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Abstract. Permeability of a hydrocarbon reservoir is usually
estimated from core samples in the laboratory or from well
test data provided by the industry. However, such data is very
sparse and as such it takes longer to generate that. Thus, esti-
mation of permeability directly from available porosity logs
could be an alternative and far easier approach. In this pa-
per, a method of permeability estimation is proposed for a
sandstone reservoir, which considers fractal behavior of pore
size distribution and tortuosity of capillary pathways to per-
form Monte Carlo simulations. In this method, we consider
a reservoir to be a mono-dispersed medium to avoid effects
of micro-porosity. The method is applied to porosity logs
obtained from Ankleshwar oil field, situated in the Cambay
basin, India, to calculate permeability distribution in a well.
Computed permeability values are in good agreement with
the observed permeability obtained from well test data. We
also studied variation of permeability with different parame-
ters such as tortuosity fractal dimension (Dt), grain size (r)
and minimum particle size (d0), and found that permeability
is highly dependent upon the grain size. This method will be
extremely useful for permeability estimation, if the average
grain size of the reservoir rock is known.

1 Introduction

Permeability is one of the important parameters that govern
production of hydrocarbons from reservoirs. As we know,
fluid flow in reservoirs depends upon permeability, and in
the case of multiple phases of hydrocarbons, it is relative
permeability that governs the fluid flow. Estimation of the
permeability of a geological medium is a difficult job, as
it varies over several orders of magnitude, even for a sin-
gle rock such as sandstone (Clauser, 1992; Nelson, 1994;

Dimri et al., 2012). In the literature many empirical relations
are available for computation of permeability from poros-
ity (Kozeny, 1927; Carman, 1956; Pape et al., 1999). These
empirical relations define the porosity–permeability relation-
ship in terms of correlation coefficients without addressing
the real physical situation existing in a porous medium. The
newly developed nuclear magnetic resonance tool can be
used to estimate reliable permeability, but it is very new and
still not included in the commonly recorded log suite. In gen-
eral, permeability is estimated from effective porosity. How-
ever, even for a given effective porosity, permeability will
be different for different rock types. This is because in addi-
tion to porosity, permeability depends upon textural param-
eters such as grain size, grain shape and sorting of grains.
These textural parameters affect the tortuous nature of cap-
illary pathways and the arrangement of pores in the porous
medium, thereby making it more complex to understand. The
concept of fractals is useful for solving many complex prob-
lems in the earth sciences (Dimri, 2005; Dimri et al., 2005;
Dimri et al., 2012; Vedanti and Dimri, 2003; Vedanti et al.,
2011; Srivastava and Sen, 2010, etc.) and fractals have also
been useful for explaining the complex nature of porous me-
dia (Adler and Thovert, 1993; Dimri, 2000a, b; Feranie and
Latief, 2013; Katz and Thompson, 1985; Krohn and Thomp-
son, 1986; Pape et al., 1999; Smidt and Monro, 1998; Young
and Crawford, 1991; Yu and Li, 2001, etc.). There are nu-
merous examples that present the application of fractal ge-
ometry to analyze porous media. Sahimi and Yortsos (1990)
presented a review of the general classes of application of
fractal geometry to porous media. Without involving any em-
pirical constants, Pitchumani and Ramakrishnan (1999) ex-
pressed permeability in terms of two fractal dimensions: one
describes the size distribution of capillary pathways and the
other describes the tortuosity of the capillary pathways. Yu
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and Li (2001) deduced a unified model for describing the
fractal character of porous media and proposed a criterion to
determine whether a porous medium can be characterized by
fractal theory and technique or not. An analytical expression
for the permeability of a fractal bi-dispersed porous medium
was developed by Yu and Cheng (2002). However, if a porous
medium is a multiscale or scale-dependent fractal medium,
analytical expression may not give accurate results. To over-
come this issue, Yu et al. (2005) proposed the Monte Carlo
technique to simulate the permeability of fractal porous me-
dia. Yu and Li (2004) derived analytical expressions of the
fractal dimensions for wetting and non-wetting phases for
unsaturated porous media. Liu and Yu (2007) established a
fractal relative permeability model that takes into account the
capillary pressure difference effect in the case of unsaturated
porous media. Yu (2008) reviewed the theories and achieve-
ments in the field of application of fractal geometry to un-
derstand flow in porous media. Xu and Yu (2008) derived an
expression for the Kozeny–Carman constant by using the an-
alytical formula of permeability. The Monte Carlo simulation
technique is used by Xu et al. (2012) to estimate relative per-
meability. A fractal model for capillary pressure is obtained
by Xiao and Chen (2013). Xu et al. (2013a) used fractal the-
ory and the Monte Carlo simulation technique to develop a
probability model for radial flow in fractured porous media.
Analytical expressions for relative permeabilities of wetting
and non-wetting phases are presented by Xu et al. (2013b).
The innovative work presented by Yu et al. (2005) assumed a
model in which a porous medium consists of a set/bundle of
parallel and tortuous capillaries with uniform diameter and
obtained probability model for pore diameter and permeabil-
ity. The probability model comprehends the fractal nature of
pore size distribution and tortuous capillaries. The overall ap-
proach consists of simulating random pore size distribution
to calculate flow rate from the Hagen–Poiseuille equation
(Denn, 1980) and then, by using Darcy’s law (Darcy, 1856),
an expression for permeability is obtained. This fractal-based
method was applied to estimate the permeability of a sintered
copper bi-dispersed porous medium to solve a heat transport
problem (Yu et al., 2005).

The estimation of the permeability of a hydrocarbon reser-
voir is one of the important goals of reservoir geophysicists.
In the present work, a fractal-based Monte Carlo simulation
approach is applied for the first time to estimate the perme-
ability of the Ankleshwar sandstone hydrocarbon reservoir,
situated in the Cambay basin, India. The reservoir formation
consists mainly of alternate layers of sandstone and shale. As
we know that sandstones and shales are porous fractal me-
dia (Katz and Thomson, 1985; Krohn and Thompson, 1986;
Krohn, 1988b; Sahimi, 2011), we performed Monte Carlo
simulations based on the fractal nature of pore size distri-
bution in porous media of the reservoir. We assumed the
reservoir as a mono-dispersed porous medium to study the
effect of macro-porosity on permeability. A mono-dispersed
porous medium considers only macro-pores formed between

the grains and ignores micro-pores inside the clusters, which
do not contribute towards macro-porosity.

1.1 Fractal description of pore structures

A porous medium consists of tortuous capillary pathways.
The tortuous length of these capillary pathways follows the
fractal/scaling law. The scaling relationship for capillary
length in heterogeneous porous media is given byLt (ε) =

ε1−DtL
Dt
0 , whereε, Lt andL0 are the scale of measurement,

tortuous length and characteristic (straight) length, respec-
tively andDt is the tortuosity fractal dimension (Wheatcraft
and Tyler, 1988). Yu and Cheng (2002) considered pore di-
ameter (λ) as the scale of measurement. Thus, the smaller the
diameter, the longer the capillary and scaling law that can be
given as

Lt (λ) = λ1−DtL
Dt
0 , (1)

where 1< Dt < 2, representing the extent of convolutedness
of capillary pathways for fluid flow through a medium. The
higher the value ofDt, the more the convolutedness or tortu-
osity. The limiting values ofDt = 1 andDt = 2 correspond
respectively to a straight capillary and a highly tortuous line
that fills a plane (Wheatcraft and Tyler, 1988).

A porous medium consists of a large number of pores of
varying pore diameters that intersect the pore cross sections.
The size distribution of pore diameters is another important
property. This distribution is analogous to cumulative size
distribution of islands on the Earth’s surface, which follows
the fractal scaling law (Mandelbrot, 1982; Majumdar and
Bhushan, 1990). Pitchumani and Ramakrishnan (1999) and
Yu and Cheng (2002) have established a fractal scaling law to
describe the distribution of pores in a porous medium, which
is given as:

N (L ≥ λ) =

(
λmax

λ

)Df

, (2)

whereN is the number of pores with diameter (L) greater
than or equal toλ, Df the pore area dimension, with 1< Df <

2, representing the fractal dimension of the intersecting pore
cross sections with a plane normal to the flow direction. It is
evident from Eq. (2) that whenλ approaches maximum pore
size,λmax, the number of pores greater than or equal toλmax
is one. Conversely, whenλ approaches smallest pore size,
λmin, the numbers of pores are maximum, and the scaling
law becomes

Nt (L ≥λmin) =

(
λmax

λmin

)Df

, (3)

whereNt is the total number of pores.
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Based on these fractal scaling laws, Yu et al. (2005) ob-
tained probability expressions for pore diameter and perme-
ability in terms of pore diameter as given below:

λi =

(
λmin

λmax

)
λmax

(1−Ri)
1/Df

(4)

K = GA
−(1+Dt)/2

J∑
i=1

λ
3+Dt
i , (5)

where(
λmin

λmax

)
=

√
2

d+

√
1−φe

1−φc
(6)

λmax =
Rc

2

[√
2

(
1−φc

1−φe
−1

)
+

√(
2π
√

3

)(
1−φc

1−φe

)
−2

]
.

(7)

In the case of a bi-dispersed porous medium, effective
porosity is given by Yu and Cheng (2002) as below.

φe =

(
A − πR2

c/2
)
+φcπR2

c/2

A
, (8)

where φe= effective porosity,φc = micro-porosity inside
cluster,Rc = cluster mean radius,d+

= ratio of cluster mean
diameter to the minimum particle size (d0), λi = diameter
of the ith capillary tube chosen by the Monte Carlo sim-
ulation, A = total cross-sectional area of a unit cell, and
G = geometry factor for flow through a circular capillary.

In a bi-dispersed porous medium, small particles form
clusters. The spaces between clusters form macro-pores and
within the cluster micro-pores exist.

2 Geology of Ankleshwar oil field, Cambay basin

Ankleshwar oil field lies in the western part of the Cambay
basin, India (Fig. 1). The field is doubly plunging anticline,
trending ENE–WSW. It has a multi-layered sandstone reser-
voir of deltaic origin. Ankleshwar formation, which was de-
posited during the marine regression phase during the Up-
per to Middle Eocene (Holloway et al., 2007) is the major
stratigraphic unit in the field. The formation consists of four
sub-lithological units, viz., Telwa shale (effective seal), Ar-
dol, Kanwa shale and Hazad members from top to bottom
(Fig. 5). A Hazad member is an important reservoir sand-
stone; however, it contains shale laminae. The Ardol section
comprises sand-shale alterations. The Ankleshwar formation
is overlain by the Dadhar formation and underlain by Cam-
bay shale, which is the source rock.

Fig. 1. Location of the Cambay basin and its oil and gas fields
(after www.spgindia.org/paper/sopt_2313/tmp_2313). Ankleshwar
field is highlighted by the ellipse in the figure.

Table 1.Gamma ray values adopted to discriminate pure sand, pure
shale and shaly sand.

lithology Gamma ray value (API)

pure sand <3̇5
pure shale > 65
shaly sand ≥ 35 or≤65

3 Methodology

3.1 Estimation of porosity from density log

Porosity is derived from density log using the following
equation:

φ =
ρb−ρm

ρf−ρm
, (9)

whereρb = bulk density of the formation,ρm = density of
the rock matrix,ρf = density of the fluids occupying the
porosity, andφ = porosity of the rock.

In Eq. (9) the value ofρm is taken as 2.65 g cm−3, which
is the default density of quartz grains, and the value ofρf is
taken as 1.1 g cm−3, which is the default density of saline wa-
ter. Equation (9) corresponds to porosity of pure sandstone.
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Table 2. Estimated permeability (K) for a range of porosities and
for different values of grain radius (r), minimum particle size (d0),
tortuosity fractal dimension (Dt) and pore area fractal dimension
(Df).

S.NO. r (mm) d0 (µm) Dt Df

K (mD)

porosity (%)

15 20 25 30

1 0.1 1 1.8 1.7 233 312 368 412
2 0.05 1 1.8 1.65 90 210 260 301
3 0.05 2 1.8 1.58 119 265 345 375
4 0.05 1 1.6 1.65 130 257 312 351

Thus, to discriminate between pure sand, pure shale and
shaly-sand intervals in the well, the criteria shown in Table 1
were adopted. We know that shale is more porous than sand-
stone, but pores are not interconnected, and hence cannot per-
meate fluid. Hence, to find effective or interconnected poros-
ity of shaly-sand intervals, bulk density (ρb) is corrected for
shale volume using Eq. (10), which is given as:

(ρb)corr = (ρb)clean(1−Vsh)+(ρb)shaleVsh, (10)

where(ρb)corr= corrected bulk density of the shaly lithol-
ogy, (ρb)clean= bulk density of clean sand stone formation,
(ρb)shale= bulk density of pure shale, andVsh= shale vol-
ume, which is calculated from the gamma-ray log using the
Dresser tertiary equation.

The values of (ρb)clean and (ρb)shale are 2.19 g cm−3 and
2.36 g cm−3, respectively, which are selected from depth in-
tervals 1150 m to 1158 m and 1184 m to 1194 m, respectively,
in the log. The corrected value of density is then used in
Eq. (9) to obtain effective porosity of shaly-sand intervals,
which is given as:

φe =
(ρb)corr−ρm

ρf−ρm
. (11)

In shaly-sand intervals clay minerals occupy pores or they
cover the sand grains, thereby forming micro-pores and in-
troducing micro-porosity (φc), which is the porosity below
which there is no permeating flow (the percolation threshold)
(Nabovati et al., 2009). In such cases, in place of effective
porosity, useful porosity (φuse) (http://www.spec2000.net)
can be used, which is given as:

φuse= φe−φc (12)

φc = φe× C, (13)

whereC is a constant that can be obtained from shale vol-
ume, as shown below:

C =
Vsh

(Vsh+Vsand)
(14)

Vsand= 1− (Vsh+φe). (15)

Table 3. The observed average useful porosity, observed average
reservoir permeability (kresvr), calculated average useful porosity
of reservoir intervals and estimated grain radius for different sand
layers in the formation.

Sand Kresvr (mD) φuse Average ofφuseof rsand
name (Observed) (Observed) reservoir intervals (mm)

(Calculated)

S1 152 22.8 24.9 0.059
S2 387 24 26.8 0.119
S3 409 24 25.3 0.123
S4 311 23.7 – 0.109
S5 191 25 24.3 0.078
S6 224 26 23.5 0.078
S7 384 24.5 26.2 0.114
S8 214 19 19.7 0.134

Here, we assume that permeability estimation by using
useful porosity is a more efficient way, as in this case the con-
tribution of micro-porosity to permeability becomes negligi-
ble. In the present work, a well W1 drilled in the Ankleshwar
sandstone reservoir cutting across the Telwa, Ardol, Kanwa,
Hazad and Cambay lithological units is used for the analysis.
The Hazad and Ardol sections of the reservoir are divided
into eight sand layers, which are named S1 to S8. Intervals of
these sand layers with useful porosity greater than 15 % are
considered as reservoir intervals. The average useful poros-
ity obtained from the reservoir intervals for each sand layer
is given in Table 3. The calculated useful porosity of differ-
ent sand layers matches with the information given by the
operator in this well.

3.2 Monte Carlo simulations for prediction
of permeability

Monte Carlo simulation is a random search method, widely
used in geophysics, using generation of random numbers
(Dimri, 1992). The method allows the generation of many
possible models. In the present work, the method suggested
by Yu et al. (2005) is applied to the Ankleshwar sandstone
reservoir, where micro-pores are formed by pore-filling ma-
terial (clays) or exist as intra-granular pores (Krohn, 1988a).

The permeability contribution by these micro-pores is neg-
ligible (Yu and Lee, 2000; Nimmo, 2004; Loucks, 2005).
Hence, as discussed above, it is more appropriate to run the
simulations with macro-porosity orφuse. After removal of
micro-porosity, clusters become solid grains; hence instead
of cluster mean radius, grain radius (r) can be used. In this
case Eq. (8) becomes:

φuse=

(
A − πr2/2

)
A

. (16)

The flow chart to implement the method is shown in Fig. 2
and the algorithm for determination of the permeability from
macro-porosity is given in Appendix A.
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Fig. 2. Flow chart to apply the Monte Carlo simulation technique
for permeability estimation.

3.3 Variation of permeability with tortuosity fractal
dimension (Dt), and average grain radius (r) and
minimum particle size (d0)

Monte Carlo simulations are run for different values of grain
radius, tortuosity fractal dimension and minimum particle
size to understand permeability variation with these parame-
ters. The mean value of increment in permeability for a small
variation in grain radius from 0.05 mm to 0.1 mm is 38 %,
as shown in Fig. 3a (whenDt = 1.8 andd0 = 1 µm). Simi-
larly, whenDt = 1.8 andr = 0.05 mm, the minimum particle
size (d0) is increased from 1 µm to 2 µm, then permeability
is increased by 22 %, as shown in Fig. 3b. Next, whenDt
is increased from 1.6 to 1.8 by consideringd0 = 1 µm and
r = 0.05 mm, permeability is reduced by 20 %, as shown in
Fig. 3c. In each caseDf is calculated from Eq. (A4). The es-
timated permeability for different values ofr, Dt, d0 andDf
is given in Table 2. This analysis suggests that permeability
is more sensitive to change in grain radius thanDt andd0.

(a)

(b)

(c)

Fig. 3. (a), (b) and(c), respectively shows permeability variations
with grain radius (r), minimum particle size (d0) and tortuosity frac-
tal dimension (Dt). Permeability decreases with an increase inDt
and increases with an increase inr andd0. The variation in perme-
ability is more sensitive to changes in grain radius.

www.nonlin-processes-geophys.net/21/9/2014/ Nonlin. Processes Geophys., 21, 9–18, 2014
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Table 4. Average values of reservoir permeability in each layer estimated for different values ofDt andd0 and from the Kozeny–Carman
equation. For each estimated set the RMS error with respect to observed average reservoir permeability is given.

Calculated permeability (K) in mD
RMS error

w.r.t. Observed
Sand name S1 S2 S3 S5 S6 S7 S8

Dt = 1.75 andd0 = 1 µm 276 405 404 288 272 388 322 74.6
Dt = 1.75 andd0 = 1.5 µm 297 435 440 313 292 420 351 95.5
Dt = 1.75 andd0 = 2 µm 326 479 482 342 320 459 406 130.1
Dt = 1.8 andd0 = 1 µm 248 367 365 261 243 354 294 58.7
Dt = 1.8 andd0 = 1.5 µm 267 395 398 281 262 382 326 71.2
Dt = 1.8 andd0 = 2 µm 301 437 441 314 293 422 357 98.2
Dt = 1.85 andd0 = 1 µm 238 357 359 250 234 345 278 53.4
Dt = 1.85 andd0 = 1.5 µm 259 384 389 271 256 368 324 67.2
Dt = 1.85 andd0 = 2 µm 292 425 429 303 285 414 352 90.6
Dt = 1.87 andd0 = 1 µm 240 355 354 247 231 340 274 54.13
Dt = 1.87 andd0 = 1.5 µm 259 378 383 271 254 362 304 63.3
Dt = 1.87 andd0 = 2 µm 284 417 429 297 277 406 343 84.4
Kozeny–Carman equation 123 430 152 167 648 546 113 119.6

Fig. 4. Permeability versus porosity plot for well (W1). Calcu-
lated average reservoir permeability (circles) falls in the range of
observed average reservoir permeability values (stars). Sand layer
names (S1 to S8) annotated to the data points clearly show the
amount of deviation from predicted permeability with respect to the
corresponding observed value.

3.4 Estimation of grain radius

Sand grains in different reservoir layers can have different
radii. Mavko and Nur (1997) incorporated micro-porosity
into the Kozeny–Carman equation, which we used to com-
pute the distinct grain radius of reservoir layers and the equa-
tion is given below:

r =

√
72τ2K

(1+φc−φe)

(φe−φc)
3
2

. (17)

Equation (17) is based on the assumption that formation is
made up of spherical grains of uniform diameter.

However, we have assumed that the observed average
reservoir permeability and average porosity pairs as shown
in Table 3, available from well test data, are those of pure
sandstone layers because the reservoir consists of a negligi-
ble amount of shale. In this caseφc is zero,φe is equal toφuse
and thus in this case grain radius,r will becomersand, which
is the radius of sand grains and can be given as

rsand=
√

72τ2Kresvr
(1−φuse)

(φuse)
3/2

, (18)

whereKresvr is the observed average reservoir permeability.
In Eq. (18) tortuosity (τ) is unknown. The average grain

radius of theS1 andS3 layers measured from core samples
in nearby wells is 0.069 mm and 0.142 mm, respectively (R.
Sharma, personal communication, 2012). Thus, using known
grain radii, the average value ofτ is estimated as 6.99. For
other sand layers (S2, S4 to S8), rsand is estimated from
Eq. (18) and the values are given in Table 3. However, in
case of shaly-sand intervals, the effective grain radius (reff)

is calculated using a weighted average formula using volume
fractions as the weights, which is given as

reff =

(
d0
2

)
Vsh+(rsand)Vsand

Vsh+Vsand
. (19)

3.5 Assigning the values to tortuosity fractal dimension
(Dt) and minimum particle size (d0)

In order to select the values ofDt andd0, simulations are
run for several values (1.75, 1.8, 1.85 and 1.87) ofDt and
three different values (1.0 µm, 1.5 µm, 2.0 µm) ofd0, with
φuse (Fig. 5) andDf (Eq. A4) as the known inputs. Since
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Fig. 5. Well logs of well (W1). Pure sandstone (< 35 API) and shale (> 65 API) are colored in red and blue on the gamma ray curve,
respectively. Pink color bars and green color bars represent pure sandstone and shaly sand (≥ 35 API or≤ 65 API), respectively. The zone
highlighted by rectangles corresponds to a pure sandstone interval in the S3 layer that shows the highest permeability (409 mD), which
matches with the observed value.

litholog given by the operator shows the presence of clay in
all the formations, we assumed minimum particle size (d0)

of clay grade, which are defined as the grains with 1 to 2 µm
diameters. As we know that permeability decreases with an
increase inDt (Fig. 3c) and observed reservoir permeability
values are low, we chose higher values ofDt for the analy-
sis. For all possible pairs ofDt andd0,, permeability of all
the sand layers is calculated. In each sand layer the average
of useful porosity and permeability over all the reservoir in-
tervals (Table 4) is calculated and compared with the cor-
responding observed average porosity and average reservoir
permeability available from well tests (Table 3).

Root mean square error (RMSE) between calculated and
observed values is measured for each pair ofDt andd0.

4 Results and discussions

The calculated average reservoir permeability of each sand
layer for all the pairs ofDt and d0 and the corresponding
RMS error are given in Table 4. It is clear from Table 4 that
Dt = 1.85 andd0 = 1 µm give the least value of the RMS er-
ror, which is 53.4 mD. The mean value ofDf for all sand
layers, calculated from Eq. (A4), is 1.67. The RMS error
between observed and calculated porosity is 1.8 %. Perme-
ability of all sand layers is also calculated from the Kozeny–
Carman equation (Eq. 17) by replacingφe−φc with φuseand
“r” with reff. In this case the RMS error between calculated
and observed values is 119.6 mD (Table 4).

The values of tortuosity fractal dimension, minimum par-
ticle size and pore area fractal dimension used to calculate
the permeability log in the Ankleshwar formation are 1.85,
1 µm and 1.67, respectively. The calculated reservoir perme-
ability versus observed reservoir permeability plot is shown
in Fig. 4. The blocked logs of volume of sand, volume of

www.nonlin-processes-geophys.net/21/9/2014/ Nonlin. Processes Geophys., 21, 9–18, 2014
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shale, effective porosity, critical porosity, useful porosity and
permeability are shown in Fig. 5. The highest value of per-
meability (409 mD) is obtained for reservoir zone S3, which
is highlighted by rectangles in Fig. 5. This value exactly
matches with the observed permeability of the S3 layer ob-
tained from well test data. For the S4 sand layer, the calcu-
lated value of permeability (27 mD) is very close to the ob-
served non-reservoir permeability (23 mD) provided by the
operator.

The permeability of each sand layer in the Ankleshwar
formation is estimated with the confirmed set of fractal di-
mensions, minimum particle size and estimated grain radius.
Figure 4 clearly shows that, for most of the sand layers, the
error between calculated and observed permeability does not
exceed 50 mD, except in the case of the S1 sand layer, where
the error is 86 mD. As we know, permeability obtained from
well test data corresponds to a larger area in reservoir; how-
ever, permeability obtained by logs represents a smaller area
around the well. This may also result in a mismatch between
observed and calculated permeabilities. Another reason for
the difference between observed and calculated permeabili-
ties can be grain size, which is a very important parameter.

Since most of the evaluated permeability values match
with the corresponding observed values within acceptable
error range, the estimated values ofDt andd0 are reliable.
From Fig. 5 it is obvious that porosity and permeability logs
clearly discriminate pure sand, shaly sand and shale intervals,
with higher values for pure sand, lower values for shaly sand
and lowest values for shale. In the present well, S4 sand hav-
ing very low permeability (27 mD) is non-reservoir, which
is because of silt stone present in this interval (according to
the litholog given by the operator). The Kanwa interval is de-
fined as shale according to general geology; however, in the
present well, according to the litholog given by the operator,
a small amount of sandstone present in this interval reduces
gamma-ray readings and thus this interval is shaly sand. It
is obvious from the RMS error values given in Table 4 that
Monte Carlo simulations give better results than the Kozeny–
Carman equation.

Thus, by considering a mono-dispersed porous medium
and modifying the method given by Yu et al. (2005), we
could develop a methodology for estimation of reservoir per-
meability without using any empirical constant. The flow
chart of the modified algorithm is also presented.

5 Conclusions

We found that accurate permeability estimation requires a
good control of grain radius. In the major pay zone of the
reservoir, the calculated permeability value (409 mD) exactly
matches with the observed permeability value provided by
the operator. In other sand layers, the difference between
calculated and observed average reservoir permeability is
±50 mD, which is acceptable in this case.

Thus, in the absence of well test data or laboratory mea-
surements, this method can be used to obtain first-hand in-
formation on reservoir permeability. Using this method, we
can obtain continuous permeability distribution in reservoirs
if porosity distribution from seismic data is known.

Appendix A

1. Determine useful porosity (φuse) or macro-porosity
(from Eq. 12).

2. Find λmin
λmax

, λmax and the total areaA of a unit cell.(
λmin

λmax

)
=

√
2

d+

√
1−φuse (A1)

λmax = (A2)

r

2

[√
2

(
1

1−φuse
−1

)
+

√(
2π
√

3

)(
1

1−φuse

)
−2

]

A =
1

2
πr2 1

1−φuse
(A3)

3. Find pore area fractal dimensionDf from the box-
counting method or the formula (modified after Yu and
Lee, 2001) given below:

Df= d−
lnφuse

ln
(

λmin
λmax

) , (A4)

whered is Euclidian dimension.

4. Produce a random numberRi between 0 and 1 by the
Monte Carlo method.

5. Calculateλi .

λi =

(
λmin

λmax

)
λmax

(1−Ri)
1/Df

(A5)

6. If λi > λmax, return to step 4, otherwise continue to the
next step.

7. Find the total pore areaAp and total areaAJ of a unit
cell, using the following equations.

Ap =

J∑
i=1

πλ2
i /4 withJ =Nt (A6)

Nt (L ≥λmin) =

(
λmax

λmin

)Df

(A7)

AJ = Ap
/
φuse

(A8)

8. Check the convergence criterion,AJ > A; if not satis-
fied, return to step 4.
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9. Whenever convergence criterion is satisfied, calcu-
late the permeabilityK (with Dt measured from the
box-counting method or using the method given in
Sect. 3.5).

K = GA
−(1+Dt)/2

J∑
i=1

λ
3+Dt
i (A9)

10. Repeat the procedure forN number of times (say
N = 1000) to getN values of permeability and take
the mean to compute the final value of permeability.

11. Check the criterion,Kmin < K < Kmax, if not satisfied
return to step 4 (where,Kmin andKmax are acceptable
minimum and maximum reservoir permeabilities re-
spectively).
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