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Abstract. One challenge of geophysical data assimilation is
to address the issue of non-Gaussianities in the distributions
of the physical variables ensuing, in many cases, from non-
linear dynamical models. Non-Gaussian ensemble analysis
methods fall into two categories, those remapping the ensem-
ble particles by approximating the best linear unbiased esti-
mate, for example, the ensemble Kalman filter (EnKF), and
those resampling the particles by directly applying Bayes’
rule, like particle filters. In this article, it is suggested that the
most common remapping methods can only handle weakly
non-Gaussian distributions, while the others suffer from sam-
pling issues. In between those two categories, a new remap-
ping method directly applying Bayes’ rule, the multivari-
ate rank histogram filter (MRHF), is introduced as an ex-
tension of the rank histogram filter (RHF) first introduced
by Anderson(2010). Its performance is evaluated and com-
pared with several data assimilation methods, on different
levels of non-Gaussianity with the Lorenz 63 model. The
method’s behavior is then illustrated on a simple density esti-
mation problem using ensemble simulations from a coupled
physical–biogeochemical model of the North Atlantic ocean.
The MRHF performs well with low-dimensional systems in
strongly non-Gaussian regimes.

1 Introduction

The principal goal of data assimilation is to estimate the
state of a dynamical system, based on prior information and
a time series of observations, while calculating probabilis-
tic measures corresponding to the accuracy of this estima-
tion. Kalman filter theory (Kalman, 1960) became a refer-
ence in data assimilation as it provides the optimal solution to

the linear and Gaussian filtering problem (Cohn, 1997). The
ensemble Kalman filter (EnKF,Evensen, 1994) and closely
related methods (Lermusiaux, 1999; Pham, 2001; Whitaker
and Hamill, 2002, to cite only a few) are different imple-
mentations of the Kalman filter relying on ensembles. For
the analysis step, they transform the prior ensemble into a
posterior ensemble, using a function that is optimal (an opti-
mal map,Cotter and Reich, 2013) under the assumption of
Gaussianity of the prior ensemble and the observation er-
rors. Those methods are applicable to high-dimensional sys-
tems in meteorology (Whitaker et al., 2008; Buehner et al.,
2010) and oceanography (Lermusiaux, 2006; Sakov et al.,
2012). This success is – in part – due to the fact that the
dynamics of these systems are weakly nonlinear, that is, do
not strongly deviate from a linear evolution within the space
and timescales characterizing the density of available obser-
vations. Briefly, a weak nonlinearity transforms a Gaussian
distribution into a weakly non-Gaussian distribution, with
which the EnKF still performs well. Many recipes have been
developed to enforce the good behavior of the EnKF with
such systems, including localization techniques (Sakov and
Bertino, 2010; Greybush et al., 2011), sampling strategies
(Pham, 2001; Anderson, 2012), and observational targeting
(Bishop et al., 2001); seeBocquet et al.(2010) for more de-
tails and other examples. Nevertheless, EnKF-based methods
remain sensitive to the violation of the Gaussian assumption
(Lawson and Hansen, 2004; Lei et al., 2010) and may lead to
unwanted phenomena such as inaccurate estimations, failure
to respect nonlinear physical balances, or more dramatically
to instability of the filter.

Along with the developments of the EnKF, there is a
growing need for non-Gaussian ensemble data assimila-
tion methods. Data assimilation is no longer a tool solely
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for meteorology and oceanography. Other disciplinary fields
with stronger nonlinearities and much sparser data net-
works (i.e., geomagnetism;Fournier et al., 2010) increas-
ingly depend upon data assimilation. Even in the tradi-
tional fields of application, models’ nonlinearity tends to in-
crease along with their complexity. Even with linear models,
non-Gaussian observation error densities make the assim-
ilation problems non-Gaussian. Intrinsically, non-Gaussian
variables are common in the atmosphere and the ocean, such
as humidity (Dee and Da Silva, 2003) and concentrations of
sea ice or phytoplankton (Brankart et al., 2012).

The ensemble data assimilation methods can be sorted in
two categories: those that transform the prior ensemble par-
ticles using a deterministic map (transform methods), and
those that sample the posterior probability density (sampling
methods). They can also be classified as parametric, non-
parametric, or semi-parametric, depending on the assump-
tions on the shape of the probability densities they use; the
EnKF falls in the parametric (with the Gaussian assumption)
transform methods. The EnKF with Gaussian anamorpho-
sis, further described in Sect.2 of the present paper, trans-
forms variables to make their densities Gaussian before ap-
plying the EnKF analysis. It can be considered as a semi-
parametric transform method, since it is not a fully non-
parametric method able to deal with any kind of probabil-
ity density, as illustrated in Sect.2. The truncated-Gaussian
EnKF as described byLauvernet et al.(2009) is of the para-
metric, sampling type.Reich(2013) introduces a sequential
method of the non-parametric, transform category. The par-
ticle filter (Gordon et al., 1993; van Leeuwen, 2009) is the
most popular method of the non-parametric, sampling type,
but is well known to be particularly subject to the curse of
dimensionality, which makes it difficult to use with high-
dimensional systems (Snyder et al., 2008). Finding solutions
to make the particle filter applicable to high-dimensional sys-
tems is a very active topic of research (Nakano et al., 2007;
van Leeuwen, 2010; Morzfeld et al., 2012; Snyder, 2012).
A few of them actually rely on some hybridization with the
EnKF (Bocquet et al., 2010; Lei et al., 2010; Hoteit et al.,
2012).

Ensemble methods of the non-parametric, transform cate-
gory have rarely been explored, although they could be less
sensitive to the curse of dimensionality than the sampling
methods, due to the transformation step that helps enforce
a better fit of particles to the observations. In this respect, the
approach proposed byReich (2013) would deserve further
examination, in particular with high-dimensional systems.
Another method that could be somewhat classified as a partly
non-parametric transform method is the rank histogram filter
(RHF, Anderson, 2010). The RHF is a hybrid between the
EnKF and a fully non-Gaussian approach, named that way
because it is based on a statistical processing similar to the
rank histograms (Anderson, 1996; Hamill, 2001) used for en-
semble forecast evaluation. The RHF corrects observed vari-
ables by representing their prior densities and the observation

likelihoods as piecewise continuous functions in order to di-
rectly apply Bayes’ rule. This theoretically solves the gener-
alized problem for a single observed variable. However, the
other variables are still corrected using a linear regression
onto the corrections of observed variables, as in the EnKF.
We believe these advantages justify a more detailed explo-
ration of the RHF philosophy. The main objective of this pa-
per is to present an extension of the rank histogram approach
of Anderson(2010) to unobserved variables yielding a fully
non-parametric transform scheme for ensemble data assimi-
lation, in the spirit of the method ofReich(2013). Through-
out the paper, this multivariate RHF is referred to as MRHF.

The article is outlined as follows. In Sect.2, we present
some considerations on the joint non-Gaussianity of two
variables, and how ensemble analysis schemes perform with
such densities. Emphasis is given to the EnKF and to the
RHF ofAnderson(2010). Section3develops the extension of
the RHF to unobserved variables called MRHF along with an
approximation of the latter. Numerical experiments are pre-
sented in Sect.4, where the MRHF and its approximation
are evaluated with the highly nonlinear and non-Gaussian
Lorenz 63 model, and compared in different setups (corre-
sponding to different levels of nonlinearities) to the EnKF, to
the RHF and to a particle filter. In Sect.5, the new schemes
are finally illustrated with a density estimation problem based
on a realistic ensemble from a coupled marine biogeochemi-
cal model. Even though this last experiment is not a data as-
similation problem, the results give an insight into the behav-
ior of the method. A discussion and a conclusion are given in
the last section.

2 Gaussian and non-Gaussian analysis in ensemble
filtering

The increasing popularity of ensemble filters is largely due
to the relative simplicity of their implementation. They basi-
cally alternate propagation steps and analysis steps. During a
propagation step, each particle of the ensemble is advanced
in time using the dynamical system model, possibly includ-
ing some parameterization of the model error. An analysis
step occurs after a propagation step, when an observation
Y m is available. The observationY m is a realization of the
(random) measurement vectorY o

= h(X) + ε, whereh is a
forward observation operator,X the state vector to be esti-
mated, andε the observation error. The analysis step con-
flates the prior ensemble{Xf

i }i=1,...,Ne, composed ofNe par-
ticles resulting from the previous forecast, and the available
observationY m, to provide a posterior (analysis) ensemble
{Xa

i }i=1,...,Ne. Observation errors are often assumed tempo-
rally and spatially uncorrelated so that each one can be in-
dependently assimilated (Houtekamer and Mitchell, 2001;
Evensen, 2003). If the spatial correlations cannot be ne-
glected, a linear transformation of the observation vector is
theoretically possible (and exact in the linear and Gaussian
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Fig. 1. Illustration of EnKF analyses with joint Gaussian (left panel) and weakly non-Gaussian (right panel)

prior distributions. The prior ensemble is represented by the green dots and the posterior ensemble is represented

by the red dots. The variable corresponding to theZ axis is observed with a value shown by the red solid line. Its

uncertainty (identical in all the illustrations of Sec. 2) is assumed Gaussian with standard deviations symbolized

with the red dashed lines.

Fig. 2. Same as Fig. 1, but for the EnKF with Gaussian anamorphosis, and for joint weakly non-Gaussian (left

panel) and strongly non-Gaussian (right panel) prior distributions. The weakly non-Gaussian prior is the same

as in Fig. 1, right panel.
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Figure 1. Illustration of EnKF analyses with joint Gaussian (left panel) and weakly non-Gaussian (right panel) prior distributions. The prior
ensemble is represented by the green dots and the posterior ensemble is represented by the red dots. The variable corresponding to thez axis
is observed with a value shown by the red solid line. Its uncertainty (identical in all the illustrations of Sect.2) is assumed Gaussian with
standard deviations symbolized with the red dashed lines.

context), in which the observation error covariance matrix is
diagonal (Anderson, 2003).

A popular implementation of the ensemble analysis is the
EnKF with serial processing of observations (Houtekamer
and Mitchell, 2001). Following the description given by
Anderson(2003), the ensemble update by each observation is
performed in two steps, namely, the update of the observed
variable followed by the update of unobserved variables. If
the observation is not a direct observation of a state variable,
then the state vectorX can be augmented with the observed
function of state variables,Y o, to introduce a directly ob-
served variable. In what follows, only the case of the direct
observation of a variable is considered. With two scalar vari-
ables,X = (x, z)T , z being subject to a direct measurement
zo with realizationzm, decomposing the EnKF analysis equa-
tions shows that the correction of the observed variablez for
ensemble particlei is

δzi =
Var(z)

Var(z) + Var(ε)

(
zm

− zi − εi

)
, (1)

whereεi is a perturbation that takes the observation errorε

into account. The correction for the unobserved variablex,
for particlei, is

δxi =
Cov(x, z)

Var(z)
δzi . (2)

It is clear from the latter equation that the correction of any
unobserved variable is a function of the linear correlation be-
tween the variable and the observed variable. Such formula-
tion must be questioned when the linear correlation is not a
relevant measure of the statistical relationship between these
variables, as may occur when the statistics are non-Gaussian.
This issue is illustrated in Fig.1: in the left panel, a prior en-
semble of a bivariate Gaussian state (x, z) is depicted (green
dots); the second variablez is observed. The corrections for

the unobserved variable, based on a relevant linear correla-
tion with the observed variable, leads to an analysis ensem-
ble (red dots) fitting the bivariate Gaussian probability den-
sity function (pdf) that would be produced by implementing
Bayes’ theorem. This analysis ensemble is consistent with
both the physics, introduced through the prior information,
and the observation. In the right panel, the two (non-jointly
Gaussian) variables exhibit a nonlinear statistical relation-
ship, that cannot be fully captured by a linear regression.
Consequently, even if the corrections of the observed vari-
able are somewhat correct, those of the unobserved variable
can be erroneous. This results in a rather poor analysis en-
semble, where particles appear in unexpected parts of the
phase space, in violation of the inter-variable relationship,
as described by the prior ensemble.

This problem is not new; it falls under the general des-
ignation of non-Gaussian data assimilation. Solutions exist,
among the “resampling” methods in particular, but their ef-
fective application in high dimensions is either impossible
or requires further development; seeBocquet et al.(2010)
for a review. Some non-Gaussian schemes derive from re-
finements to the EnKF. A promising one, mostly studied in
oceanography, is the Gaussian anamorphosis (Bertino et al.,
2003; Simon and Bertino, 2009; Béal et al., 2010; Brankart
et al., 2012). Anamorphosis consists in transforming the
initial physical variables to make them fit Gaussian dis-
tributions. The standard EnKF analysis can be applied to
these transformed variables. Then, the physical analysis vari-
ables are recovered by the inverse transformation. The trans-
formation can be either analytical or numerical (Bocquet
et al., 2010). The following illustration is performed with
the numerical transformation described byBrankart et al.
(2012). The left panel of Fig.2 shows the same non-Gaussian
prior ensemble as the right panel of Fig.1 (green dots),
along with the analysis ensemble obtained using Gaussian
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Figure 2. Same as Fig.1 but for the EnKF with Gaussian anamorphosis and for joint weakly non-Gaussian (left panel) and strongly
non-Gaussian (right panel) prior distributions. The weakly non-Gaussian prior is the same as in Fig.1 (right panel).

anamorphosis (red dots). Anamorphosis clearly improves the
EnKF. But anamorphosis presents several limitations, one of
which is that it is based on a one-to-one correspondence be-
tween the prior and the target (Gaussian) distributions in-
volved in the transformation. If this is not verified, Gaussian
anamorphosis fails. Such failure is depicted on the right panel
of Fig. 2, where the prior ensemble follows a strongly non-
Gaussian density law which exhibits bimodality under con-
ditioning by z. The EnKF with Gaussian anamorphosis (or
without; not shown) provides a very poor analysis ensemble.

Fully non-Gaussian ensemble analysis schemes, that
is, schemes derived without any assumption on the shape of
the prior ensemble density, implement Bayes’ rule to solve
the analysis step:

p
(
X|Y o) ∝ p(X)p

(
Y o

|X
)
, (3)

wherep(X) is the prior probability density for the state vec-
tor X to estimate,p(Y o

|X) the observation likelihood (iden-
tical to the observation density for Gaussian observation er-
rors), andp(X|Y o) the posterior density, that is, the den-
sity of the state given the observations. A detailed Bayesian
description of data assimilation is provided byWikle and
Berliner(2007) for instance. The fully non-Gaussian ensem-
ble data assimilation problem is usually solved by resampling
methods of the particle filter type. The particle filter (Gordon
et al., 1993; Doucet et al., 2001) is subject to very active de-
velopments for its future application with high-dimensional
geophysical problems (Nakano et al., 2007; van Leeuwen,
2009, 2010; Morzfeld et al., 2012). The key point in imple-
menting a particle filter is to beat the curse of dimension-
ality, and that will probably not be solved shortly for large
applications (Snyder et al., 2008). One major reason, we be-
lieve, is that particle filters have yet to implement localiza-
tion, in which any given observation affects the update only
in a spatially local region near the observation location and
as is common in the EnKF (Houtekamer and Mitchell, 1998;
Hamill et al., 2001).

Figure 3. Reconstruction of a density from an ensemble using the
rank histogram approach.

Here, we explore a new non-Gaussian ensemble analysis
scheme of the “transform” type, in which localization can
be implemented. We start from the the rank histogram filter
(RHF), a partially non-Gaussian transform scheme, that has
been proposed byAnderson(2010). The RHF processes ob-
servations serially. For the direct observationzo of variablez,
the continuous prior density forz is represented as a rank
histogram (by analogy with the rank histogram diagnostic
used to evaluate ensemble predictions, as introduced in geo-
physics byAnderson(1996), and later discussed inHamill
(2001), andCandille and Talagrand(2005)). The histogram
is composed ofNe− 1 bounded regions partitioned by the
sorted ensemble particles (the order statistics of the problem)
and two unbounded regions on the tails. In each inner region,
a density value is assigned so that the region contains a prob-
ability mass of 1

Ne+1 (Fig. 3). The two outer regions are cov-

ered by tails of probability mass 1
Ne+1 as well; their shape

may be chosen freely, and this may actually be a key element
for the success of the RHF (Anderson, 2010). In particular,
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Fig. 3. Reconstruction of a density from an ensemble using the Rank Histogram approach.

Fig. 4. Same as Fig. 2, but for the RHF.
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Figure 4. Same as Fig.2 but for the RHF.

very long tails can help to correct biases and to make the
filter more resilient to divergence. More precisely, the prior
density ofz is written:

p(z) =
1

Ne + 1

Ne−1∑
i=1

1[zi ,zi+1[(z)

(zi+1 − zi)
+ T (z), (4)

with 1[zi ,zi+1[(z) the indicator function on the interval
[zi, zi+1[ (yielding 1 if z belongs to this interval, 0 otherwise)
andT (z) also a combination of indicator functions represent-
ing the tails term applied to the two outer regions. The like-
lihood p(zo

|z) is known analytically from the observation
error density. It is discretized on the same grid asp(z), and
the two functions are multiplied pointwise to provide a con-
stant piecewise expression (after normalization) of the pos-
terior densityp(z|zo). The analysis ensemble is finally ob-
tained using a (deterministic) procedure of inversion of the
cumulative distribution function. Corrections onz particles
are calculated by the difference between the posterior and the
prior values ofz. These corrections are used to compute the
corrections for the unobserved variables with Eq. (2), that is,
applying a linear regression. This latter step, inherited from
the EnKF, is perhaps the main weakness of the RHF, as il-
lustrated in Fig.4: the RHF analysis performs rather poorly
in both weakly and strongly non-Gaussian cases addressed
in the previous illustrations. However, considering the many
positive aspects of this scheme (non Gaussian, robust, deter-
ministic, possible to localize), it seems worth trying to cor-
rect this weakness and extend the rank histogram approach
to unobserved variables.

3 Multivariate rank histogram filter

3.1 Principle

We wish to generalize the RHF to the general Bayesian
framework. The RHF first addresses the analysis of the
observed variable, then deals with the others. It is thus

an implementation of thesequential realization methodto
sample a multivariate probability density, for example, as
presented byTarantola(2005). This method leans on the
Knothe–Rosenblalt rearrangement, a decomposition of the
joint probability density into a product of marginal and
conditional univariate densities. With three scalar variables
X = (x, y, z), this decomposition is

p(x, y, z) = p(z)p(x|z)p(y|x,z). (5)

A sample from the joint density is obtained by determinis-
tically samplingp(z) first, thenp(x|z) (using the result for
p(z)), andp(y|x, z) (using the previous two results). The
purpose of data assimilation here is to condition the joint den-
sity to an observationzo of z. Following the usual Markovian
memoryless assumption for the observation process, which
implies p(zo

|x, y, z) = p(zo
|z), and using the decomposi-

tion (Eq.5) it is straightforward to find that

p
(
x, y, z|zo)

= p(z|zo)p(x|z)p(y|x, z). (6)

Here again, the deterministic sampling of both densities
conditioned onz are based on the previously sampled densi-
ties; hence, the sampling of variablesx andy depends on the
observationzo. To obtain the first factor on the right-hand
side, the EnKF uses Eq. (1); the RHF implements Bayes’
rule for z: p(z|zo) ∝ p(z)p(zo

|z). But for both methods, the
second and third terms on the right-hand side are computed
using Eq. (2), which comes from a Gaussian, Kalman fil-
tering perspective. We propose below a new non-Gaussian
approach to sample scalar particles from these conditional
densities to implement Eq. (6) with non-parametric densi-
ties. This scheme is deterministic, in the sense that no ran-
dom number need be generated during the analysis process.
The analyses are then reproducible and the method is of the
“transform” type.

3.2 Implementation of the MRHF analysis

Let {za
i }i=1,...,Ne be the posterior ensemble of the observed

variablez, that is, a sample ofp(z|zo). Consider the first
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Figure 5. Illustration of the MRHF analysis step for the first unob-
served variable: green dots represent the prior ensemble; blue dots
vertically aligned atX = 0 represent the posteriorz ensemble. The
red dotted line is the observation ofz, the red square is the true state
(not used for the analysis). The red empty triangles show the particle
being processed and its correspondingz analysis value. Blue circles
show the selected particles to form the posterior densitypa

i
(x); see

text for details.

unobserved variable,x in Eq. (6). The MRHF analysis deter-
minesxa

i , thex analysis value for particlei, by deterministi-
cally sampling the conditional densitypa

i (x) ≡ p(x|z = za
i ).

This density must first be formed. Some steps of the proce-
dure are illustrated in Fig.5. The green dots represent the
prior ensemble in theX–Z plane; the blue dots atX = 0 rep-
resent thez analysis ensemble{za

i }i=1,...,Ne. The red line is
the observation realization. The following process is repeated
for i = 1, . . . ,Ne. For a giveni, a subset of particles is se-
lected in the prior ensemble (green dots with blue circles),
whosez values lie in the neighborhood ofza

i (blue dot with
red triangle) along thez direction. The selection process is
discussed later. Applying the rank histogram approach to the
x values of the selected particles, a one-dimensional density
is then formed to representpa

i (x).
To follow Eq. (6), one approach would be to draw a ran-

dom realization from this density to providexa
i . This, how-

ever, is far from optimal from the physical viewpoint, be-
cause it can generate large corrections resulting in physi-
cal instabilities and imbalances, as previously observed by
Anderson(2003) in the EnKF context. In Fig.5 for instance,
the prior particle (green dot with red triangle) is in the right-
hand side mode of the distribution. Since the observation
does not enable one to know in which mode the truth (red
dot) actually is, it makes sense to try to keep this particle in
its mode of origin, thus minimizing its modification.

Instead of a random draw inpa
i (x) which could arbitrarily

move the particle to the left-hand side mode, the following
steps are proposed:

Figure 6. Illustration of the MRHF analysis step for the first un-
observed variable (one particle): red lines represent the cumulative
distribution functions (cdf) of the prior densitypb

i
(x) (left panel)

and the posterior densitypa
i
(x) (right panel). The vertical black

lines show the selected particles used to build these densities. To
compute thex analysis value for the priorx particle near 11 on the
left panel, the green line must be followed: the cdf for the priorx

is computed with the prior cdf (Result is near 0.68); from this cdf
value, thex analysis value is obtained on the right panel; see text
for details.

– with a similar selection and a rank histogram process,
form the density ofx conditioned to thebackground
value ofz: pb

i (x) ≡ p(x|z = zb
i );

– compute the cumulative distribution functionsCb
i (x)

andCa
i (x) from pb

i (x) andpa
i (x), respectively;

– compute the position of the prior particle in the prior
density:ci = Cb

i (xb
i );

– preserve the rank of the particle in the posterior density
by taking xa

i = C
a(−1)
i (ci) as analysis value forx and

particlei. This is illustrated in Fig.6.

Although this method does not always prevent a particle
shifting from one mode to another, two neighboring particles
(i.e., close to each other) in the prior ensemble are likely to
remain neighbors in the posterior ensemble. In a multimodal
case for instance, two particles in the same mode are more
likely to remain in the same mode after analysis. Figure7
illustrates the successful behavior of the MRHF analysis in
the strongly non-Gaussian case introduced in Sect.2 (Figs.2
and4, right panels).

Once thez andx analysis values are computed for each
particle, the analysis values for the third variabley can be
computed. The process is strictly similar to the one described
above, but for the variabley, and with an additionalx = xa

i

term in the conditional statement. In practice, this reduces to
selecting particles from the prior distribution in the neighbor-
hood of (xa

i , za
i ) in the two-dimensional plane (x, z), to form

the densityp(y|x, z, zo). The other steps remain unchanged.
As a remark, one may notice that this analysis method

brings some similarities with the heuristic method presented
in Anderson(2003) in the EnKF context. His idea is to
compute the covariance term in Eq. (2) using a subset
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of neighboring particles. The MRHF goes one step fur-
ther by considering the nonlinear relationship between those
particles.

3.3 Selection of particles and mean-field approximation

We now come back to the selection of particles, and start
with the first unobserved variablex. To represent the target
densitypa

i (x) accurately, the selected particles must have a
z value close toza

i used in the conditional statement. At the
same time, there may be few or no particles whosez values
differ from za

i by less than a specified, small amount, sinceNe
is finite. Thus, there is a trade-off between selecting particles
that are very close toza

i and selecting a sufficient number of
particles to representpa

i (x).
In the numerical experiments with the Lorenz 63 system,

presented in Sect.4, a maximal distance (dmax) is prescribed,
along with a minimal and a maximal number of particles.
Specifications of these parameters are detailed in Sect.3.4.
No attempt has been made in this work to make the scheme
independent of the variables, for example by normalizing all
variable by their prior variance.

For the second unobserved variabley, the difference is
computed as a distance in the two-dimensional plane (x, z).
The maximal distance to consider as a threshold must be pre-
scribed accordingly. As the algorithm proceeds to additional
unobserved variables, the curse of dimensionality becomes
apparent: each time a new unobserved variable is analyzed, a
dimension is added and the volume of states within the max-
imal distance decreases so fast that each region defined by
one particle and a finite radius around it has negligible prob-
ability to hold another particle.

As a schematic illustration, assume thatza
i = 30 in Fig.5,

and dmax= 1. There exist prior particles with 29< z < 31.
Thus, the analysis forx can be conducted accurately. Assume
now that thex analysis providesxa

i = −10. Prior particles in
the two-dimensional neighborhood of (xa

i , za
i ) (for example,

in a circle centered on this point with radius
√

2) are sparse
or nonexistent. More distant particles must therefore be in-
cluded and the accuracy of the analysis fory may be poor.

This obstacle leads us to introduce an approximation,
termed the mean-field approximation byCotter and Reich
(2013), which consists in dropping the unobserved variables
in the conditional statements in Eq. (6), and thus computing
the posterior density as

p
(
x, y, z|zo)

' p
(
z|zo) p(x|z)p(y|z). (7)

This amounts to processing each unobserved variable in the
same way as the first one of the series. The approxima-
tion (Eq. 7) limits the scheme’s ability to handle complex,
jointly multimodal densities, as will be illustrated with the
Lorenz (1963) model in Sect.4. An important advantage of
the approximation is that it makes the analyses of the dif-
ferent unobserved variables independent. Thus, they can be
parallelized on a computer.

3.4 MRHF parameters and possible tuning

Several of the MRHF parameters are related to the com-
putation of rank histograms that is used to update both
the observed and unobserved variables. Building a pdf with
the rank histogram approach implies a division by the dis-
tance between two consecutive particles (Anderson, 2010).
To avoid possible computational overflow, it is important to
set a minimum spacingεRHF between two consecutive par-
ticles. This is done by moving each particle at a distance of
εRHF from its closest neighbor when necessary. The particles
are processed sequentially from the mean toward the tails
of the distribution. For the following experiments with the
Lorenz 63 system, a wide range ofεRHF values are tested,
from 10−6 to 10−2, and the values that provide the smallest
errors are retained. The main and expected conclusion is that
experiments with the RHF and MRHF with large ensemble
sizes are sensitive toεRHF within this range, because large
εRHF tend to excessively diffuse peaked probability densities
when those are built by a large number of particles close to
each other.

As stressed byAnderson(2010), several choices are pos-
sible for the shape of the tails. With the Lorenz 63 system,
sensitivity tests have shown that the MRHF with small en-
sembles and frequent observations (1t = 10) is sensitive to
the shape of the tails, and performs better with Gaussian
tails. For larger ensembles, results are similar with different
shapes of tails. Constant tails are specified because it is a bit
cheaper computationally. Constant tails extend to prescribed
values slightly beyond the model phase space boundaries.
Tails are introduced only for the observed variables, because
their probability densities are multiplied by the observation
densities before resampling. No tail is introduced for unob-
served variables. For the Lorenz 63 model, the minimal and
maximal values are set to [−20, −30, 0] and [20, 30, 50],
respectively.

An additional parameter controls the scheme’s behav-
ior when the prior distribution has multiple, well-separated
modes. Figure6 (left panel) shows the cumulative distribu-
tion function of a probability density made of two disjoint
modes. Between the two modes, this function increases, al-
though it should remain constant because the modes are dis-
joint. This is due to the rank histogram approach to build the
probability density, and emphasized by the limited number of
particles in the ensemble. In the analysis step, unrealistic par-
ticles may then appear in the region between the two modes.
In the Lorenz 63 experiments, the probability density has
been set to zero when below a threshold of 1/6× 1/(Ne+ 1).

As discussed in Sect.3.3, the particle selection depends on
three additional parameters. The first is the maximal distance
dmax. The specification ofdmax should account for magni-
tude and the variability of the variables, the dimension of the
space in which the difference is defined, and the ensemble
size. With the Lorenz 63 system, we takedmax= d

√
n, where

n is the dimension of the space (n = 1 for the first unobserved
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variable;n = 2 for the second unobserved variable) andd is
prescribed according to the ensemble size: 1 for small ensem-
bles (Ne= 8, 16, 32), 0.1 for medium ensembles (Ne= 64,
128), and 0.01 for the larger ensembles (Ne= 256, 512). To
ensure a sufficient but not too large number of selected par-
ticles, it is wise to fix a minimum and a maximum number
of particles. In the following experiments, those are set to 5
and 15, respectively.

Finally, like many ensemble methods, the MRHF suffers
from sampling errors in the description of the densities. With
the EnKF, this is usually corrected with covariance inflation.
This does not make real sense with the MRHF, since the anal-
ysis does not rely on covariances. After the analysis, the par-
ticles are slightly perturbed with a white Gaussian noise, as it
is often done with particle filters to avoid collapse toward one
single particle. For the Lorenz 63 experiments that follow, a
few values of variance have been tested in the range 0.01–
0.05 for this noise, and the experiments yielding the smallest
errors have been retained.

3.5 Localization

Localization consists in reducing the corrections to some
variables, as computed during the analysis step, according
to their distance from the observation. Beyond a certain dis-
tance, all corrections are set to 0. With the MRHF, local-
ization is straightforward because it is a transform method.
Similar to the EnKF with serial processing of observations,
the analysis corrections are multiplied by coefficients that are
functions of the distance to the observation. Therefore the
correction may be restricted to elements of the state vector
that are spatially close to the location of the observed vari-
able, and changes to the state vector can then be gracefully
tapered to zero as distance from the observation location in-
creases. In the present work, no localization has been applied
in the experiments since it is not needed on those assimilation
problems. Localization will be studied in future works.

3.6 Connections with other methods

The MRHF is a non-parametric transform ensemble data
assimilation method. We have presented it as a generaliza-
tion of the RHF, but it also has connections with other non-
parametric transform methods discussed in the Introduction,
such as the method introduced byReich(2013). This method
derives from the theory of optimal transportation (or opti-
mal mapping), whose application to sequential data assimila-
tion has been suggested byEl Moselhy and Marzouk(2012),
Cotter and Reich(2013), andReich(2013). Instead of trying
to compute an approximation of the posterior pdf, the cru-
cial idea of this theory is to find a “transfer map”f such that
f (X) is distributed according to the posterior pdf whenX

is distributed according to the prior pdf. Once such a trans-
fer map is identified, a posterior sample can be generated
from the prior sample. The transfer map is a mathematical

expression of the consistency of the posterior sample depend-
ing on both the prior sample and the observation. However a
transfer map is not unique (Villani , 2009). To find one, one
may require the map to satisfy some additional optimality
condition.Cotter and Reich(2013) andReich(2013) propose
to find the map that minimizes the expected squared distance
betweenX andf (X), so as to make the smallest possible
changes to go from the prior to the posterior sample. As de-
scribed in Sect.3.1, the MRHF uses a transfer map. This map
is particularly simple, since only one-dimensional probabil-
ity densities are involved: we choose the map that preserves
the position of the particle during its transfer from the prior
to the posterior density. This also makes the smallest possible
changes to go from the prior to the posterior sample.

4 Numerical experiments with the Lorenz 63 model

The Lorenz 63 model (L63) is a well-known system of three
ordinary differential equations based on a simplification of
atmospheric cellular convection (Lorenz, 1963). It is also a
widely used test case for developments in data assimilation.
The state variables are denotedX, Y , Z. The usual config-
uration of the model is adopted here: the parameters are set
to σ = 10, ρ = 28 andβ = 8/3; the integration time step is
δt = 0.01. In the following experiments a simulation of ref-
erence is performed and considered as the true trajectory to
recover.

4.1 Fully observed state vector

4.1.1 Experimental setup and diagnostics

In this subsection, the full state (X, Y , Z) is observed. The
observations are created by adding to the true trajectory in-
dependent perturbations drawn from a white Gaussian noise
with standard deviationσo = 2 as inHarlim and Hunt(2007)
and Bocquet(2011). Three different experiments are con-
ducted for different observation time intervals:1t = 0.10,
1t = 0.25, and1t = 0.50. These observation time intervals
are expected to provide mild, medium, and strong nonlinear
test cases (Bocquet, 2011).

Each experiment is run over 105 assimilation cycles. To
avoid any spin-up issues, a burn-in period of 1000 analy-
sis cycles is used. Five filters are compared: the stochastic
EnKF, the RHF, a particle filter, the MRHF and the MRHF
with mean-field approximation (see Sect.3). The EnKF and
the RHF are tested with a large set of inflation factors and the
best in terms of root mean square error are retained for com-
parisons. The particle filter is implemented in its sequential
importance resampling (SIR particle filter) version (Gordon
et al., 1993). Resampling is performed using the universal re-
sampling method described byWhitley (1994). After resam-
pling, the particles are perturbed with a white Gaussian noise
with variance selected in the [0.01, 0.05] interval to provide
the smallest errors.
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Figure 7. Same as Fig.4, right panel, but for the MRHF.

The filters are tested for different ensemble sizes:Ne= [8,
16, 32, 64, 128, 256, 512]. The filters are first evaluated
by the time-averaged value of the root mean square error
(RMSE) between the analysis and the simulation of refer-
ence. We also evaluate the filters’ approximation of the full
posterior distribution using the Kullback–Leibler (KL) diver-
gence, or relative entropy (Kullback, 1959), which measures
a distance between two probability densitiesP and Q ac-
cording to the formula:

KL(P, Q) =

∫
log

P

Q
dP. (8)

DensityP refers to the density described by the ensemble af-
ter an analysis step. Ideally, the reference densityQ should
be the analytical solution to the problem. Since this is not
available to us, we take the SIR particle filter solution with
2048 particles as a reference. It proves to be the best of all
in terms of RMSE, as it will be shown in the results section.
Also, by construction, the SIR particle filter provides a phys-
ically balanced solution, assuming that the noise added to
each particle during the resampling step is prescribed small
enough not to affect this balance significantly. For a given
assimilation method, a small KL divergence guarantees that
the solution is physically balanced. For a perfect computation
of the KL divergence, the joint probability densities should
be used. To limit the problematic effects of subsampling, es-
pecially when the ensemble sizes are small, we stick to the
marginal densities of the first Lorenz variable,X. UsingY or
Z provides very similar results. The marginal densities ofX

are recovered from the updated ensembles of each filter by
using rank histograms.

4.1.2 Results

When1t = 0.10, Fig.8, upper panel, shows that the EnKF
outperforms all the other methods forNe≤ 128. This is
because the system is fully and accurately observed, and
frequently enough to make the analysis problem close to

Gaussian. However, withNe≥ 256,1t = 0.10, the fully non-
linear methods perform slightly better. In a rather similar
setup, but with an ensemble transform Kalman filter instead
of a stochastic EnKF,Bocquet(2011) also concludes that
the Kalman filter, perfectly designed for such problems, is
extremely hard to beat. Nonetheless, the RHF and MRHFs
behave rather well, even if not as well as the EnKF. In a
medium nonlinear case (1t = 0.25, central panel of Fig.8)
and for Ne≥ 32, both the MRHF in its full formulation
and the mean-field approximated MRHF produce a smaller
RMSE than the EnKF and the RHF. The SIR particle filter
needs 128 particles to perform as well as the MRHFs. Fi-
nally, in a case of strong nonlinearities (Fig.8 bottom-panel),
the MRHFs outperforms the EnKF and the RHF for any en-
semble size. The SIR particle filter needs in this case more
than 256 particles in order to achieve similar performance. In
all cases, the MRHF and the MRHF with mean-field approx-
imation behave very similarly, the latter being even slightly
better most of the time. This suggests that the mean-field ap-
proximation has a small negative impact, and that the dimen-
sionality issue that may affect the MRHF, as described in
Sect.3.3, is already present in a three-variable system.

Figure9 shows the counterpart of Fig.8 for the KL diver-
gence for theX-variable. The KL divergences are computed
with respect to a SIR particle filter solution with 2048 parti-
cles. It is remarkable that other, independent 2048-SIR parti-
cle filter solutions do not provide null KL divergences. This
is because the random perturbations introduced after resam-
pling are different in the test and reference experiments. In
all observation scenarios, this KL divergence approaches 1;
this can then be considered as the target score for the other
methods. The MRHFs perform very well, even in the mildly
nonlinear case, with large ensembles. As nonlinearities grow
stronger, they perform increasingly well in comparison with
the others. In particular, the ensemble size required by the
SIR particle filter to reach the performance of the MRHFs
increases dramatically. In the strongly nonlinear case (bot-
tom panel), the MRHFs perform better than the EnKF and
RHF for any ensemble size and are only outperformed by the
SIR particle filter for very large ensemble sizes (Ne≥ 256).
In any case, the SIR particle filter performs better than the
others for large ensembles.

4.2 Bimodal case –Z observed

4.2.1 Experimental setup

The L63 attractor is characterized by two lobes centered on
points of attraction and connected to each other at their bot-
tom (where the minimal values ofZ are encountered). Fig-
ure 10 displays horizontal slices through the L63 attractor
represented in its phase space. The two lobes are easily iden-
tified in the regionZ > 24 (bottom row), exhibiting two or
four distinct modes. In a data assimilation framework with-
out any prior information other than the whole attractor itself,
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Figure 8. Time-averaged analysis root mean square error (RMSE)
for the EnKF (thick black line with crosses), the RHF (thin black
line with open circles), the SIR particle filter (thick blue line with
crosses), the full MRHF (thick red line with crosses), and the mean-
field approximated MRHF (thin red line with open circles); for ex-
periments on the fully observed Lorenz 63 with observation time
intervals 1t = 0.10 (upper panel),1t = 0.25 (center panel), and
1t = 0.50 (bottom panel). The thin blue line with open circles rep-
resents the time-averaged analysis RMSE for the SIR particle filter
with 2048 particles, which can be considered as a target score.

a single observation ofZ does not enable us to determine the
mode where the truth actually is. The dynamics often help to
determine whether it is in an ascending branch or a descend-
ing branch of the attractor so we expect bimodal posteriors.
It is thus a strongly non-Gaussian data assimilation problem.

In the following experiment, observations ofZ are ex-
tracted from a “true” trajectory, perturbed with a white Gaus-
sian noise of variance 1, and assimilated every 40 time steps
(1t = 0.40). The assimilation is conducted over 105 analysis
cycles after a burn-in period of 1000 time steps.

The evaluation of the MRHF performance is strictly simi-
lar to the previous experiments, except that the reference so-
lution to compute the KL divergence comes from the SIR
particle filter with 4096 particles, instead of 2048. As it is

Figure 9. Same as Fig.8 but for the mean Kullback–Leibler di-
vergence on theX variable (results are similar on theY and
Z variables).

argued in Sect.4.2.2below, the RMSE is not a meaningful
diagnostic in this case, making it difficult to verify that the
4096-SIR particle filter provides an accurate solution. How-
ever, the objective of that test relies on the fact that an appro-
priate data assimilation method should be able to maintain
the representation of the bimodality in this particular case.
The SIR particle filter, given a substantial number of par-
ticles, might generate overly dispersive ensembles but does
maintain the bimodality (Fig.12). It has been checked that it
is true for the whole integration period. Hence, a small KL
divergence between the methods and the 4096-SIR particle
filter will confirm that the bimodality is respected.

4.2.2 Results

The time-averaged RMSE is a classical performance diag-
nostic in data assimilation. However, when the solution is bi-
modal, the RMSE does not tell much. Here, the RMSE vary
between 3 and 7, whatever the method and the ensemble size
are, and they do not decrease with increasing ensemble sizes.
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Figure 10. Horizontal slices (inX–Y planes,Z intervals indicated
on tops) through L63 attractor. In the two bottom left graphs, the
two modes in the center are parts of the descending branches of the
lobes (Z decreases with time), while the modes in the corners are
the ascending branches.

Since they provide no relevant information, the RMSE are
not discussed further.

The KL divergence is a much more appropriate diagnos-
tic in this case, especially using the marginal densities ofX,
since bimodality is expected in theX direction. Figure11
displays the KL divergences as a function of ensemble size,
for the 5 methods considered in the previous setup. The RHF
with 8 particles proved to be unstable with any inflation fac-
tor. The fully non-parametric methods (SIR particle filter,
MRHFs) yield much better scores than the others (EnKF and
RHF). The KL divergence of the EnKF and RHF does not
depend on the ensemble size, confirming that these methods
are not designed to deal with such multimodal problems. The
SIR particle filter needs at leastNe= 128 particles to obtain
a smaller KL divergence than the MRHFs.

To illustrate the differences in the behaviors of the various
methods, Fig.12 depicts scatter plots of the analysis ensem-
bles at the 389th cycle, given by the reference SIR particle
filter (with 4096 particles), and the other five methods with
256 particles. The scatter plots are drawn in theX–Y plane,
and the true state is shown by the red squares and red dashed
lines. The 389th cycle has been chosen arbitrarily for this il-
lustration. Similar behavior of the filters is observed through-
out the experiment.

While the correct posterior distribution is bimodal, the
EnKF and the RHF tend to create particles between the two
modes. This explains their large KL divergences with re-
spect to the reference solution. The SIR particle filter and the
MRHF, on the other hand, provide visually correct, bimodal
solutions in this case (but they can be subject to mode leakage
too, at other cycles). The MRHF with mean-field approxima-
tion is again broadly similar to the full MRHF. Because the
correction toY is independent of the correction toX, how-
ever, a few particles can switch from one mode to the other

Figure 11. Time-averaged Kullback–Leibler divergence on the
X variable for the EnKF (thick black line with crosses), the RHF
(thin black line with open circles), the SIR particle filter (thick blue
line with crosses), the full MRHF (thick red line with crosses),
and the mean-field approximated MRHF (thin red line with open
circles); for the experiment on Lorenz 63 when only the third
variable (Z) is observed every 40 time steps during 105 analysis
cycles. The thin blue line with open circles represents the time-
averaged Kullback–Leibler divergence for the SIR particle filter
with 2048 particles, which can be considered as a target score.

along theX (resp.Y ) direction without switching along theY
(resp.X) direction. These particles appear in unrealistic re-
gions of the model phase space (regions that cannot be visited
by the attractor, nearX = −10,Y = 10 orX = 10,Y = −10).
This illustrates the limitation of the MRHF with mean-field
approximation to deal with bimodal distribution. Mode leak-
age of this kind is significantly reduced by the deterministic
resampling method used in the MRHF, in comparison with
a stochastic method (result not shown). This is because the
MRHF method, described in Sect.3.2, preserves the relative
rank of particles at the analysis step. Also, the Lorenz 63
system does not seem affected by a few outliers, and the KL
divergence scores of the MRHF with mean-field approxima-
tion are good.

5 An illustration of density estimation

We next consider the analysis step for each scheme in a more
complex model, with no forecast loop. The interest of this
illustration is to observe their behavior in a first realistic
context.

5.1 The marine biogeochemical context

The interactions between ocean dynamics and biogeochem-
istry are complex. The variations of the mixed layer depth
(MLD) strongly influences the nutrient supply, hence the
phytoplankton production in the euphotic layer (Dutkiewicz
et al., 2001). MLD variations are themselves controlled, at
least for a large part, by variations in the wind forcing.
With the growing interest in understanding ocean biogeo-
chemical cycles and thanks to the increasing amount of ded-
icated satellite missions (SeaWiFS, MERIS, MODIS), the
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Figure 12. Scatter plots of the analysis ensembles with 256 particles (except upper-left) at the 389th analysis cycle, in theX–Y plane of
Lorenz 63 model phase space: 4096-SIR particle filter (considered as the reference solution) (upper left panel); Particle filter (upper center
panel); EnKF (upper right panel); RHF (bottom left panel); MRHF (bottom center panel); Mean-field approximation MRHF (bottom right
panel). The red dashed lines indicate the truth from which the observation ofZ is produced.

assimilation of ocean color data, a proxy of chlorophyll con-
centration, has taken off in the last few years (Gregg et al.,
2009). A better estimation of the dynamical variables, in-
cluding wind forcing, appears as an interesting by-product.
Because of the nonlinear relationships of biogeochemical
variables between each other and with dynamical variables,
ocean biogeochemical data assimilation is a fundamentally
non-Gaussian problem. This is well demonstrated byBéal
et al.(2010). They use a three-dimensional coupled physical–
biogeochemical model of the North Atlantic with a 1/4◦ hori-
zontal resolution. A 200-particle ensemble simulation is run,
perturbing the wind forcing, during the 1998 North Atlantic
spring bloom. The nonlinear model response, expressed in
the non-Gaussianity of the bivariate distributions of the en-
semble variables, is clearly demonstrated.

5.2 The density estimation experiment

The data used for the illustration below comes from the en-
semble simulation ofBéal et al.(2010). We focus on the
1 day forecast at the Gulf Stream station (47◦ W, 40◦ N).

The upper-left graphs of Figs.13, 14, and 15 re-
spectively show the forecast ensemble in the chloro-
phyll (CHL)–mixed layer depth (MLD) plane, the chloro-
phyll (CHL)–biogeochemical detritus (DET) plane and the

biogeochemical detritus (DET)–mixed layer depth (MLD)
plane. Each green dot represents an ensemble particle and
the blue dot shows the values from a reference model run.
A chlorophyll observation is created by perturbing the value
from this reference with a Gaussian white noise with vari-
anceσo = 0.001.

Each of the assimilation schemes from the previous sec-
tion is applied, at a fixed time step and a fixed grid point, to
the seven-variable control vector. The control vector is com-
posed of seven prognostic variables of the model: one dy-
namical variable (MLD) and six biological variables (chloro-
phyll, detritus, dissolved organic matter, NH4, NO3 and phy-
toplankton). The 200-particle forecast ensemble is used as a
prior distribution to test various analysis schemes using the
chlorophyll observation. The other panels of Figs.13, 14,
and15 display the estimated ensembles, with red triangles,
on, respectively, the chlorophyll (CHL)–mixed layer depth
(MLD) plane, the chlorophyll (CHL)–biogeochemical detri-
tus (DET) plane and the biogeochemical detritus (DET)–
mixed layer depth (MLD) plane, obtained using the EnKF
(upper right graphs), the RHF of Anderson (center left
graphs), the full MRHF (center right graphs), the mean-
field approximation MRHF (bottom-left graphs), and the
SIR particle filter (bottom right graphs) analysis steps. The
chlorophyll observation is represented by the blue full line;
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Figure 13.Prior forecast ensemble (upper left panel) and posterior analysis ensembles (red triangles), on the chlorophyll (CHL)–mixed layer
depth (MLD) plane, produced by the EnKF (upper right panel), the RHF (center left panel), the full MRHF (center right panel), the mean-
field approximation MRHF (bottom-left), and the SIR particle filter (bottom right panel). Only chlorophyll is observed with the value CHLo
indicated by the blue line on each panel. The two dashed blue lines represent the interval [CHLo − 2σo, CHLo + 2σo], whereσ2

o = 0.001
is the observation error standard deviation. The blue dot represents the true state, from which the chlorophyll value has been extracted and
perturbed to form the observation CHLo.

the blue dashed lines are at a distance of 2× σo from the blue
full line.

A data assimilation method is obviously expected to move
the prior particles close to the observations. However, a ma-
jor requirement for those methods, especially in the non-
Gaussian context, is also to maintain the information on the
model attractor contained in the shape of the prior ensem-
ble dispersion. In Figs.13and14, the prior ensemble clearly
says that the observed variable (CHL) and the unobserved
variables (i.e., MLD and DET) have an obvious statistical
connection, but this connection is not linear. Thus, the meth-
ods using a linear regression in the physical space to correct
the unobserved variable, that is, EnKF and RHF, fail to main-
tain the non-Gaussian shape of the prior density. The SIR
particle filter analysis step is a very good approximated im-
plementation of Bayes’ theorem (modulo sampling errors).
Hence, with a sufficiently large ensemble, it provides a pos-
terior ensemble consistent with the observation and the prior
ensemble. In comparison the full MRHF analysis step also
manages to produce a posterior distribution consistent with

both the observation and the prior ensemble. Nevertheless,
it clearly appears in Fig.15 that the curse of dimensionality
striking during the particle selection process (as discussed
in Sect.3.3) degrades the correction on the second unob-
served variable. The mean-field approximation discussed in
Sect.3.3, appears to overcome this issue and produces a pos-
terior distribution very similar to the SIR particle filter.

Figure15 displays the posterior ensembles in the mixed
layer depth (MLD)–biogeochemical detritus (DET) plane.
Those graphs allow us to observe the bivariate densities be-
tween two unobserved state variables. It is known that the
EnKF and the RHF appropriately maintain the covariances
between all pairs of variables in a linear and Gaussian con-
text. However, in a non-Gaussian case such as this one,
Fig. 15 shows that both filters do not provide an appropriate
ensemble update (in the sense of Bayes’ rule). Meanwhile,
the MRHF and the SIR particle filter, provide an estimated
ensemble taking into accout the relationship between all pairs
of variables by respecting the information contained in the
prior distribution.
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Figure 14.Same as Fig.13but on the chlorophyll (CHL)–biogeochemical detritus (DET) plane.

6 Discussion and conclusions

This paper has introduced the multivariate rank histogram
filter (MRHF), a fully non-Gaussian analysis scheme for en-
semble data assimilation. This filter is an extension of the
rank histogram filter introduced byAnderson(2010). In or-
der to set the MRHF in the wider context of non-Gaussian
analysis methods, the behavior of some of these methods
has been examined in idealized, bivariate frameworks where
the variables were jointly Gaussian, weakly non-Gaussian,
or strongly non-Gaussian (Sect.2). The MRHF clearly falls
into the category of methods able to deal with strong non-
Gaussianity, along with the particle filters. An approximated
version of the MRHF, based on the mean-field approximation
(Cotter and Reich, 2013), is also proposed.

Numerical experiments with the Lorenz 63 model, in a
data assimilation problem with fully observed state vector
but for different observation time intervals corresponding to
different levels of nonlinearity (Sect.4.1), confirm that the
MRHF does not perform better than the EnKF in quasi-
linear context with small ensemble sizes. Nevertheless, in
this context, the MRHF performs slightly better with larger
ensembles (Ne≥ 256). When nonlinearity is stronger, the
MRHF considerably reduces the root mean square error and
the Kullback–Leibler divergence in comparison with other

methods when given a sufficiently large number of parti-
cles (Ne≥ 64). The MRHF with mean-field approximation
exhibits very similar performance. Experiments in the most
nonlinear regime, characterized by the bimodality of the state
density, confirm the ability of the MRHF to handle strong
non-Gaussianities (Sect.4.2). Finally, an experiment with
prior data from a coupled physical–biogeochemical model
(Sect.5) illustrates the behavior of the MRHF analysis (in
its full and approximated forms) when facing strongly non-
Gaussian densities in a more explicitly geophysical con-
text. This illustration is not a full data assimilation problem
but the posterior densities produced by the MRHF analysis
show that Bayes’ theorem is correctly approximated in this
formulation.

Aside from documenting the performance of the MRHF,
the experiments in this paper show the importance of match-
ing the assimilation method to the level of non-Gaussianity
in the problem at hand. Even though a general method such
as the MRHF should perform well in any situation, the fact
is that the EnKF (or other linear methods) are perfectly ad-
equate in many applications and often much less expensive
computationally. An advantage of the MRHF in this respect
is that it is easily hybridized with other serial transform
methods, such as the EnKF, because such schemes process
observations serially and update observed and unobserved
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Figure 15.Same as Fig.13but on the biogeochemical detritus (DET)–mixed layer depth (MLD) plane.

variables serially. One can then consider, for example, up-
dating wind components with the EnKF but the more non-
Gaussian humidity with the MRHF.

Relative to Kalman filters, the MRHF’s deterministic
scheme has assets to preserve physical balances during the
analysis. Relative to particle filters, the MRHF also has ad-
vantages in addressing the curse of dimensionality. As ex-
plained in Sect.3.5, spatial localization of the update step
comes naturally with the MRHF, although it has not been
tested here. Also, effects of the curse of dimensionality on the
MRHF can be greatly reduced using the mean-field approxi-
mation, as illustrated in Sect.3.3. In fact, use of this approx-
imation is likely necessary for successful implementation of
the MRHF in many realistic problems. Finally, it is relatively
easy to reduce any sensitivity of the MRHF to biases in ob-
served variables, and to decrease the associated tendency for
filter divergence, because of the freedom to choose the tails
of the prior density for these variables (Sect.2). Then, con-
trary to the particle filters (at least in their bootstrap formu-
lation, Gordon et al., 1993), a large number of observations
helps in avoiding divergence.

According to our experiments, the MRHF is much more
expensive than the EnKF in terms of computation. The
MRHF analysis proves to be approximately 50, 100, and
200 times more expensive than the EnKF for typical

ensemble sizes of 64, 128, and 256, respectively. The MRHF
might then be best suited for rather specific problems with
strong non-Gaussianity and few observations or as part of
hybrid schemes where the MRHF is used only for certain
variables. Nevertheless, spatial localization and a more effi-
cient implementation of the mean-field approximation have
the potential to greatly reduce computation cost and expand
the range of problems for which the MRHF is feasible. Both
aspects need to be investigated before the application of the
MRHF to realistic problems and these are the next steps of
this work.
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