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Abstract. The extended Kalman filter (EKF) is a popular
state estimation method for nonlinear dynamical models. The
model error covariance matrix is often seen as a tuning pa-
rameter in EKF, which is often simply postulated by the user.
In this paper, we study the filter likelihood technique for es-
timating the parameters of the model error covariance ma-
trix. The approach is based on computing the likelihood of
the covariance matrix parameters using the filtering output.
We show that (a) the importance of the model error covari-
ance matrix calibration depends on the quality of the obser-
vations, and that (b) the estimation approach yields a well-
tuned EKF in terms of the accuracy of the state estimates and
model predictions. For our numerical experiments, we use
the two-layer quasi-geostrophic model that is often used as a
benchmark model for numerical weather prediction.

1 Introduction

In state estimation, or data assimilation, the goal is to esti-
mate the dynamically changing state of the model, given in-
complete and noisy observations. The estimation is usually
carried out sequentially: the model prediction made from the
previous state is updated with the new observations that be-
come available. State estimation methods need a description
of the error that the forward model makes in an assimila-
tion step: otherwise the erroneous model prediction is over-
weighted when it is combined with new observations, poten-
tially leading to divergence of the method. From the perspec-
tive of data assimilation, the model error representation can
be viewed as a tunable quantity that has an effect on the per-
formance of the method.

The extended Kalman filter (EKF) is a popular nonlinear
data assimilation method. It is a nonlinear extension of the
Kalman filter (KF;Kalman, 1960), where the forward model
and observation operators are linear, and the model and ob-
servation errors are assumed to be additive and normally dis-
tributed, which yields direct matrix formulas for updating the
model state with observations. In EKF, the nonlinear forward
model and the observation operator are linearized, and the
KF formulas are applied. The goal in this paper is to study a
technique for estimating a parameterized version of a model
error covariance matrix.

The model error tuning problem can be viewed as a pa-
rameter estimation problem in state space models. One way
to estimate static parameters in dynamical state space mod-
els is to compute the likelihood of the parameters by “inte-
grating out” the uncertain model state using a filtering tech-
nique such as EKF. This “filter likelihood” technique is a
well-known tool for parameter estimation in stochastic dif-
ferential equation (SDE) models (Singer, 2002) and time se-
ries analysis (Durbin and Koopman, 2001). In Hakkarainen
et al. (2012), the approach was used to estimate parameters
of chaotic models. As noted inHakkarainen et al.(2012), the
same approach can be used for estimating the parameters of
a model error covariance matrix. In this paper, we study this
possibility further. The technique needs a parametric repre-
sentation of the model error covariance matrix, which can
range from something very simple (e.g., diagonal) to com-
plicated representations that take into account, for instance,
spatial correlation structures.

The presented approach can be thought of as a general-
ization of the online error covariance parameter estimation
method ofDee (1995), where the model error covariance
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matrix parameters are estimated at each assimilation step us-
ing a single batch of observations that become available at
that step. In the approach presented here, data from several
assimilation steps are gathered in the likelihood.

We test the method with the 1600-dimensional two-layer
quasi-geostrophic (QG) benchmark model (Pedlosky, 1987)
with synthetic data. We show that (a) the importance of
the model error covariance matrix calibration depends on
the quality of the observations, and that (b) the estima-
tion approach yields a well-tuned EKF in terms of root
mean squared (rms) errors of the state estimates and model
predictions.

In such a synthetic case, the truth is known, so the true
model error can be studied by computing differences be-
tween the truth and the forecast model. However, we ob-
serve that the true model error is not optimal with respect
to the performance of the filter. This happens because filter-
ing methods make certain assumptions and approximations,
and the effect of these can be compensated for by appropri-
ately choosing the model error term in the filter. This issue is
discussed further inHakkarainen et al.(2013).

2 Likelihood via filtering

We start this section by introducing how the parameter like-
lihood can be computed via filtering methods. We introduce
briefly the general formulas first, and then proceed to the spe-
cific case when EKF is applied. For more details about state
estimation theory in the general setting, and about parameter
estimation within state space models, refer to, e.g.,Särkkä
(2013).

Let us consider the following general state space model at
time stepk with unknown parametersθ :

xk ∼ p(xk|xk−1, θ) (1)

yk ∼ p(yk|xk) (2)

θ ∼ p(θ). (3)

In addition to the unknown dynamically changing model
statexk, we thus have unknown static parametersθ , from
which we might have some prior informationp(θ). The goal
in parameter estimation, in Bayesian terms, is to find the
posterior distributionp(θ |y1:n) of the parameters, given a
fixed data sety1:n. According to the Bayes formula, the
posterior is proportional to the product of the likelihood
and the prior:p(θ |y1:n) ∝ p(y1:n|θ)p(θ). Here, the nota-
tion y1:n= {y1, . . . , yn} means all observations forn time
steps. In the prior termp(θ), we can include things that we
know aboutθ before collecting any data, such as physical
bounds for the parameter values. Here, we assume that the
prior is given, and concentrate on the computation of the like-
lihood p(y1:n|θ), which is nontrivial in the case of a state
space model.

The general state space model notation given above can be
somewhat unfamiliar to readers in the atmospheric sciences

community, and some clarification may be useful. The first
equation basically contains the probabilistic model for prop-
agating the state forward: it gives the probability density for
the statexk, given the value for the previous statexk−1 and
the model parametersθ . The second equation contains the
observation model; it gives the probability density for ob-
serving the valueyk, given a value for the current statexk.
Presentation of filtering theory often starts from some as-
sumptions of the forms of these densities (such as Gaussian).
For the purpose of parameter estimation, it is instructive to
develop the likelihood first in a general state space model
setup.

Filtering methods (particle filters, Kalman filters, etc.) es-
timate the dynamically changing model state sequentially.
They give the marginal distribution of the state, given the
measurements obtained until the current timek. For a given
value forθ , filtering methods thus targetp(xk|y1:k, θ). Fil-
ters work by iterating two steps: prediction and update. In the
prediction step, the current distribution of the state is evolved
with the dynamical model to the next time step. In the general
notation, the predictive distribution is given by the integral

p(xk|y1:k−1, θ)=

∫
p(xk|xk−1, θ)

p (xk−1|y1:k−1, θ)dxk−1, (4)

which is known as the Chapman–Kolmogorov equation.
When the new observationyk is obtained, the model state is
updated using the Bayes rule with the predictive distribution
p(xk|y1:k−1, θ) as the prior:

p(xk|y1:k, θ)∝ p(yk|xk, θ)p (xk|y1:k−1, θ) . (5)

This posterior is used inside the integral (Eq.4) to obtain the
prior for the next time step.

Using the marginal state posteriors obtained in the filter-
ing method, it is also possible to compute the predictive dis-
tribution of the next observation. For observationyk, the pre-
dictive distribution, given all previous observations, can be
written as

p(yk|y1:k−1, θ)=

∫
p(yk|xk, θ)p (xk|y1:k−1, θ)dxk. (6)

The termp(xk|y1:k−1, θ) in the integral is the predictive dis-
tribution given by Eq. (4).

Let us now proceed to the original task of estimating static
parametersθ from observationsy1:n, i.e., computing the pos-
terior distributionp(θ |y1:n) ∝ p(y1:n|θ)p(θ). Applying the
chain rule for joint probability, we obtain

p(y1:n|θ)= p(y1|θ)

n∏
k=2

p(yk|y1:k−1, θ) . (7)

The likelihood of the whole data sety1:n can thus be cal-
culated as the product of the predictive distributions of the
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individual observations.In the filtering context, the predic-
tive distributionsp(yk|y1:k−1, θ) are calculated based on the
marginal posterior of the states; see Eq. (6).

The integrals required to construct the likelihood above
are usually computationally intractable. In this paper, we use
EKF as the filtering method to compute an approximation of
the likelihood. We thus now write the state space model in a
more familiar form:

xk =M(xk−1)+ Ek(θ) (8)

yk =K (xk)+ ek, (9)

whereM is the forward model andK is the observation op-
erator. Note that the unknown parametersθ now appear in the
model errorEk. In Kalman filtering, it is assumed that model
and observation errors are zero mean Gaussian, and that the
state and the model error are uncorrelated. Let us assume that
the covariance matrix of the model error is parametrized –
Ek(θ)∼N(0,Qk(θ)) – and that the observation error covari-
ance matrix is known –ek ∼N(0, Rk). Now we can apply
EKF, and we get the following expression for the predictive
distributions needed in the filter likelihood Eq. (7):

yk|y1:k−1, θ ∼ N
(
K
(
x

p
k

)
, Cyk

)
, (10)

wherex
p
k is the predicted state from the previous time and

Cyk = K kCp
kKT

k + Rk is the covariance matrix of the predic-
tive distribution, containing both the model prediction co-
variance matrixCp

k and the observation error covariance ma-
trix Rk. The matrixK k is the linearized observation model.
In EKF, the prediction covariance matrix is computed as
Cp
k = M kCest

k−1MT
k + Qk(θ), whereM k is the linearized for-

ward model,Cest
k−1 is the covariance estimate of the previous

time step andQk(θ) is the parameterized model error covari-
ance matrix.

Now, applying the general formula (Eq.7) to the EKF
case, the likelihood of observing datay1:n given parameters
θ can be written as

p(y1:n|θ)∝ exp

(
−

1

2

n∑
k=1

[
rTk
(
Cyk
)−1

rk + log|Cyk |
])
, (11)

whererk = yk −K(xp
k) are the prediction residuals and| · |

denotes the matrix determinant. The normalization “con-
stants” of the likelihood terms depend onθ through the co-
variancesCp

k, and the determinant term therefore needs to be
included. Note that the above likelihood is only an approxi-
mation to the true likelihood (Eq.7), and the accuracy of this
approximation depends on how well the EKF assumptions
(linear model used in error propagation, model error assumed
independent of the state) are met. In practice, using the EKF
likelihood in parameter estimation often yields good results;
see, for instance,Singer(2002), Hakkarainen et al.(2012),
Mbalawata et al.(2013) and the numerical examples of this
paper.

In Dee(1995), model error covariance parameters were es-
timated online at each assimilation time step, using only the
observations that become available at that specific step. In
our notation, this would correspond to having just one term
in the exponent of Eq. (11) instead of a sum; that is, the ap-
proach presented here can be thought of as a generalization
of the approach inDee(1995), where data from several as-
similation steps are gathered in the likelihood.

Note that we could also include some parameters in the
forward model, and we would haveM(xk, θ) instead of
M(xk). In this paper, we focus only on the model error pa-
rameters, but the same technique also applies to model pa-
rameters, as demonstrated inHakkarainen et al.(2012). In
principle, we could also assume a model error with a non-
zero mean and estimate the parameterized mean of the model
error as well, and possibly correct for systematic bias in the
model, but this possibility is not pursued further here.

This method assumes that there is a parametric represen-
tation of the model error covarianceQk(θ) available. In the
examples presented in this paper, the model error is assumed
to be static over time; we haveQk(θ)= Q(θ) for all time
stepsk.

3 Numerical experiments with the two-layer
quasi-geostrophic model

3.1 Model description

The two-layer quasi-geostrophic model simulates atmo-
spheric flow for the geostrophic (slow) wind motions. This
model can be used as a benchmark for data assimilation in
numerical weather prediction (NWP) systems, as it supports
some features common to operational weather models, such
as baroclinic instability. At the same time, the QG model
has a relatively low computational complexity, and requires
no special hardware to run. The geometrical domain of the
model is specified by a cylindrical surface vertically divided
into two “atmospheric” layers that can interact through the
interface between them. The model also accounts for an oro-
graphic component that defines the surface irregularities af-
fecting the bottom layer of the model. When the geometrical
layout of the two-layer QG model is mapped onto a plane,
it appears as shown in Fig.1. In the figure, parametersU1
andU2 denote mean zonal flows in the top and the bottom
atmospheric layers, respectively.

The model operates in terms of potential vorticity and
stream function, where the latter one is analogous to pres-
sure. The assumption of quasi-geostrophic motion leads to a
coupled system of partial differential equations (PDEs) de-
scribing a conservation law for potential vorticity, given as

D1q1

Dt
= 0,

D2q2

Dt
= 0, (12)
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Figure 1: Geometrical layout of the two-layer quasi-geostrophic model.

The model operates in terms of potential vorticity and stream function, where the latter one is analogous to137

pressure. The assumption of quasi-geostrophic motion leads to a coupled system of partial differential equations138

(PDEs) describing a conservation law for potential vorticity, given as139

D1q1

Dt
= 0,

D2q2

Dt
= 0, (12)

where Di denotes the substantial derivatives for latitudinal wind ui and longitudinal wind vi, defined as Di·
Dt =140

∂·
∂t + ui

∂·
∂x + vi

∂·
∂y ; qi denote the potential vorticity functions; index i specifies the top atmospheric layer (i = 1)141

and the bottom layer (i = 2). Interaction between the layers, as well as relation between the potential vorticity142

qi and the stream function ψi, is modeled by the following system of PDEs:143

q1 = ∇2ψ1 − F1 (ψ1 − ψ2) + βy, (13)
144

q2 = ∇2ψ2 − F2 (ψ2 − ψ1) + βy +Rs. (14)

Here Rs and β denote dimensionless orography component and the northward gradient of the Coriolis parameter,145

which we hereafter denote as f0. The relations between the model physical attributes and dimensionless146

parameters that appear in the equations (13)-(14) are as follows:147

F1 =
f2
0L

2

ǵD1
, F2 =

f2
0L

2

ǵD2
, ǵ = g∆θ

θ̄
,

Rs = S(x,y)
ηD2

, β = β0
L
U ,

where D1 and D2 are the layer depths, ∆θ defines the potential temperature change across the layer interface,148

θ̄ is the mean potential temperature, g is acceleration of gravity, η = U
f0L

is the Rossby number associated with149

the defined system, and S(x, y) and β0 are dimensional representations of Rs(x, y) and β, respectively.150

The system of equations (12)-(14) defines the two-layer quasi-geostrophic model. The state of the model,151

and thus the target of estimation, is the stream function ψi. For the numerical solution of the system, we152

consider potential vorticity functions q1 and q2 to be known, and invert the spatial equations (13) and (14) for153

ψi. More precisely, we apply ∇2 to equation (13) and subtract F1 times (14) and F2 times (13) from the result,154

which yields the following equation:155

∇2
[
∇2ψ1

]
− (F1 + F2)

[
∇2ψ1

]
=

∇2q1 − F2 (q1 − βy)− F1 (q2 − βy −Rs) . (15)

Equation (15) can be treated as a non-homogeneous Helmholtz equation with negative parameter − (F1 + F2)156

and unknown ∇2ψ1. Once ∇2ψ1 is solved, the stream function for the top atmospheric layer is determined by157

a Poisson equation. The stream function for the bottom layer can be found by plugging the obtained value for158

ψ1 into (13), (14) and solving the equations for ψ2. The potential vorticity functions qi are evolved over the159

time by a numerical advection procedure which models the conservation equations (12). For more details of160

the implementation, refer to [Bibov et al., 2013].161
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Figure 1. Geometrical layout of the two-layer quasi-geostrophic
model.

where Di denote the substantial derivatives for latitu-
dinal wind ui and longitudinal wind vi , defined as
Di ·
Dt =

∂·
∂t

+ ui
∂·
∂x

+ vi
∂·
∂y

, qi denote the potential vortic-
ity functions, and indexi specifies the top atmospheric
layer (i= 1) and the bottom layer (i= 2). Interaction be-
tween the layers, as well as the relation between the potential
vorticity qi and the stream functionψi , is modeled by the
following system of PDEs:

q1 = ∇
2ψ1 −F1 (ψ1 −ψ2)+βy, (13)

q2 = ∇
2ψ2 −F2 (ψ2 −ψ1)+βy+Rs . (14)

Here,Rs andβ denote the dimensionless orography compo-
nent and the northward gradient of the Coriolis parameter,
which we hereafter denote asf0. The relations between the
model physical attributes and dimensionless parameters that
appear in Eqs. (13)–(14) are as follows:

F1 =
f 2

0L
2

g′D1
, F2 =

f 2
0L

2

g′D2
, g′

= g
1θ

θ
,

Rs =
S(x, y)

ηD2
, β = β0

L

U
,

whereD1 andD2 are the layer depths,1θ defines the po-
tential temperature change across the layer interface,θ is the
mean potential temperature,g is the acceleration of gravity,
η=

U
f0L

is the Rossby number associated with the defined
system, andS(x, y) andβ0 are dimensional representations
of Rs(x, y) andβ, respectively.

The system of Eqs. (12)–(14) defines the two-layer quasi-
geostrophic model. The state of the model, and thus the target
of the estimation, is the stream functionψi . For the numerical
solution of the system, we consider potential vorticity func-
tionsq1 andq2 to be known, and invert the spatial Eqs. (13)
and (14) for ψi . More precisely, we apply∇2 to Eq. (13),
and subtractF1 times (Eq.14) andF2 times (Eq.13) from
the result, which yields the following equation:

∇
2
[
∇

2ψ1

]
− (F1 +F2)

[
∇

2ψ1

]
= ∇

2q1 −F2 (q1 −βy)−F1 (q2 −βy−Rs) . (15)

Equation (15) can be treated as a non-homogeneous
Helmholtz equation with negative parameter−(F1 +F2) and
unknown∇

2ψ1. Once∇
2ψ1 is solved, the stream function

for the top atmospheric layer is determined by a Poisson
equation. The stream function for the bottom layer can be
found by plugging the obtained value forψ1 into Eqs. (13)
and (14) and by solving the equations forψ2. The potential
vorticity functionsqi are evolved over time by a numerical
advection procedure that models the conservation Eq. (12).
For more details on the QG model, refer toFisher et al.
(2011).

3.2 Experiment setup and results

We study the model error parameter estimation problem with
the QG model described above. In our experiments, we run
the model with a 20× 40 grid in each layer, and the dimen-
sion of the state vector is thus 1600. To generate data, we run
the model with a 1 h time step with layer depthsD1 = 6000
andD2 = 4000. Data is generated at every 6th step (the as-
similation step is thus 6 h) by adding random noise with a
given standard deviationσy to a given number of randomly
chosen grid points. For the EKF estimation, bias is intro-
duced to the forward model by using the wrong layer depths
D̃1 = 5500 andD̃2 = 4500. To illustrate the model and the
observations, a snapshot of a single step of the EKF estima-
tion is given in Fig.2.

We apply two different parameterizations forQ(θ), a sim-
ple diagonal parameterization and a more complicated one
that includes horizontal and vertical correlations. First, we
simply study how important the model error term is in terms
of EKF accuracy, with various observation settings. We then
test the filter likelihood computation for the two selected
Q(θ) matrices. As a validation metric, we use the rms error
of the state estimates and the model predictions. The likeli-
hood values and the validation metrics are computed using
separate “training data” and validation data.

The filter likelihood approach attempts to find aQ(θ) so
that the model predictions fit the observations with the cor-
rect accuracy (forecast error+ measurement error), and we
therefore expect this approach to yield reasonably good fore-
cast error estimates as well, provided that the EKF assump-
tions are met. InSolonen and Järvinen(2013), a similar es-
timation technique was used to estimate the parameters of
a small-scale ensemble prediction system (EPS), and there
the approach produced a good representation of the forecast
uncertainty. In order to verify the realism of the forecast er-
ror covariance matrix in this setup, we compare the squared
mean variance of the forecast error covariance matrix against
the true rms forecast error.
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Figure 2: The true state (top row) and the EKF estimate (bottom row) for the bottom layer (left column) and
for the top layer (right column) in a 20 × 40 grid for each layer using 50 randomly chosen observation locations
(black dots). Filled contours describe the potential vorticity and line contours describe the stream function.
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Figure 2. The true state (top-row panels) and the EKF estimate (bottom-row panels) for the bottom layer (left-column panels) and for the
top layer (right-column panels) in a 20× 40 grid for each layer using 50 randomly chosen observation locations (black dots). Filled contours
describe the potential vorticity, and line contours describe the stream function.

3.2.1 The effect of observations to model error
calibration

First, we study the relevance of the model error covariance
matrix calibration by running EKF with various observation
settings and various levels for the model error. We vary the
number of observations used for the estimation at each as-
similation step (20, 50 and 100), and the observation error
standard deviation (σy = 0.1 andσy = 1). As the model error
covariance matrix, we use the simplest possible parameter-
ization, Q = λ I . For each observation setting, we run EKF
with different values for the model error varianceλ.

The results are shown in Fig.3. One can see that with a
large enough number of accurate enough observations (left
panel, red curve), the model error calibration has very little
effect on the accuracy of the filter;λ can vary many orders of
magnitude without any significant difference in the rms er-
rors of the state estimates. Reducing the number of observa-
tions (left panel, black and green curves) makes the calibra-
tion of the model error slightly more meaningful, and there
seems to be an optimum value forλ that yields the most ac-
curate EKF. Still, one can see that the benefit of optimizingλ

is limited in this case; with large values forλ, EKF still con-
verges, and the state estimates are almost as accurate as with
the optimizedλ.

When the observation error standard deviation is increased
from σy = 0.1 toσy = 1 (right panel), the situation changes.
Now the model error variance has a clearer impact on the
accuracy of the filter, and substantial improvements in the
filter can be achieved by correctly choosing the model error
covariance parameters.

We conclude that the relevance of the model error calibra-
tion depends on the quality of the observations. If we have
a large number of accurate observations available, the model
error might not matter much. On the other hand, if the infor-
mation of the observations is limited, the model error has to
be tuned accurately to make the filter work properly. From
the Bayesian perspective, this result is natural: if the obser-
vations do not identify the state properly, the prior has to be
tuned carefully to make the estimation work.
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3.2.2 Simple model error covariance matrix

To test the likelihood calculation, we first test the simple di-
agonal parameterizationQ = λ I . We compute the likelihood
from a training period of 100 assimilation steps, and compute
the rms errors of the state estimates using a separate valida-
tion period of 100 steps. At each assimilation step, we use
100 observations with noise standard deviationσy = 1.

In Fig. 4, we plot the negative log-likelihood values of the
training period to rms errors of the validation period. There is
a clear correlation between the likelihood and the validation
rms error, maximizing the likelihood results in optimal filter
accuracy.

3.2.3 More complicated model error covariance matrix

Next, we perform the same experiment as above, but use a
slightly more complicated covariance matrix parameteriza-
tion. We use a Gaussian covariance function with three pa-
rameters, and for each layer, we define the covariance matrix
elements as

Qij =


τ2

+ σ 2exp

(
−
d(xi ,xj )

2

2α2

)
wheni = j

σ 2exp

(
−
d(xi ,xj )

2

2α2

)
wheni 6= j,

(16)

where d(xi,xj ) denotes the distance between two grid
points,σ 2>0 is the variance parameter,α >0 is the cor-
relation length, andτ2>0 is a small positive nugget term
that ensures that the matrix is positive definite. In addi-
tion, we estimate the vertical correlationρ ∈ [0, 1] between
the two layers. We thus have four parameters altogether:
θ = (τ2, σ 2, α, ρ).

We test randomly chosen parameter values uniformly
in the intervalsσ 2

∈ [0, 0.05], α ∈ [0, 10], ρ ∈ [0, 1] and
τ2

∈ [0, 0.01]. For each parameter combination, we compute
the likelihood values and rms errors for validation. The re-
sults are shown in Fig.5 (left panel). Again, we see a clear
correlation between the likelihood values and the rms errors:
maximizing the likelihood results in an accurate EKF. To val-
idate the results further, we compute the rms errors of fore-
casts launched from the EKF state estimates with different
model error covariance matrix parameters. The results are
shown in Fig.5 (right panel). One can see that the parameters
with a high likelihood also validate well in terms of forecast
skill.

In a synthetic case, such as here, we know the truth be-
hind the observations, and we can compute “samples” of the
model error by running the truth model and the biased fore-
cast model, starting from the same initial value and collecting
the differences. This allows us to estimate the “true” model
error covariance matrix. We estimated the covariance from
2000 samples of the error in two ways: first, we computed the
full matrix directly with the empirical covariance estimation
formula, and then estimated the parameters of the covariance

function (Eq.16) based on the samples. We plugged these
matrices into EKF and computed the rms errors for the val-
idation period. The results obtained in this way are shown
in the left part of Fig.5. Surprisingly, these matrices do not
validate that well in terms of filter accuracy. We believe that
the reason is that EKF is an approximative filter – it uses
linearizations and assumes, for instance, that the model er-
ror and state are independent – and the imperfections in the
method can to some extent be compensated for by calibrating
the model error covariance matrix.

3.2.4 Verification of the forecast error covariance
matrix

In order to verify the quality of the Kalman filter forecast
error covariance matrixCp

k = M kCest
k−1MT

k + Qk(θ), the fol-
lowing two metrics are considered:

m1(k)=

√(
x

p
k − xtrue

k

)2
, (17)

m2(k)=

√(
σ

p
k

)2
. (18)

The first metric is the true rms forecast error, where the fore-
castxp

k is calculated from the previous Kalman filter esti-
mate. The second metric is the squared mean variance of the
forecast error covariance matrix. The mean in both cases is
calculated over the 1600-dimensional state space.

In Fig. 6, we plot these two metrics using five different
parameter combinations and the “true” model error covari-
ance matrix (obtained via samples of the model error; see
Sect.3.2.3). For the parameter combinations, we selected
the points that give the best and worst cost function values,
and the points that correspond to the three quartile points of
the cost function values (indicated by Q1, median and Q3 in
Fig. 6).

From Fig.6, we can observe that, using the best cost func-
tion point, the two metrics give a similar mean error level,
showing that – on average – the Kalman filter forecast er-
ror (co)variance is realistic. This observation is also valid for
the other points for which the cost function value is close to
a minimum (grey lines in Fig.6). For the other parameter
combinations, we observe that the estimated and true fore-
cast errors do not match: the forecast error is overestimated,
and the difference grows gradually when going towards the
worst parameter combination. The “true” model error covari-
ance matrix, on the other hand, underestimates the forecast
(co)variance, which is anticipated, as it does not take into ac-
count the imperfections of the EKF method discussed earlier.

The validation here was done using the more complicated
model error parameterization (Eq.16). We note that if met-
ricsm1 andm2 are calculated using the simple diagonal co-
variance matrixQ = λ I , too low (high)λ values give on av-
erage too low (high) forecast error (co)variance, as expected.
Near the optimum, the level of the forecast error covariance
matrix is realistic (not shown).
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3.2.1 The effect of observations to model error calibration183

First, we study the relevance of the model error covariance matrix calibration by running EKF with various184

observation settings and various levels for the model error. We vary the number of observations used for the185

estimation at each assimilation step (20, 50 and 100) and the observation error standard deviation (σy = 0.1186

and σy = 1). As the model error covariance matrix, we use the simplest possible parameterization, Q = λI.187

For each observation setting, we run EKF with different values for the model error variance λ.188

The results are shown in Fig. 3. One can see that with a large enough number of accurate enough189

observations (left figure, red curve) the model error calibration has very little effect in the accuracy of the190

filter; λ can vary many orders of magnitude without any significant difference in the RMS errors of the state191

estimates. Reducing the number of observations (left figure, black and green curves) makes the calibration of192

the model error slightly more meaningful, and there seems to be an optimum value for λ that yields the most193

accurate EKF. Still, one can see that the benefit of optimizing λ is limited in this case; with large values for λ194

EKF still converges and the state estimates are almost as accurate as with the optimized λ.195

When the observation error standard deviation is increased from σy = 0.1 to σy = 1 (right figure), the situa-196

tion changes. Now the model error variance has a more clear impact on the accuracy of the filter, and substantial197

improvements in the filter can be achieved by correctly choosing the model error covariance parameters.198

We conclude that the relevance of the model error calibration depends on the quality of the observations.199

If we have a large number of accurate observations available, the model error might not matter much. On the200

other hand, if the information of the observations is limited, the model error has to be accurately tuned to201

make the filter work properly. From the Bayesian perspective this result is natural: if the observations do not202

properly identify the state, the prior has to be carefully tuned to make the estimation work.
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Figure 3: Model error variances λ vs. average RMS errors of the state estimates with varying number of
observations and observation errors σy = 0.1 (left) and σy = 1 (right).
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3.2.2 Simple model error covariance matrix204

To test the likelihood calculation, we first test the simple diagonal parameterization Q = λI. We compute the205

likelihood from a training period of 100 assimilation steps and compute the RMS errors of the state estimates206

using a separate validation period of 100 steps. At each assimilation step, we use 100 observations with noise207

standard deviation σy = 1.208

In Fig. 4, we plot the negative log-likelihood values of the training period to RMS errors of the validation209

period. There is a clear correlation between the likelihood and the validation RMS error; maximizing the210

likelihood results in optimal filter accuracy.211

3.2.3 More complicated model error covariance matrix212

Next, we perform the same experiment as above but use a bit more complicated covariance matrix parameter-213

ization. We use a Gaussian covariance function with 3 parameters, and for each layer we define the covariance214

matrix elements as215

Qij =

 τ2 + σ2 exp
(
−d(xi,xj)2

2α2

)
when i = j

σ2 exp
(
−d(xi,xj)2

2α2

)
when i 6= j,

(16)
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Figure 3. Model error variancesλ vs. average rms errors of the state estimates with a varying number of observations and observation errors
σy = 0.1 (left panel) andσy = 1 (right panel).
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Figure 4: Negative log-likelihood of the training data vs. the average RMS error of the filter with the validation
data. Colors indicate the logarithm of the model error variance λ.

where d(xi, xj) denotes the distance between two grid points, σ2 > 0 is the variance parameter, α > 0 is the216

correlation length and τ2 > 0 is a small positive nugget term that ensures that the matrix is positive definite.217

In addition, we estimate the vertical correlation ρ ∈ [0, 1] between the two layers. Thus, we have altogether 4218

parameters: θ = (τ2, σ2, α, ρ).219

We test randomly chosen parameter values uniformly in the interval σ2 ∈ [0, 0.05], α ∈ [0, 10], ρ ∈ [0, 1] and220

τ2 ∈ [0, 0.01]. For each parameter combination, we compute the likelihood values and RMS errors for validation.221

The results are shown in Fig. 5 (left figure). Again, we see a clear correlation between the likelihood values222

and the RMS errors: maximizing the likelihood results in an accurate EKF. To further validate the results,223

we compute the RMS errors of forecasts launched from the EKF state estimates with different model error224

covariance matrix parameters. The results are shown in Fig. 5 (right figure). One can see that the parameters225

with high likelihood also validate well in terms of forecast skill.226

In a synthetic case, such as here, we know the truth behind the observations, and we can compute “samples”227

of the model error by running the truth model and the biased forecast model starting from the same initial228

value and collecting the differences. This allows us to estimate the “true” model error covariance matrix.229

We estimated the covariance from 2000 samples of the error in two ways: first, we computed the full matrix230

directly with the empirical covariance estimation formula, and then estimated the parameters of the covariance231

function (16) based on the samples. We plugged these matrices into EKF and computed the RMS errors for232

the validation period. The results obtained in this way are shown in the left part of Fig. 5. Surprisingly,233

these matrices do not validate that well in terms of filter accuracy. We believe that the reason is that EKF234

is an approximative filter – it uses linearizations and assumes, for instance, that the model error and state235

are independent – and the imperfections in the method can be to some extent compensated by calibrating the236

model error covariance matrix.237

3.2.4 Verification of the forecast error covariance matrix238

In order to verify the quality of the Kalman filter forecast error covariance matrix Cp
k = MkC

est
k−1M

T
k + Qk(θ),239

the following two metrics are considered240

m1(k) =

√
(xpk − xtrue

k )2, (17)

m2(k) =

√
(σpk)2. (18)

The first metric is the true RMS forecast error, where the forecast xpk is calculated from the previous Kalman241

filter estimate. The second metric is the squared mean variance of the forecast error covariance matrix. The242

mean in both cases is calculated over the 1600-dimensional state space.243
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Figure 4.Negative log likelihood of the training data vs. the average
rms error of the filter with the validation data. Colors indicate the
logarithm of the model error varianceλ.

4 Discussion and conclusions

In this paper, we consider the problem of calibrating the
model error covariance matrixQ in extended Kalman fil-
tering (EKF). The matrixQ is commonly seen as a tuning
parameter in EKF, and is often postulated by the user in an
ad hoc manner. We study a technique for objectively estimat-
ing the parametersθ of a parametric version of the matrix,
Q(θ), based on indirect and noisy observations of the model
state. The approach is based on approximating the likelihood
of the parametersθ using the EKF output. This “filter likeli-
hood” method is tested with the two-layer quasi-geostrophic
model that is often used as a benchmark case in numerical
weather prediction studies.

One of our findings is that the relevance of the calibration
of Q depends on the quality of the observations. The less

information the observations contain about the model state,
the more carefully the prior, a part of whichQ is, needs to
be tuned. On the other hand, if we have enough accurate
observations, accurate optimization ofQ might not be that
beneficial. Secondly, we conclude that the filter likelihood
approach works well in our test cases; maximizing the likeli-
hood results in accurate EKF in terms of the rms errors of the
state estimates and model predictions. In addition, the points
that give a high likelihood validate well in terms of the qual-
ity of the forecast error estimates.

Our experiments in this paper are synthetic in the sense
that we generate observations with the “true model” and in-
troduce bias into the model that is used for estimation. In
such a case, one can estimate the “true” model error by run-
ning predictions with the truth model and the biased fore-
cast model, and collecting the differences between the pre-
dictions. Our experiments suggest that the model error ob-
tained in this way is not optimal in terms of filter accuracy.
A reason might be that the model error can be used to ac-
count for approximations and assumptions made in the filter-
ing method. The consequence is that each filtering method
should be tuned separately: theQ that works best in EKF
might not be optimal for other filtering methods.

In this paper, the focus was on the extended Kalman fil-
ter. However, similar model error parameters appear in many
other data assimilation methods as well, like, for instance, in
the weak-constraint 4D-Var (Fisher et al., 2005) and ensem-
ble Kalman filters (Evensen, 2007). In many so-called en-
semble square root Kalman filters (Tippett et al., 2003), the
model error is neglected, but covariance inflation techniques
are used to account for the resulting underestimation of the
uncertainty. We note that the parameters related to covariance
inflation can also be tuned with the presented approach, as
demonstrated inHakkarainen et al.(2013). A problem with
some ensemble methods is that they contain random per-
turbations, which can complicate the optimization process,

www.nonlin-processes-geophys.net/21/919/2014/ Nonlin. Processes Geophys., 21, 919–927, 2014
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Figure 5: Left: negative log-likelihood of the training data vs. the average RMS error of the filter with the
validation data. Right: the average forecast RMS errors with different covariance matrix parameters. Red and
blue colors indicate the results acquired with the full and parametrized “true” model error covariance matrix,
respectively. Black line indicates the forecast skill acquired with the parameters that give the smallest negative
log-likelihood. Dashed vertical lines indicate climatological forecast skill and error saturation level.

In Fig. 6, we plot these two metrics using five different parameter combinations and the “true” model error244

covariance matrix (obtained via samples of the model error, see Section 3.2.3). For the parameter combinations245

we selected the points that give the best and the worst cost function values and the points that correspond to246

the three quartile points of the cost function values (indicated by Q1, median and Q3 in Fig. 6).247

From Fig. 6 we can observe that using the best cost function point, the two metrics give a similar mean error248

level showing that—on average—the Kalman filter forecast error (co)variance is realistic. This observation is249

valid also for the other points for which the cost function value is close to minimum (gray lines in Fig. 6). For250

the other parameter combinations we observe that estimated and true forecast errors do not match: the forecast251

error is overestimated and the difference is gradually growing when going towards the worst parameter combi-252

nation. The “true” model error covariance matrix, on the other hand, underestimates the forecast (co)variance,253

which is anticipated, as it does not take into account the imperfections of the EKF method discussed earlier.254

The validation here was done using the more complicated model error parameterization (16). We note that255

if metrics m1 and m2 are calculated using the simple diagonal covariance matrix Q = λI, too low (high) λ256

values give on average too low (high) forecast error (co)variance, as expected. Near the optimum the level of257

forecast error covariance matrix is realistic (not shown).258

4 Discussion and conclusions259

In this paper, we consider the problem of calibrating the model error covariance matrix Q in extended Kalman260

filtering (EKF). The matrix Q is commonly seen as a tuning parameter in EKF and often postulated by the261

user in an ad-hoc manner. We study a technique for objectively estimating the parameters θ of a parametric262

version of the matrix, Q(θ), based on indirect and noisy observations of the model state. The approach is based263

on approximating the likelihood of the parameters θ using the EKF output. This “filter likelihood” method is264

tested with the two-layer quasi-geostrophic model, that is often used as a benchmark case in numerical weather265

prediction studies.266

One of our findings is that the relevance of the calibration of Q depends on the quality of observations. The267

less information the observations contain about the model state, the more carefully the prior, a part of which268

Q is, needs to be tuned. On the other hand, if we have enough accurate observations, accurate optimization269

of Q might not be that beneficial. Secondly, we conclude that the filter likelihood approach works well in our270

test cases; maximizing the likelihood results in accurate EKF in terms of the RMS errors of the state estimates271

and model predictions. In addition, the points that give high likelihood validate well in terms of the quality of272

the forecast error estimates.273

Our experiments in this paper are synthetic in the sense that we generate observations with the “true model”274

and introduce bias into the model that is used for estimation. In such a case, one can estimate the “true” model275

error by running predictions with the truth model and the biased forecast model and collecting the differences276

between the predictions. Our experiments suggest that the model error obtained in this way is not optimal in277

terms of filter accuracy. A reason might be that the model error can be used to account for approximations and278
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Figure 5. Left panel: negative log likelihood of the training data vs. the average rms error of the filter with the validation data. Right panel:
the average forecast rms errors with different covariance matrix parameters. Red and blue colors indicate the results acquired with the full and
parametrized “true” model error covariance matrices, respectively. The black line indicates the forecast skill acquired with the parameters
that give the smallest negative log likelihood. Dashed vertical lines indicate climatological forecast skill and error saturation level.
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assumptions made in the filtering method. The consequence is that each filtering method should be separately279

tuned: the Q that works best in EKF might not be optimal for other filtering methods.280

In this paper, the focus was on the extended Kalman filter. However, similar model error parameters appear281

in many other data assimilation methods as well, like, for instance, in the weak-constraint 4D-Var [Fisher et282

al., 2005] and ensemble Kalman filters [Evensen, 2007]. In many so called ensemble square root Kalman filters283

[Tippett et al., 2003], the model error is neglected, but covariance inflation techniques are used to account for284

the resulting underestimation of the uncertainty. We note that the parameters related to covariance inflation285

can be also tuned with the presented approach, as demonstrated in [Hakkarainen et al., 2013]. A problem with286

some ensemble methods is that they contain random perturbations, which can complicate the optimization287

process, since the likelihood is stochastic, as noted in [Hakkarainen et al., 2012, Dowd, 2011].288

Here, we simply validate that the likelihood approach works for calibrating the model error, and do not289

consider algorithms for maximizing or exploring the likelihood surface. A suitable method is case dependent.290

For simple models, standard optimization or, for instance, Markov chain Monte Carlo algorithms are available.291

If the model is computationally expensive, one needs an efficient method to explore the surface with as few292

likelihood evaluations as possible. For instance, methods that apply empirical approximations (or “emulators”)293

of the likelihood surface seem promising here, see, e.g., [Rasmussen, 2003]. These topics are left for future294

research.295
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since the likelihood is stochastic, as noted inHakkarainen et
al. (2012) andDowd(2011).

Here, we simply confirm that the likelihood approach
works for calibrating the model error, and do not consider al-
gorithms for maximizing or exploring the likelihood surface.
A suitable method is case dependent. For simple models,
standard optimization or, for instance, Markov chain Monte
Carlo algorithms, are available. If the model is computation-
ally expensive, one needs an efficient method to explore the
surface with as few likelihood evaluations as possible. For
instance, methods that apply empirical approximations (or
“emulators”) of the likelihood surface seem promising here;
see, e.g.,Rasmussen(2003). These topics are left for future
research.
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