently, the distribution is vastly different, no longer
being onlyτ = ±200, and indicates clearly that the large lag
peaks at the extremes in Fig.1 are mostly an artifact. Here
we have used� = 441 in Eq. (14) to calculate time lags over
the range fromτi = −220 toτf = 220. This allows us to see
that these peaks do not occur at the largest possible lags.

More importantly, there is a clear maximum close to zero
lag, which would be a more physically plausible time de-
lay. Equally important is the fact that there are still a signif-
icant amount of links assigned extreme time lags, which are
unlikely to be physically meaningful, and therefore proba-
bly spurious. The height of the peaks atτ = |200| also tells
us that only approximately 0.8 % of these large lag links re-
main after reanalysis. In the inset we show that reanalysing
all points with Eq. (14) is also free of the bias seen in Fig.1,
as well as having a larger peak about zero.

To demonstrate that the time delays estimated by Eq. (14)
are physically meaningful we examine how the lag is related
to the distance between the locations where the time series
were recorded; for small time lags we would typically expect
the distance to be shorter compared to large lags. Figure10
shows that this is indeed the case: pairs of time series which
now have an estimated time delay of zero are much more
likely to be closer together than for all pairs. The fact that
the nodes are close (spatially) with a short time lag makes
it likely that their temperatures are related, and that it was
correct to originally include them in the network. However, it
also shows that Eq. (3) widely misestimated the correct time
delay, and any network analysis based on the delays would
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Figure 10. Examining the reanalysed network data in Fig.9: the
cumulative density function (CDF) of the distance between points
where the network link has been reassigned a lagτ = 0, and the
CDF of the distance between all reanalysed network links (All De-
lays). We can see that points with zero time lag are closer together
on average, indicating that some of these links in Fig.9 are physi-
cally meaningful.

be dubious. In addition, we also note that many of the pairs
still have very large lags, indicating that the links may not be
physical.

4 Conclusions

In this work we discussed an, as yet unmentioned, bias in
the time lag associated with estimating the maximum cross-
correlation. This has the potential to affect dynamical net-
works through the inclusion of spurious links, and results in
the estimated time lags being biased towards extreme values.
In addition, the bias is exacerbated when the time series have
power-law autocorrelations, which are common in geophys-
ical time series. For the case of i.i.d. time series, we demon-
strated that the bias is a result of Eq. (3) approximating a
random walk, where the approximation gets better (bias gets
worse) as the CV goes to zero. This is similar to the case
of long-range autocorrelations; asβω approaches oneω(t)

approaches a constant valued series, and we can again map
Eq. (3) to a random walk.

This bias can be eliminated by estimating the cross-
correlation in the frequency domain, using Eq. (14). In ad-
dition, we have shown that this better estimates the time de-
lays; as seen in Fig.10 it reasonably assigned pairs that were
spatially close smaller time delays on average. We can also
see from doing this analysis that spurious links are likely be-
ing included in the network. Equation (14) still assigned ex-
tremal lags to a number of links, as seen in Fig.9, and these
are highly unlikely to be physical, yet are included in the
original network analysis.

We also note that we have not discussed the important is-
sue of whether a given time lag corresponds to a significant
cross-correlation. In order to determine which relationships
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are significant, additional techniques are required. For exam-
ple in Paluš(2007) significance thresholds are determined
using surrogate time series. However, these methods are un-
likely to remove the bias discussed here. This is because the
probability distribution of the cross-correlation, for the sur-
rogate data, is the same for allτ . Therefore, larger signifi-
cance levels at larger (absolute) time lags would unfairly pe-
nalize large lag correlations. We speculate that information-
theoretic-based methods would perform as well or better than
the cross-correlation at determining the time delay and direc-
tion of interaction between nodes.

Our results for mutual information, not shown here, in-
dicate that it also performs well at eliminating the bias
in estimating the time delay. It does not do this as well,
or as efficiently as the frequency domain estimate of the
cross-correlation however. In general, information-theoretic
methods have increased computational costs and some sim-
ply indicate the direction of interaction, not a specific time
lag. For example, transfer entropy as originally formulated
(Schreiber, 2000) does not determine a time lag, though its
extension inRunge et al.(2012) and other techniques such
as partial mutual information (Frenzel and Pompe, 2007) do.
It is our opinion that, for a given application, a variety of
methods should be tested on appropriate models to determine
which achieves the best and most robust results.
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