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Abstract. The extended Kalman filter (EKF) is a popular  The extended Kalman filter (EKF) is a popular nonlinear
state estimation method for nonlinear dynamical models. Thelata assimilation method. It is a nonlinear extension of the
model error covariance matrix is often seen as a tuning paKalman filter (KF;Kalman 1960, where the forward model
rameter in EKF, which is often simply postulated by the user.and observation operators are linear, and the model and ob-
In this paper, we study the filter likelihood technique for es- servation errors are assumed to be additive and normally dis-
timating the parameters of the model error covariance matributed, which yields direct matrix formulas for updating the
trix. The approach is based on computing the likelihood of model state with observations. In EKF, the nonlinear forward
the covariance matrix parameters using the filtering outputmodel and the observation operator are linearized, and the
We show that (a) the importance of the model error covari-KF formulas are applied. The goal in this paper is to study a
ance matrix calibration depends on the quality of the obsertechnique for estimating a parameterized version of a model
vations, and that (b) the estimation approach yields a well-error covariance matrix.

tuned EKF in terms of the accuracy of the state estimates and The model error tuning problem can be viewed as a pa-
model predictions. For our numerical experiments, we useaameter estimation problem in state space models. One way
the two-layer quasi-geostrophic model that is often used as & estimate static parameters in dynamical state space mod-
benchmark model for numerical weather prediction. els is to compute the likelihood of the parameters by “inte-
grating out” the uncertain model state using a filtering tech-
nigue such as EKF. This “filter likelihood” technique is a
well-known tool for parameter estimation in stochastic dif-
ferential equation (SDE) modelSifiger 2002 and time se-

In state estimation, or data assimilation, the goal is to esti1€s analysisDurbin and Koopman200]). In Hakkarainen
mate the dynamically changing state of the model, given in-8t &l- (2019, the approach was used to estimate parameters
complete and noisy observations. The estimation is usually’f chaotic models. As noted iakkarainen et a(2012), the
carried out sequentially: the model prediction made from theS@me approach can be used for estimating the parameters of
previous state is updated with the new observations that bed medel error covariance matrix. In this paper, we study this

come available. State estimation methods need a descriptigP°SSibility further. The technique needs a parametric repre-
of the error that the forward model makes in an assimila-Sentation of the model error covariance matrix, which can

tion step: otherwise the erroneous model prediction is overfange from something very simple (e.g., diagonal) to com-
weighted when it is combined with new observations pc)ten_pllcated representations that take into account, for instance,

tially leading to divergence of the method. From the perspec-SPatial correlation structures.
tive of data assimilation, the model error representation can 1he presented approach can be thought of as a general-

be viewed as a tunable quantity that has an effect on the pe|i_zation of the online error covariance parameter estimation
formance of the method. method ofDee (1999, where the model error covariance

1 Introduction
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matrix parameters are estimated at each assimilation step usommunity, and some clarification may be useful. The first
ing a single batch of observations that become available agquation basically contains the probabilistic model for prop-
that step. In the approach presented here, data from severabating the state forward: it gives the probability density for
assimilation steps are gathered in the likelihood. the statexy, given the value for the previous statg ; and

We test the method with the 1600-dimensional two-layerthe model parametei The second equation contains the
quasi-geostrophic (QG) benchmark modeédlosky 1987 observation model; it gives the probability density for ob-
with synthetic data. We show that (a) the importance ofserving the valuey, given a value for the current statg.
the model error covariance matrix calibration depends onPresentation of filtering theory often starts from some as-
the quality of the observations, and that (b) the estima-sumptions of the forms of these densities (such as Gaussian).
tion approach yields a well-tuned EKF in terms of root For the purpose of parameter estimation, it is instructive to
mean squared (rms) errors of the state estimates and moddevelop the likelihood first in a general state space model
predictions. setup.

In such a synthetic case, the truth is known, so the true Filtering methods (particle filters, Kalman filters, etc.) es-
model error can be studied by computing differences be-imate the dynamically changing model state sequentially.
tween the truth and the forecast model. However, we ob-They give the marginal distribution of the state, given the
serve that the true model error is not optimal with respectmeasurements obtained until the current tim&or a given
to the performance of the filter. This happens because filtervalue for#, filtering methods thus target(xy|y1., 9). Fil-
ing methods make certain assumptions and approximationgers work by iterating two steps: prediction and update. In the
and the effect of these can be compensated for by appropriprediction step, the current distribution of the state is evolved
ately choosing the model error term in the filter. This issue iswith the dynamical model to the next time step. In the general

discussed further inlakkarainen et a(2013. notation, the predictive distribution is given by the integral
2 Likelihood via filtering P kly1e-1. 0) = / P *ilxi-1.0)
p (Xk-1ly1x-1, 0)dxy_1, (4)

We start this section by introducing how the parameter like-

lihood can be computed via filtering methods. We mtroduceWhich is known as the Chapman—Kolmogorov equation.

briefly the general formulas first, and then proceed to the SP€\hen the new observation, is obtained, the model state is

C'f'(.: case when EKF is applied. For more details about Statq.]pdated using the Bayes rule with the predictive distribution
estimation theory in the general setting, and about parameter

Lo o . k-1, 0) as the prior:
estimation within state space models, refer to, &Sgrkka POeklyzk-1. ) P

(2013. X ks 0) xi, ) p(x -1, 0). 5
Let us consider the following general state space model a{( elyse, 8) o p(ilxe, 6) p (xilyri-1. 6) ®)
time stepk with unknown paramete This posterior is used inside the integral (Bjjto obtain the
Xp~ p(Xlxi_1, 0) 1) prior _for the next tl_me step. _ _ _ _
5 Using the marginal state posteriors obtained in the filter-
Yie~ P (Pklxe) () ing method, it is also possible to compute the predictive dis-
6~ p(@). 3) tribution of the next observation. For observatign the pre-
In addition to the unknown dynamically changing model SV'::IE{\(’; gftrlbutlon, given all previous observations, can be

statex;, we thus have unknown static parametérsrom
which we might have some prior informatigi{#). The goal
in parameter estimation, in Bayesian terms, is to find the? (Yk|y1x-1, ) :/P(.Yk|xka 0) p (xk|y1xk-1, 0)dxg. (6)
posterior distributionp(#|y1.,) of the parameters, given a
fixed data setyy.,. According to the Bayes formula, the Thetermp(x|y1.x—1, @) in the integral is the predictive dis-
posterior is proportional to the product of the likelihood tribution given by Eq.4).
and the prior:p(@|y1.,) o« p(y1..10) p(8). Here, the nota- Let us now proceed to the original task of estimating static
tion y1., ={y1, ..., y»} means all observations fartime parameterg from observationg1.,, i.e., computing the pos-
steps. In the prior ternp(8), we can include things that we terior distributionp(0|y1.,) «x p(y1.,10) p(8). Applying the
know aboutf before collecting any data, such as physical chain rule for joint probability, we obtain
bounds for the parameter values. Here, we assume that the .
prior is given, and concentrate on the computation of the like- .
lihood p(y1.,|6), which is nontrivial in the case of a state P (y1al0) = p(ylw)gp(yk'ylzk_l’ 9). (7)
space model. -

The general state space model notation given above can behe likelihood of the whole data set., can thus be cal-
somewhat unfamiliar to readers in the atmospheric sciencesulated as the product of the predictive distributions of the
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individual observationslin the filtering context, the predic- In Dee(1995, model error covariance parameters were es-
tive distributionsp (y«|y1.x—1, @) are calculated based on the timated online at each assimilation time step, using only the
marginal posterior of the states; see Hj. ( observations that become available at that specific step. In

The integrals required to construct the likelihood aboveour notation, this would correspond to having just one term
are usually computationally intractable. In this paper, we usen the exponent of Eq.1{) instead of a sum; that is, the ap-
EKF as the filtering method to compute an approximation of proach presented here can be thought of as a generalization
the likelihood. We thus now write the state space model in aof the approach iDee (1995, where data from several as-

more familiar form: similation steps are gathered in the likelihood.

Note that we could also include some parameters in the
X =M(xp-1) + Er(0) (8)  forward model, and we would havé1(x, 8) instead of
Vi = K (xp) + e, (9) M(xy). In this paper, we focus only on the model error pa-

rameters, but the same technique also applies to model pa-
where M is the forward model andl is the observation op- rameters, as demonstratedHiakkarainen et al(2012. In
erator. Note that the unknown parameterow appear inthe  principle, we could also assume a model error with a non-
model errorEy. In Kalman filtering, it is assumed that model zero mean and estimate the parameterized mean of the model
and observation errors are zero mean Gaussian, and that tkeror as well, and possibly correct for systematic bias in the
state and the model error are uncorrelated. Let us assume thafodel, but this possibility is not pursued further here.
the covariance matrix of the model error is parametrized — This method assumes that there is a parametric represen-
E(6) ~ N(0, Q(9)) —and that the observation error covari- tation of the model error covarian€g (#) available. In the
ance matrix is known ¢, ~ N (0, Ry). Now we can apply examples presented in this paper, the model error is assumed
EKF, and we get the following expression for the predictive to be static over time; we hav®;(8) = Q(#) for all time
distributions needed in the filter likelihood E@){ stepsk.

yelyie-1, 8 ~ N (K (x}), C}). (10)
3 Numerical experiments with the two-layer
wherex,f is the predicted state from the previous time and  quasi-geostrophic model
C; =Kk C,‘:KZ + Ry is the covariance matrix of the predic- o
tive distribution, containing both the model prediction co- 3-1 Model description

variance matrxC} and the observation error covariance ma- The two-laver quasi-geostrophic model simulates atmo
trix Rg. The matrixKy, is the linearized observation model. yer q 9 P

In EKF, the prediction covariance matrix is computed asspheric flow for the geostrophic (slow) wind motiqn;. This_
CEZ M, Ce M7 + Qi (8), whereM, is the linearized for- model can be used as a benchmark for data assimilation in

numerical weather prediction (NWP) systems, as it supports
some features common to operational weather models, such
as baroclinic instability. At the same time, the QG model
has a relatively low computational complexity, and requires
no special hardware to run. The geometrical domain of the
model is specified by a cylindrical surface vertically divided
into two “atmospheric” layers that can interact through the

1 " interface between them. The model also accounts for an oro-
P (y1nl0) eXD<—§ Z [rk (CY) “ri+ IogICiI]) . (11)  graphic component that defines the surface irregularities af-

k=1 fecting the bottom layer of the model. When the geometrical

layout of the two-layer QG model is mapped onto a plane,
it appears as shown in Fid. In the figure, parameters;

denotes the matrix determinant. The normalization “con- ;
. o and U, denote mean zonal flows in the top and the bottom
stants” of the likelihood terms depend érthrough the co- . .
atmospheric layers, respectively.

variancei,'f, and the determinant term therefore needs to be : . .
The model operates in terms of potential vorticity and

included. Note that the above likelihood is only an approxi- stream function, where the latter one is analogous to pres-

mation to the true likelihood (E(), and the accuracy of this : . . 2
S .~ sure. The assumption of quasi-geostrophic motion leads to a
approximation depends on how well the EKF assumptions

(linear model used in error propagation, model errorassumegoqp.led system of p_art|al differential equations (PDES) de-
independent of the state) are met. In practice, using the EK|§cr|b|ng a conservation law for potential vorticity, given as

likelihood in parameter estimation often yields good results;

see, for instanceSinger(2002, Hakkarainen et al(2012), Dig1 | Dag2
Mbalawata et al(2013 and the numerical examples of this p; — " py —
paper.

ward modeI,Cgit1 is the covariance estimate of the previous
time step an®y (#) is the parameterized model error covari-
ance matrix.

Now, applying the general formula (E@) to the EKF
case, the likelihood of observing daga,, given parameters
0 can be written as

n

wherery = y; — IC(x,’:) are the prediction residuals afd|

0, (12)
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Top layer Equation (5 can be treated as a non-homogeneous
e Helmholtz equation with negative parameteiFi + F2) and
) unknownV?2 ;. OnceV2y, is solved, the stream function
/\/\ for the top atmospheric layer is determined by a Poisson
equation. The stream function for the bottom layer can be
Bottom layer o found by plugging the obtained value fgr into Egs. (.3)
/ and (14) and by solving the equations fgr,. The potential
/ vorticity functionsg; are evolved over time by a numerical
advection procedure that models the conservation Eg). (
% For more details on the QG model, refer kisher et al.
(2011).
Figure 1. Geometrical layout of the two-layer quasi-geostrophic
model. 3.2 Experiment setup and results

We study the model error parameter estimation problem with
the QG model described above. In our experiments, we run
the model with a 26 40 grid in each layer, and the dimen-
sion of the state vector is thus 1600. To generate data, we run
the model with a 1 h time step with layer depths = 6000

and D, =4000. Data is generated at every 6th step (the as-
aéimilation step is thus 6 h) by adding random noise with a
given standard deviatiom, to a given number of randomly
chosen grid points. For the EKF estimation, bias is intro-

where D; denote the substantial derivatives for latitu-
dinal wind u; and longitudinal wind v;, defined as
D—i{=%+ui§—g+vi§—;. g; denote the potential vortic-
ity functions, and indexi specifies the top atmospheric
layer ( =1) and the bottom layeri & 2). Interaction be-
tween the layers, as well as the relation between the potenti
vorticity ¢; and the stream functiogt;, is modeled by the

following system of PDEs:

_ 2 duced to the forward model by using the wrong layer depths
1=V — F1(¥1—v2) + By, 13 - 2 y 9 g lay P

1 ) Y (13) D1 =5500 andD> =4500. To illustrate the model and the
q2=V"Y2—F2(Y2—y1) + By + R;. (14) observations, a snapshot of a single step of the EKF estima-

Here, R, and denote the dimensionless orography compo-tion is given in Fig.2. o _

nent and the northward gradient of the Coriolis parameter, Ve apply two different parameterizations fQ0), a sim-
which we hereafter denote gs. The relations between the PI€ diagonal parameterization and a more complicated one
model physical attributes and dimensionless parameters thé'i‘at includes horizontal and vertical correlations. First, we

appear in Eqs.1(3)—(14) are as follows: simply study how importa_nt the model error ter_m is in terms
of EKF accuracy, with various observation settings. We then
fer? féLz A6 test the filter likelihood computation for the two selected
Fi= ¢D1’ 2= gDy’ &= g?’ Q(#) matrices. As a validation metric, we use the rms error
S(x, y) L of the state estimates and the model predictions. The likeli-
Ry = Dy’ B= ﬁOU’ hood values and the validation metrics are computed using
separate “training data” and validation data.
where D1 and D; are the layer depthe\¢ defines the po- The filter likelihood approach attempts to find@) so

tential temperature change across the layer intertaiethe  that the model predictions fit the observations with the cor-
mean potential temperaturg,is the acceleration of gravity, rect accuracy (forecast erré¢rmeasurement error), and we
n= fOLL is the Rossby number associated with the definedtherefore expect this approach to yield reasonably good fore-
system, andb(x, y) and fo are dimensional representations cast error estimates as well, provided that the EKF assump-
of Rs(x, y) andB, respectively. tions are met. IrBolonen and Jarvinef2013, a similar es-

The system of Eqs1@)—(14) defines the two-layer quasi- timation technique was used to estimate the parameters of
geostrophic model. The state of the model, and thus the targef small-scale ensemble prediction system (EPS), and there
of the estimation, is the stream functigp. For the numerical  the approach produced a good representation of the forecast
solution of the system, we consider potential vorticity func- uncertainty. In order to verify the realism of the forecast er-
tionsga andgz to be known, and invert the spatial Eq$3)  ror covariance matrix in this setup, we compare the squared

and (14) for y;. More precisely, we applf? to Eq. 13),  mean variance of the forecast error covariance matrix against
and subtractF; times (Eq.14) and F» times (Eq.13) from the true rms forecast error.

the result, which yields the following equation:
V2| V2] - (Fu+ F2) | V29
= V2q1— F2(q1— By) — Fi(q2— By — Ry). (15)
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Figure 2. The true state (top-row panels) and the EKF estimate (bottom-row panels) for the bottom layer (left-column panels) and for the
top layer (right-column panels) in a 3040 grid for each layer using 50 randomly chosen observation locations (black dots). Filled contours
describe the potential vorticity, and line contours describe the stream function.

0

3.2.1 The effect of observations to model error is limited in this case; with large values for EKF still con-
calibration verges, and the state estimates are almost as accurate as with
the optimizedh.
When the observation error standard deviation is increased
PTrom o, =0.1to0, =1 (right panel), the situation changes.
Now the model error variance has a clearer impact on the

First, we study the relevance of the model error covarianc
matrix calibration by running EKF with various observation

settings and various levels for the model error. We vary theaccuracy of the filter, and substantial improvements in the

number of observations used for the estimation at each a%_ilter can be achieved by correctly choosing the model error
similation step (20, 50 and 100), and the observation error y y 9

standard deviatiorof, = 0.1 ando, = 1). As the model error covariance parameters.

. ; . . We conclude that the relevance of the model error calibra-
covariance matrix, we use the simplest possible parameter- . .
S . : tion depends on the quality of the observations. If we have
ization, Q = Al. For each observation setting, we run EKF

o i a large number of accurate observations available, the model
with different values for the model error variance ; ) .
- . error might not matter much. On the other hand, if the infor-
The results are shown in Fi§. One can see that with a

. ation of the observations is limited, the model error has to
large enough number of accurate enough observations (le .
L2 . e tuned accurately to make the filter work properly. From
panel, red curve), the model error calibration has very little

o the Bayesian perspective, this result is natural: if the obser-
effect on the accuracy of the filter;can vary many orders of : . ) .
. ; - . . vations do not identify the state properly, the prior has to be
magnitude without any significant difference in the rms er-

rors of the state estimates. Reducing the nhumber of observa%Ejnecj carefully to make the estimation work.

tions (left panel, black and green curves) makes the calibra-
tion of the model error slightly more meaningful, and there
seems to be an optimum value fothat yields the most ac-
curate EKF. Still, one can see that the benefit of optimizing
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3.2.2 Simple model error covariance matrix function (Eq.16) based on the samples. We plugged these
matrices into EKF and computed the rms errors for the val-

To test the likelihood calculation, we first test the simple di- idation period. The results obtained in this way are shown

agonal parameterizatid@ = 1. We compute the likelihood in the left part of Fig’5. Surprisingly, these matrices do not

from a training period of 100 assimilation steps, and computeyalidate that well in terms of filter accuracy. We believe that

the rms errors of the state estimates using a separate validghe reason is that EKF is an approximative filter — it uses

tion period of 100 steps. At each assimilation step, we useinearizations and assumes, for instance, that the model er-

100 observations with noise standard deviatigr=1. ror and state are independent — and the imperfections in the
In Fig. 4, we plot the negative log-likelihood values of the method can to some extent be compensated for by calibrating

training period to rms errors of the validation period. There isthe model error covariance matrix.

a clear correlation between the likelihood and the validation

rms error, maximizing the likelihood results in optimal filter 3.2.4 \Verification of the forecast error covariance

accuracy. matrix

3.2.3 More complicated model error covariance matrix ~ In order to verify the quality of the Kalman filter forecast
error covariance matrig} = M, C®4 M7 + Q,(9), the fol-

Next, we perform the same experiment as above, but use kwing two metrics are considered:

slightly more complicated covariance matrix parameteriza-

tion. We use a Gaussian covariance function WI'Fh three Pa5,. (k) = (x,'? — xlruey?, (17)
rameters, and for each layer, we define the covariance matrix
elements as 2
mo(k) = (ak) . (18)
2 2 _d(xi,x]-)z h . . ..
T°to"exp| —— 7| wheni =y The first metric is the true rms forecast error, where the fore-
Qij = ) i)’ (16)  castx?! is calculated from the previous Kalman filter esti-
o exp(—#) wheni # j, mate. The second metric is the squared mean variance of the

forecast error covariance matrix. The mean in both cases is

where d(x;,x;) denotes the distance between two grid calculated over the 1600-dimensional state space.
points, o2 > 0 is the variance parameter,> 0 is the cor- In Fig. 6, we plot these two metrics using five different
relation length, and2 > 0 is a small positive nugget term parameter combinations and the “true” model error covari-
that ensures that the matrix is positive definite. In addi-ance matrix (obtained via samples of the model error; see
tion, we estimate the vertical correlatipre [0, 1] between  Sect.3.2.3. For the parameter combinations, we selected
the two layers. We thus have four parameters altogetherthe points that give the best and worst cost function values,
0= (72 02 a,p). and the points that correspond to the three quartile points of
We test randomly chosen parameter values uniformlythe cost function values (indicated by Q1, median and Q3 in
in the intervalso? €[0, 0.05], « €[0, 10], p€[0, 1] and  Fig.6).
2 €0, 0.01]. For each parameter combination, we compute From Fig.6, we can observe that, using the best cost func-
the likelihood values and rms errors for validation. The re-tion point, the two metrics give a similar mean error level,
sults are shown in Figb (left panel). Again, we see a clear showing that — on average — the Kalman filter forecast er-
correlation between the likelihood values and the rms errorsfor (co)variance is realistic. This observation is also valid for
maximizing the likelihood results in an accurate EKF. To val- the other points for which the cost function value is close to
idate the results further, we compute the rms errors of fore2 minimum (grey lines in Fig6). For the other parameter
casts launched from the EKF state estimates with differencombinations, we observe that the estimated and true fore-
model error covariance matrix parameters. The results ar€ast errors do not match: the forecast error is overestimated,
shown in Fig 5 (right panel). One can see that the parametersand the difference grows gradually when going towards the
with a high likelihood also validate well in terms of forecast Worst parameter combination. The “true” model error covari-
skill. ance matrix, on the other hand, underestimates the forecast
In a synthetic case, such as here, we know the truth be(co)variance, which is anticipated, as it does not take into ac-
hind the observations, and we can compute “samples” of th&ount the imperfections of the EKF method discussed earlier.
model error by running the truth model and the biased fore- The validation here was done using the more complicated
cast model, starting from the same initial value and collectingmodel error parameterization (E46). We note that if met-
the differences. This allows us to estimate the “true” modelrics m1 andm; are calculated using the simple diagonal co-
error covariance matrix. We estimated the covariance fromvariance matrixQ = 1, too low (high). values give on av-
2000 samples of the error in two ways: first, we computed theerage too low (high) forecast error (co)variance, as expected.
full matrix directly with the empirical covariance estimation Near the optimum, the level of the forecast error covariance
formula, and then estimated the parameters of the covarianc@atrix is realistic (not shown).
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Figure 3. Model error variances vs. average rms errors of the state estimates with a varying number of observations and observation errors
oy =0.1 (left panel) andy =1 (right panel).
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information the observations contain about the model state,
the more carefully the prior, a part of whi€d is, needs to

be tuned. On the other hand, if we have enough accurate
observations, accurate optimization @fmight not be that
beneficial. Secondly, we conclude that the filter likelihood
approach works well in our test cases; maximizing the likeli-
hood results in accurate EKF in terms of the rms errors of the
state estimates and model predictions. In addition, the points
that give a high likelihood validate well in terms of the qual-
ity of the forecast error estimates.

Our experiments in this paper are synthetic in the sense
that we generate observations with the “true model” and in-
troduce bias into the model that is used for estimation. In
such a case, one can estimate the “true” model error by run-
ning predictions with the truth model and the biased fore-
cast model, and collecting the differences between the pre-
dictions. Our experiments suggest that the model error ob-

Figure 4. Negative log likelihood of the training data vs. the average {5ined in this way is not optimal in terms of filter accuracy.

rms error of the filter with the validation data. Colors indicate the

logarithm of the model error varianée

4 Discussion and conclusions

A reason might be that the model error can be used to ac-
count for approximations and assumptions made in the filter-
ing method. The consequence is that each filtering method
should be tuned separately: tRethat works best in EKF
might not be optimal for other filtering methods.

In this paper, we consider the problem of calibrating the [N this paper, the focus was on the extended Kalman fil-
model error covariance matri® in extended Kalman fil- ter- However, similar model error parameters appear in many
tering (EKF). The matrixQ is commonly seen as a tuning other data assimilation methods as well, like, for instance, in
parameter in EKF, and is often postulated by the user in af€ Weak-constraint 4D-VaF(sher et al.2003 and ensem-
ad hoc manner. We study a technique for objectively estimatPle Kalman filters Evensen2007). In many so-called en-
ing the parameters of a parametric version of the matrix, Semble square root Kalman filterSi§pett et al, 2003, the
Q(8), based on indirect and noisy observations of the modefmodel error is neglected, but covariance mflatl(_)n te_chnlques
state. The approach is based on approximating the likelinoo@'® used to account for the resulting underestimation of the
of the parameterg using the EKF output. This “filter likeli- ~ Uncertainty. We note that the parameters related to covariance
hood” method is tested with the two-layer quasi-geostrophicinflation can also be tuned with the presented approach, as
model that is often used as a benchmark case in numericg@menstrated itfakkarainen et ak2013. A problem with
weather prediction studies. some ensemble methods is that they contain random per-
One of our findings is that the relevance of the calibrationturbations, which can complicate the optimization process,

of Q depends on the quality of the observations. The less

www.nonlin-processes-geophys.net/21/919/2014/ Nonlin. Processes Geophys., 2199792014
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Figure 5. Left panel: negative log likelihood of the training data vs. the average rms error of the filter with the validation data. Right panel:
the average forecast rms errors with different covariance matrix parameters. Red and blue colors indicate the results acquired with the full and
parametrized “true” model error covariance matrices, respectively. The black line indicates the forecast skill acquired with the parameters
that give the smallest negative log likelihood. Dashed vertical lines indicate climatological forecast skill and error saturation level.
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Figure 6. The true forecast error vs. the Kalman filter forecast error, calculated using different parameter combinations, and the “true”
model error covariance matrix obtained from samples of model error. Dashed lines indicate the true rms forecast error and solid lines the
squared mean variance of the forecast error covariance matrix. In the first subplot, the latter metric is also calculated from points that give
the ten lowest cost function values (grey lines). The subplots Q1, median and Q3 give the results for parameter values that correspond to the
three quartiles of the cost function values. Note the difference in scale in each subplot.
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since the likelihood is stochastic, as notedHimkkarainen et Fisher, M., Leutbecher, M., and Kelly, G.: On the equivalence be-

al. (2012 andDowd (2011). tween Kalman smoothing and weak-constraint four-dimensional
Here, we simply confirm that the likelihood approach variational data assimilation, Q. J. Roy. Meteorol. Soc., 131,

works for calibrating the model error, and do not consider al-  3235-3246, dot0.1256/q).04.1422005. _

gorithms for maximizing or exploring the likelihood surface. Fisher. M., Tremolet, Y., Auvinen, H., Tan, D., and Poli, P.: Weak-

A suitable method is case dependent. For simple models, constraintand long window 4DVAR, Technical Report 655, Eu-

standard optimization or, for instance, Markov chain Monte ropean Centre for Medium-Range Weather Forecasts, Reading,

- . - . UK, 2011.
Carlo algorithms, are available. If the model is computation- .y arainen. J.. 1lin, A., Solonen, A., Laine, M., Haario, H., Tam-

ally expensive, one needs an efficient method to explore the inen J.. Oja, E., and Jarvinen, H.: On closure parameter esti-
Surface W|th as feW I|kel|h00d eVaIUationS as possible. For mation in chaotic Systems’ Nonlin. Processes Geophysll 19, 127—
instance, methods that apply empirical approximations (or 143, doi10.5194/npg-19-127-2012012.
“emulators”) of the likelihood surface seem promising here; Hakkarainen, J., Solonen, A., llin, A., Susiluoto, J., Laine, M.,
see, e.g.Rasmusse2003. These topics are left for future Haario, H., and Jarvinen, H.: The dilemma on the uniqueness
research. of weather and climate model closure parameters, Tellus A, 65,
20147, doi10.3402/tellusa.v65i0.20142013.
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