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Abstract. One challenge of geophysical data assimilation isthe linear and Gaussian filtering proble@ohn 1997). The
to address the issue of non-Gaussianities in the distributionensemble Kalman filter (EnKEvensen1994 and closely
of the physical variables ensuing, in many cases, from nonselated methodsLermusiaux 1999 Pham 2001 Whitaker
linear dynamical models. Non-Gaussian ensemble analysiand Hamil| 2002 to cite only a few) are different imple-
methods fall into two categories, those remapping the ensenmentations of the Kalman filter relying on ensembles. For
ble particles by approximating the best linear unbiased estithe analysis step, they transform the prior ensemble into a
mate, for example, the ensemble Kalman filter (EnKF), andposterior ensemble, using a function that is optimal (an opti-
those resampling the particles by directly applying Bayes’mal map,Cotter and Reich2013 under the assumption of
rule, like particle filters. In this article, it is suggested that the Gaussianity of the prior ensemble and the observation er-
most common remapping methods can only handle weaklyors. Those methods are applicable to high-dimensional sys-
non-Gaussian distributions, while the others suffer from samtems in meteorologyWhitaker et al. 2008 Buehner et a.
pling issues. In between those two categories, a new remaf010 and oceanographyLérmusiaux 2006 Sakov et al.
ping method directly applying Bayes’ rule, the multivari- 2012. This success is — in part — due to the fact that the
ate rank histogram filter (MRHF), is introduced as an ex- dynamics of these systems are weakly nonlinear, that is, do
tension of the rank histogram filter (RHF) first introduced not strongly deviate from a linear evolution within the space
by Anderson(2010. Its performance is evaluated and com- and timescales characterizing the density of available obser-
pared with several data assimilation methods, on differentvations. Briefly, a weak nonlinearity transforms a Gaussian
levels of non-Gaussianity with the Lorenz 63 model. The distribution into a weakly non-Gaussian distribution, with
method'’s behavior is then illustrated on a simple density estiwhich the EnKF still performs well. Many recipes have been
mation problem using ensemble simulations from a coupleddeveloped to enforce the good behavior of the EnKF with
physical-biogeochemical model of the North Atlantic ocean.such systems, including localization techniqgugakov and
The MRHF performs well with low-dimensional systems in Berting, 201Q Greybush et al.2011), sampling strategies
strongly non-Gaussian regimes. (Pham 2001, Anderson 2012, and observational targeting
(Bishop et al.2001); seeBocquet et al(2010 for more de-
tails and other examples. Nevertheless, EnKF-based methods
remain sensitive to the violation of the Gaussian assumption
1 Introduction (Lawson and Hansg2004 Lei et al, 2010 and may lead to
unwanted phenomena such as inaccurate estimations, failure
The principal goal of data assimilation is to estimate theto respect nonlinear physical balances, or more dramatically
state of a dynamical system, based on prior information ando instability of the filter.
a time series of observations, while calculating probabilis-  Along with the developments of the EnKF, there is a
tic measures corresponding to the accuracy of this estimagrowing need for non-Gaussian ensemble data assimila-
tion. Kalman filter theory Kalman 1960 became a refer-  tion methods. Data assimilation is no longer a tool solely
ence in data assimilation as it provides the optimal solution to
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for meteorology and oceanography. Other disciplinary fieldslikelihoods as piecewise continuous functions in order to di-
with stronger nonlinearities and much sparser data netrectly apply Bayes’ rule. This theoretically solves the gener-
works (i.e., geomagnetisntournier et al. 2010 increas- alized problem for a single observed variable. However, the
ingly depend upon data assimilation. Even in the tradi-other variables are still corrected using a linear regression
tional fields of application, models’ nonlinearity tends to in- onto the corrections of observed variables, as in the EnKF.
crease along with their complexity. Even with linear models, We believe these advantages justify a more detailed explo-
non-Gaussian observation error densities make the assinration of the RHF philosophy. The main objective of this pa-
ilation problems non-Gaussian. Intrinsically, non-Gaussianper is to present an extension of the rank histogram approach
variables are common in the atmosphere and the ocean, sudf Anderson(2010 to unobserved variables yielding a fully

as humidity Dee and Da Silva2003 and concentrations of non-parametric transform scheme for ensemble data assimi-
sea ice or phytoplanktoiB¢ankart et al.2012). lation, in the spirit of the method d®eich(2013. Through-

The ensemble data assimilation methods can be sorted iaut the paper, this multivariate RHF is referred to as MRHF.
two categories: those that transform the prior ensemble par- The article is outlined as follows. In Se@, we present
ticles using a deterministic map (transform methods), andsome considerations on the joint non-Gaussianity of two
those that sample the posterior probability density (samplingvariables, and how ensemble analysis schemes perform with
methods). They can also be classified as parametric, norsuch densities. Emphasis is given to the EnKF and to the
parametric, or semi-parametric, depending on the assumpRHF of Anderson2010. Section3 develops the extension of
tions on the shape of the probability densities they use; thehe RHF to unobserved variables called MRHF along with an
EnKEF falls in the parametric (with the Gaussian assumption)approximation of the latter. Numerical experiments are pre-
transform methods. The EnKF with Gaussian anamorphosented in Sect4, where the MRHF and its approximation
sis, further described in Se@.of the present paper, trans- are evaluated with the highly nonlinear and non-Gaussian
forms variables to make their densities Gaussian before aptorenz 63 model, and compared in different setups (corre-
plying the EnKF analysis. It can be considered as a semisponding to different levels of nonlinearities) to the EnKF, to
parametric transform method, since it is not a fully non- the RHF and to a particle filter. In Se&, the new schemes
parametric method able to deal with any kind of probabil- are finally illustrated with a density estimation problem based
ity density, as illustrated in Se@. The truncated-Gaussian on a realistic ensemble from a coupled marine biogeochemi-
EnKF as described blyauvernet et al(2009 is of the para-  cal model. Even though this last experiment is not a data as-
metric, sampling typeReich (2013 introduces a sequential similation problem, the results give an insight into the behav-
method of the non-parametric, transform category. The parior of the method. A discussion and a conclusion are given in
ticle filter (Gordon et al. 1993 van Leeuwen2009 is the  the last section.
most popular method of the non-parametric, sampling type,
but is well known to be particularly subject to the curse of
dimensionality, which makes it difficult to use with high- 2 Gaussian and non-Gaussian analysis in ensemble
dimensional system$gayder et a].2008. Finding solutions filtering
to make the particle filter applicable to high-dimensional sys-
tems is a very active topic of researddiakano et al.2007 The increasing popularity of ensemble filters is largely due
van Leeuwen201Q Morzfeld et al, 2012 Snyder 2012). to the relative simplicity of their implementation. They basi-
A few of them actually rely on some hybridization with the cally alternate propagation steps and analysis steps. During a
EnKF (Bocquet et al.201Q Lei et al, 201Q Hoteit et al, propagation step, each particle of the ensemble is advanced
2012. in time using the dynamical system model, possibly includ-

Ensemble methods of the non-parametric, transform cateing some parameterization of the model error. An analysis
gory have rarely been explored, although they could be lesstep occurs after a propagation step, when an observation
sensitive to the curse of dimensionality than the samplingY™" is available. The observatiori™ is a realization of the
methods, due to the transformation step that helps enforc§andom) measurement vectBP =h(X) + ¢, whereh is a
a better fit of particles to the observations. In this respect, thdorward observation operatok’ the state vector to be esti-
approach proposed bigeich (2013 would deserve further mated, and the observation error. The analysis step con-
examination, in particular with high-dimensional systems. flates the priorensemb{a’lf},-:l ,,,,, Ne» composed oiVe par-
Another method that could be somewhat classified as a partlyicles resulting from the previous forecast, and the available
non-parametric transform method is the rank histogram filterobservationY™, to provide a posterior (analysis) ensemble
(RHF, Anderson 2010. The RHF is a hybrid between the {X%;_1 .. Observation errors are often assumed tempo-
EnKF and a fully non-Gaussian approach, named that wayally and spatially uncorrelated so that each one can be in-
because it is based on a statistical processing similar to thdependently assimilatedHbutekamer and Mitchell2001;
rank histogramsAnderson1996 Hamill, 2001) used foren-  Evensen 2003. If the spatial correlations cannot be ne-
semble forecast evaluation. The RHF corrects observed variglected, a linear transformation of the observation vector is
ables by representing their prior densities and the observatiotheoretically possible (and exact in the linear and Gaussian
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Figure 1. lllustration of EnKF analyses with joint Gaussian (left panel) and weakly non-Gaussian (right panel) prior distributions. The prior
ensemble is represented by the green dots and the posterior ensemble is represented by the red dots. The variable corresppagisg to the
is observed with a value shown by the red solid line. Its uncertainty (identical in all the illustrations oRSischissumed Gaussian with
standard deviations symbolized with the red dashed lines.

context), in which the observation error covariance matrix isthe unobserved variable, based on a relevant linear correla-
diagonal Anderson 2003. tion with the observed variable, leads to an analysis ensem-

A popular implementation of the ensemble analysis is theble (red dots) fitting the bivariate Gaussian probability den-
EnKF with serial processing of observatiortdo{uitekamer  sity function (pdf) that would be produced by implementing
and Mitchell 2001). Following the description given by Bayes' theorem. This analysis ensemble is consistent with
Anderson(2003, the ensemble update by each observation isboth the physics, introduced through the prior information,
performed in two steps, namely, the update of the observe@dnd the observation. In the right panel, the two (non-jointly
variable followed by the update of unobserved variables. IfGaussian) variables exhibit a nonlinear statistical relation-
the observation is not a direct observation of a state variableship, that cannot be fully captured by a linear regression.
then the state vectd¥ can be augmented with the observed Consequently, even if the corrections of the observed vari-
function of state variablesy®, to introduce a directly ob- able are somewhat correct, those of the unobserved variable
served variable. In what follows, only the case of the directcan be erroneous. This results in a rather poor analysis en-
observation of a variable is considered. With two scalar vari-semble, where particles appear in unexpected parts of the
ables,X = (x, )7, z being subject to a direct measurement phase space, in violation of the inter-variable relationship,
z° with realizationz™, decomposing the EnKF analysis equa- as described by the prior ensemble.

tions shows that the correction of the observed varialite This problem is not new; it falls under the general des-

ensemble particleis ignation of non-Gaussian data assimilation. Solutions exist,

among the “resampling” methods in particular, but their ef-

8z, = & (Zm —z — El.)’ 1) fective application in high dimensions is either impossible
Var(z) + Var(e) or requires further development; sBecquet et al(2010

for a review. Some non-Gaussian schemes derive from re-
finements to the EnKF. A promising one, mostly studied in
oceanography, is the Gaussian anamorph@zstio et al,
2003 Simon and Bertinp2009 Béal et al, 201Q Brankart
Cov(x, z) et al, 2012. Anamorphosis consists in transforming the
T Narg) O @ initial physical variables to make them fit Gaussian dis-
tributions. The standard EnKF analysis can be applied to
Itis clear from the latter equation that the correction of any these transformed variables. Then, the physical analysis vari-
unobserved variable is a function of the linear correlation be-zp|es are recovered by the inverse transformation. The trans-
tween the variable and the observed variable. Such formulasgymation can be either analytical or numeric8otquet
tion must be questioned when the linear correlation is not gg¢ al, 2010. The following illustration is performed with
relevant measure of the statistical relationship between thesge numerical transformation described Byankart et al.
variables, as may occur when the statistics are non-Gaussia(QOla_ The left panel of Fig2 shows the same non-Gaussian
This issue is illustrated in Fid.: in the left panel, a prior en- prior ensemble as the right panel of Fity.(green dots),

semble of a bivariate Gaussian state) is depicted (green  gjong with the analysis ensemble obtained using Gaussian
dots); the second variableis observed. The corrections for

whereg; is a perturbation that takes the observation e¢ror
into account. The correction for the unobserved variahle
for particlei, is
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Figure 2. Same as Figl but for the EnKF with Gaussian anamorphosis and for joint weakly non-Gaussian (left panel) and strongly
non-Gaussian (right panel) prior distributions. The weakly non-Gaussian prior is the same ad.ifriig.panel).

anamorphosis (red dots). Anamorphosis clearly improves the 4
EnKF. But anamorphosis presents several limitations, one of
which is that it is based on a one-to-one correspondence be
tween the prior and the target (Gaussian) distributions in-
volved in the transformation. If this is not verified, Gaussian
anamorphosis fails. Such failure is depicted on the right panelz
of Fig. 2, where the prior ensemble follows a strongly non- £ N+l
Gaussian density law which exhibits bimodality under con- =

ditioning by z. The EnKF with Gaussian anamorphosis (or b @
without; not shown) provides a very poor analysis ensemble. |- ﬁ 1
Fully non-Gaussian ensemble analysis schemes, tha N1 ﬁ
is, schemes derived without any assumption on the shape o
the prior ensemble density, implement Bayes’ rule to solve X X X, X, X, %

the analysis step:
Figure 3. Reconstruction of a density from an ensemble using the

p(X1Y°) o p(X) p (Y°IX), (3) rank histogram approach.

wherep(X) is the prior probability density for the state vec-

tor X to estimatep(Y°|X) the observation likelihood (iden-

tical to the observation density for Gaussian observation er- Here, we explore a new non-Gaussian ensemble analysis
rors), andp(X|Y°) the posterior density, that is, the den- scheme of the “transform” type, in which localization can
sity of the state given the observations. A detailed Bayesiarbe implemented. We start from the the rank histogram filter
description of data assimilation is provided Wyikle and (RHF), a partially non-Gaussian transform scheme, that has
Berliner (2007 for instance. The fully non-Gaussian ensem- been proposed bfnderson(2010. The RHF processes ob-
ble data assimilation problem is usually solved by resamplingservations serially. For the direct observatiSrof variablez,
methods of the particle filter type. The particle filt&drdon  the continuous prior density far is represented as a rank

et al, 1993 Doucet et al.2007) is subject to very active de- histogram (by analogy with the rank histogram diagnostic
velopments for its future application with high-dimensional used to evaluate ensemble predictions, as introduced in geo-
geophysical problemsN@kano et al.2007 van Leeuwen  physics byAnderson(1996, and later discussed idamill
2009 201Q Morzfeld et al, 2012. The key point in imple- (2001, andCandille and Talagran(2009). The histogram
menting a particle filter is to beat the curse of dimension-is composed ofVe — 1 bounded regions partitioned by the
ality, and that will probably not be solved shortly for large sorted ensemble particles (the order statistics of the problem)
applications $nyder et al.2008. One major reason, we be- and two unbounded regions on the tails. In each inner region,
lieve, is that particle filters have yet to implement localiza- a density value i IS assigned so that the region contains a prob-
tion, in which any given observation affects the update onlyability mass OfN -1 (Fig. 3). The two outer regions are cov-

in a spatially local region near the observation location andered by tails of probability maSﬁ— as well; their shape

as is common in the EnKiHputekamer and Mitchell998  may be chosen freely, and this may actually be a key element
Hamill et al, 2001). for the success of the RHRAGderson 2010. In particular,
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Figure 4. Same as Fig2 but for the RHF.

very long tails can help to correct biases and to make thean implementation of theequential realization methoth
filter more resilient to divergence. More precisely, the prior sample a multivariate probability density, for example, as

density ofz is written: presented byTarantola(2005. This method leans on the
Knothe—Rosenblalt rearrangement, a decomposition of the

Ne=l 11z 24a1(2) joint probability density into a product of marginal and
p@) = Ne+ 1 Z (zit1 — 2i) +T0, () conditional univariate densities. With three scalar variables

i=1 X =(x, y, z), this decomposition is

with Yaizigal (@) thg indicator fun.cti.on on the inter.val p(x, v, 2) = p(2) p(xl2) pOylx, 2). (5)
[zi, zi+1[ (vielding 1 if z belongs to this interval, 0 otherwise)

andT (z) also a combination of indicator functions represent- A sample from the joint density is obtained by determinis-
ing the tails term applied to the two outer regions. The like- tically samplingp(z) first, thenp(x|z) (using the result for
lihood p(z°|z) is known analytically from the observation P(2)), and p(y|x, z) (using the previous two results). The
error density. It is discretized on the same gridpas), and purpose of data assimilation here is to condition the joint den-
the two functions are multiplied pointwise to provide a con- Sity to an observation® of z. Following the usual Markovian
stant piecewise expression (after normalization) of the pos/memoryless assumption for the observation process, which
terior densityp(z|z°). The analysis ensemble is finally ob- implies p(z°|x, y, z) = p(z°z), and using the decomposi-
tained using a (deterministic) procedure of inversion of thetion (Ed.5) itis straightforward to find that

cumulative distribution. function. Corrections Qrpar_ticles p(x, v, 212°) = p(zl®) p(xl2) p(ylx, 2). (6)

are calculated by the difference between the posterior and the i o _ N
prior values of;. These corrections are used to compute the Here again, the deterministic sampling of both densities
corrections for the unobserved variables with B, (hatis, ~ conditioned orx are based on the previously sampled densi-
applying a linear regression. This latter step, inherited fromi€S; hence, the sampling of variableandy depends on the
the EnKF, is perhaps the main weakness of the RHF, as i|Dbservat|onz°. To obtain the first factgr on the right-hand
lustrated in Fig4: the RHF analysis performs rather poorly Side, the EnKF uses Eql) the RHF implements Bayes’

in both weakly and strongly non-Gaussian cases addressedle forz: p(z|z°) o p(2) p(z°|z). But for both methods, the

in the previous illustrations. However, considering the manyS&cond and third terms on the right-hand side are computed
positive aspects of this scheme (non Gaussian, robust, dete¥Sing Eq. 8), which comes from a Gaussian, Kalman fil-
ministic, possible to localize), it seems worth trying to cor- tering perspective. We propose below a new non-Gaussian

rect this weakness and extend the rank histogram approaciPProach to sample scalar particles from these conditional
to unobserved variables. densities to implement Eq6) with non-parametric densi-

ties. This scheme is deterministic, in the sense that no ran-
dom number need be generated during the analysis process.
3 Multivariate rank histogram filter The analyses are then reproducible and the method is of the

o “transform” type.
3.1 Principle

3.2 Implementation of the MRHF analysis
We wish to generalize the RHF to the general Bayesian

framework. The RHF first addresses the analysis of thelet {z?}izl,__.,Ne be the posterior ensemble of the observed
observed variable, then deals with the others. It is thusvariablez, that is, a sample of(z|z°). Consider the first
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15] | Figure 6. lllustration of the MRHF analysis step for the first un-
observed variable (one particle): red lines represent the cumulative
distribution functions (cdf) of the prior density?(x) (left panel)

10} fw o i and the posterior densityl.a(x) (right panel). The vertical black

- lines show the selected particles used to build these densities. To

-10 -3 compute ther analysis value for the prior particle near 11 on the
left panel, the green line must be followed: the cdf for the pxior
Figure 5. lllustration of the MRHF analysis step for the first unob- is computed with the prior cdf (Result is near 0.68); from this cdf
served variable: green dots represent the prior ensemble; blue dotglue, thex analysis value is obtained on the right panel; see text
vertically aligned atX =0 represent the posterierensemble. The for details.

red dotted line is the observationgfthe red square is the true state

(not used for the analysis). The red empty triangles show the particle

being processed and its correspondirapalysis value. Blue circles — with a similar selection and a rank histogram process,
show the selected particles to form the posterior density); see form the density ofx conditioned to thebackground
text for details. value ofz: p?(x) =px|z = zlb);

— compute the cumulative distribution functior&b(x)
minesx?, thex analysis value for particlg by deterministi-
cally sampling the conditional densipf(x) = p(x|z = zJ). — compute the position of the prior particle in the prior

This density must first be formed. Some steps of the proce-  density.c; = C,p(x,b);
dure are illustrated in Figh. The green dots represent the

prior ensemble in th&—Z plane; the blue dots & = 0 rep- — preserve the rank of the particle in the posterior density

; a_ ~a=D, ;
resent the; analysis ensemblgz?};—1 . v,. The red line is by tgkmg x7=C; (c;) as analysis value far and
the observation realization. The following process is repeated ~ Particlei. This is illustrated in Fige.
fori=1, ..., Ne. For a giveni, a subset of particles is se-

lected in the prior ensemble (green dots with blue circles),Alt.hpugh this method does not always .prever'lt a parﬂcle
o . . shifting from one mode to another, two neighboring particles

whosez values lie in the neighborhood ef (blue dot with . . . i
(i.e., close to each other) in the prior ensemble are likely to

red triangle) along the direction. The selection process is ) . . ) )
. ; . remain neighbors in the posterior ensemble. In a multimodal
discussed later. Applying the rank histogram approach to the

x values of the selected particles, a one-dimensional densit}(fase for mstapcc_a, two particles in the same que are more

. Ikely to remain in the same mode after analysis. Figure

is then formed to represepf(x). illustrates the successful behavior of the MRHF analysis in
To follow Eg. (6), one approach would be to draw a ran- the strongly non-Gaussian case introduced in Sggti sy2

dom realization from this density to provid¢. This, how- gy gs.

. . . : . and4, right panels).
ever, is far from optimal from the physical viewpoint, be- .
: . L . Once thez and x analysis values are computed for each
cause it can generate large corrections resulting in physi-

cal instabilities and imbalances, as previously observed b)ggrrrt:let,ezih?rr?galr)gsézs\;ail:itsri];c'zlr t;?nitg rr?o\{[?lrelaobrﬁadr;:ceribe d
Anderson(2003 in the EnKF context. In Figb for instance, P : P y

. . o T a
the prior particle (green dot with red triangle) is in the right- above, but for the variable, and with an additionat = x;

hand side mode of the distribution. Since the observationterm in the conditional statement. In practice, this reduces to

does not enable one to know in which mode the truth (redselectmg particles from the prior distribution in the neighbor-

N o e )
dot) actually is, it makes sense to try to keep this particle in?hoeogec:s(fti ' Z(i )I n theot;/v (_)l_r?em;fr?;r'(;?:l slgr:;iﬁ)haocao;: ed
its mode of origin, thus minimizing its modification. W VIX, 2, 25). P ged.

. . N As a remark, one may notice that this analysis method
Instead of a random draw ipf'(x) which could arbitrarily . R . L
move the particle to the left-hand side mode, the following brings some similarities with the heuristic method presented
. ' in Anderson (2003 in the EnKF context. His idea is to
steps are proposed:

compute the covariance term in ER) (using a subset
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of neighboring particles. The MRHF goes one step fur-3.4 MRHF parameters and possible tuning

ther by considering the nonlinear relationship between those

particles. Several of the MRHF parameters are related to the com-

putation of rank histograms that is used to update both

3.3 Selection of particles and mean-field approximation  the observed and unobserved variables. Building a pdf with
i , the rank histogram approach implies a division by the dis-

We now come back to the s_elect|0n of particles, and Staltance between two consecutive particlésderson 2010.

with the first unobserved variable To represent the target To avoid possible computational overflow, it is important to

density p2(x) accurately, the selected particles must have 35t a minimum spacingzyr between two consecutive par-
a ; o

N vaIue. closehtczl. usedbln Ehe cond|t|ona_l .T,tatement.IAt the ticles. This is done by moving each particle at a distance of
Zifmeftlme,atberle mak)]/ e few o.rf.ncc)j partlciles whose ues erHF from its closest neighbor when necessary. The particles
ditter from z;- by essF anaspecined, sma amou_nt, SINee  are processed sequentially from the mean toward the tails
is finite. Thus, there is a trade-off between selecting partlcle%f the distribution. For the following experiments with the
that are very close tgf and selecting a sufficient number of Lorenz 63 system, a wide range @fur values are tested
partlcfs to repr.es:amﬁ(x): i th 63 from 10°° to 1072, and the values that provide the smallest

In the numerica exper!ment§ with the Lo_renz ,SyStem’errors are retained. The main and expected conclusion is that
presente;d n Se.@’ a maximal dlstgncei&ax) IS prescrlbgd, experiments with the RHF and MRHF with large ensemble
along with a minimal and a maximal number of particles. sizes are sensitive tazye within this range, because large

Epecificatior;s ofbthese pgramert:_ars ari deta”id i?] 894::]' €rHF tend to excessively diffuse peaked probability densities
o attempt has been made in this work to make the SChemMg, o, hose are built by a large number of particles close to

independent of the variables, for example by normalizing all

valrzlablehby their %I’IOY virlanced. blethe diff , As stressed byAnderson(2010, several choices are pos-
or 1 Z secog_ uno s_ervhe vang@let € al Ierelznce IS" sible for the shape of the tails. With the Lorenz 63 system,
computed as a distance in the two-dimensional plane)(  sengitivity tests have shown that the MRHF with small en-

The maximal distance to consider as a threshold must be Pr&sembles and frequent observations & 10) is sensitive to

scntt))ed aC((:jordw_\gkI))l/. As ;he algorlth]{ndprocegds tl(') a?)d't'onalthe shape of the tails, and performs better with Gaussian
unobserved variables, the curse of dimensionality becomeg, i o, larger ensembles, results are similar with different

apparent: each time a new unobserved variable is analyzed,sq]apes of tails. Constant tails are specified because it is a bit

dimension is added and the volume of states within the maX'cheaper computationally. Constant tails extend to prescribed

imal dist_ance decrga_ses S0 fast that ‘?a"h regio_” _defined t%Iues slightly beyond the model phase space boundaries.
one particle and a finite raQ|us around it has negligible prOb"'I'ails are introduced only for the observed variables, because
ability to hr?ld anptqler particle. o their probability densities are multiplied by the observation
As a sc emaﬁc : ustratloq, assumei tb?t:, ﬁo in Fig.5, densities before resampling. No tail is introduced for unob-
and dmax= 1. There exist prior particles with 29z <31. o164 variables. For the Lorenz 63 model, the minimal and
Thus, the analysis for can be conducted accurately. Assume maximal values are set to-R0, —30, 0] and [20, 30, 50]
now that thex analysis provides?= —10. Prior particles in respectively ' ' A
the two-dimensional neighborhood of z;) (for example, An additional parameter controls the scheme’s behav-
in a circle centered on this point with radiv®) are sparse  jor when the prior distribution has multiple, well-separated
or nonexistent. More distant particles must therefore be inygdes. Figures (left panel) shows the cumulative distribu-
cluded and the accuracy of the analysisyfonay be poor.  tjon function of a probability density made of two disjoint
This obstacle leads us to introduce an approximationmodes. Between the two modes, this function increases, al-
termed the mean-field approximation Botter and Reich  though it should remain constant because the modes are dis-
(2013, which consists in dropping the unobserved variablesjoint, This is due to the rank histogram approach to build the
in the conditional statements in Ed){and thus computing  probability density, and emphasized by the limited number of
the posterior density as particles in the ensemble. In the analysis step, unrealistic par-
X, . 212%) =~ p(212°) p(xl2) p(y2). 7 ticles may then appear in the region betwee_n_ the two_modes.
p( Y ) p( )p Py () In the Lorenz 63 experiments, the probability density has
This amounts to processing each unobserved variable in thgeen set to zero when below a threshold of 4/65(Ne + 1).
same way as the first one of the series. The approxima- As discussed in Sec.3, the particle selection depends on
tion (Eq.7) limits the scheme’s ability to handle complex, three additional parameters. The first is the maximal distance
]0|nt|y multimodal densities, as will be illustrated with the dmax The Specification Oﬂmax should account for magni_
Lorenz (1963) model in Secd. An important advantage of tude and the variability of the variables, the dimension of the
the approximation is that it makes the analyses of the dif-space in which the difference is defined, and the ensemble
ferent unobserved variables independent. Thus, they can bgize. With the Lorenz 63 system, we takgax= d /n, Where
parallelized on a computer. n is the dimension of the space+ 1 for the first unobserved

each other.
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variable;n = 2 for the second unobserved variable) ahid expression of the consistency of the posterior sample depend-
prescribed according to the ensemble size: 1 for small ensemning on both the prior sample and the observation. However a
bles (Ve=8, 16, 32), 0.1 for medium ensemble¥(= 64, transfer map is not uniqué/{llani, 2009. To find one, one
128), and 0.01 for the larger ensembldg £ 256, 512). To  may require the map to satisfy some additional optimality
ensure a sufficient but not too large number of selected pareondition.Cotter and Reicl2013 andReich(2013 propose
ticles, it is wise to fix a minimum and a maximum number to find the map that minimizes the expected squared distance
of particles. In the following experiments, those are set to 5betweenX and f(X), so as to make the smallest possible
and 15, respectively. changes to go from the prior to the posterior sample. As de-
Finally, like many ensemble methods, the MRHF suffers scribed in SecB.1, the MRHF uses a transfer map. This map
from sampling errors in the description of the densities. Withis particularly simple, since only one-dimensional probabil-
the EnKEF, this is usually corrected with covariance inflation. ity densities are involved: we choose the map that preserves
This does not make real sense with the MRHF, since the analthe position of the particle during its transfer from the prior
ysis does not rely on covariances. After the analysis, the parto the posterior density. This also makes the smallest possible
ticles are slightly perturbed with a white Gaussian noise, as ithanges to go from the prior to the posterior sample.
is often done with particle filters to avoid collapse toward one
single particle. For the Lorenz 63 experiments that follow, a ) ] )
few values of variance have been tested in the range 0.014 Numerical experiments with the Lorenz 63 model
0.05 for this noise, and the experiments yielding the smalles

) [I'he Lorenz 63 model (L63) is a well-known system of three
errors have been retained.

ordinary differential equations based on a simplification of
atmospheric cellular convectiohdrenz 1963. It is also a
widely used test case for developments in data assimilation.
The state variables are denot¥d Y, Z. The usual config-

Localization consists in reducing the corrections to some . . )
variables, as computed during the analysis step accordinuratlon of the model is adopted hgre. the _para_meters are set
' ' o =10, p =28 andp = 8/3; the integration time step is

to their distance from the observation. Beyond a certain dis-& —0.01. In the followina experiments a simulation of ref-
tance, all corrections are set to 0. With the MRHF, local- =~ — .~ g exp

ization is straightforward because it is a transform method.erence is performed and considered as the true trajectory to

Similar to the EnKF with serial processing of observations,recover'

the apalysis corregtions are multiplied by cpefficients thatarey ¢ Fully observed state vector

functions of the distance to the observation. Therefore the

correction may be restricted to elements of the state vecton 1.1 Experimental setup and diagnostics

that are spatially close to the location of the observed vari-

able, and changes to the state vector can then be gracefully this subsection, the full stat&( Y, Z) is observed. The
tapered to zero as distance from the observation location inebservations are created by adding to the true trajectory in-
creases. In the present work, no localization has been appliedependent perturbations drawn from a white Gaussian noise
in the experiments since itis not needed on those assimilatiowith standard deviatioa, = 2 as inHarlim and Hun{(2007)

3.5 Localization

problems. Localization will be studied in future works. and Bocquet(2011). Three different experiments are con-
ducted for different observation time intervalsr =0.10,
3.6 Connections with other methods At =0.25, andAr =0.50. These observation time intervals

are expected to provide mild, medium, and strong nonlinear
The MRHF is a non-parametric transform ensemble dataest casesBocquet2017).
assimilation method. We have presented it as a generaliza- Each experiment is run over 1@ssimilation cycles. To
tion of the RHF, but it also has connections with other non-avoid any spin-up issues, a burn-in period of 1000 analy-
parametric transform methods discussed in the Introductionsis cycles is used. Five filters are compared: the stochastic
such as the method introducedRgich(2013. This method  EnKF, the RHF, a particle filter, the MRHF and the MRHF
derives from the theory of optimal transportation (or opti- with mean-field approximation (see Se8). The EnKF and
mal mapping), whose application to sequential data assimilathe RHF are tested with a large set of inflation factors and the
tion has been suggested ByMoselhy and Marzouk2012), best in terms of root mean square error are retained for com-
Cotter and Reiclf2013, andReich(2013. Instead of trying  parisons. The particle filter is implemented in its sequential
to compute an approximation of the posterior pdf, the cru-importance resampling (SIR particle filter) versi@dofdon
cial idea of this theory is to find a “transfer mag”such that  etal, 1993. Resampling is performed using the universal re-
f(X) is distributed according to the posterior pdf wh&n  sampling method described byhitley (1994. After resam-
is distributed according to the prior pdf. Once such a trans-pling, the particles are perturbed with a white Gaussian noise
fer map is identified, a posterior sample can be generateavith variance selected in the [0.01, 0.05] interval to provide
from the prior sample. The transfer map is a mathematicathe smallest errors.
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Gaussian. However, witNe > 256,Ar = 0.10, the fully non-
. linear methods perform slightly better. In a rather similar
% setup, but with an ensemble transform Kalman filter instead
o ] of a stochastic EnKFBocquet(201]) also concludes that
® the Kalman filter, perfectly designed for such problems, is
extremely hard to beat. Nonetheless, the RHF and MRHFs
behave rather well, even if not as well as the EnKF. In a
medium nonlinear case\¢ = 0.25, central panel of Fid)
and for N¢> 32, both the MRHF in its full formulation
and the mean-field approximated MRHF produce a smaller
RMSE than the EnKF and the RHF. The SIR particle filter
needs 128 particles to perform as well as the MRHFs. Fi-
4 5 6 nally, in a case of strong nonlinearities (Fjottom-panel),
the MRHFs outperforms the EnKF and the RHF for any en-
Figure 7. Same as Fig4, right panel, but for the MRHF. semble size. The SIR particle filter needs in this case more
than 256 particles in order to achieve similar performance. In
all cases, the MRHF and the MRHF with mean-field approx-
The filters are tested for different ensemble si2és=[8,  imation behave very similarly, the latter being even slightly
16, 32, 64, 128, 256, 512]. The filters are first evaluatedpetter most of the time. This suggests that the mean-field ap-
by the time-averaged value of the root mean square erroproximation has a small negative impact, and that the dimen-
(RMSE) between the analysis and the simulation of refer-sionality issue that may affect the MRHF, as described in
ence. We also evaluate the filters’ approximation of the full sect.3.3 is already present in a three-variable system.
posterior distribution using the Kullback—Leibler (KL) diver- Figure9 shows the counterpart of Fig.for the KL diver-
gence, or relative entropK(llback, 1959, which measures  gence for thex-variable. The KL divergences are computed
a distance between two probability densitiesand Q ac-  with respect to a SIR particle filter solution with 2048 parti-

< wl

cording to the formula: cles. Itis remarkable that other, independent 2048-SIR parti-
p cle filter solutions do not provide null KL divergences. This

KL(P, Q) = / log —dP. (8) is because the random perturbations introduced after resam-
0 pling are different in the test and reference experiments. In

Density P refers to the density described by the ensemble afall observation scenarios, this KL divergence approaches 1;

ter an analysis step. Ideally, the reference dengitshould this can then be considered as the target score for the other
be the analytical solution to the problem. Since this is notMethods. The MRHFs perform very well, even in the mildly

available to us, we take the SIR particle filter solution with Nonlinear case, with large ensembles. As nonlinearities grow
2048 particles as a reference. It proves to be the best of afftronger, they perform increasingly well in comparison with
in terms of RMSE, as it will be shown in the results section. the others. In particular, the ensemble size required by the
Also, by construction, the SIR particle filter provides a phys- SR particle filter to reach the performance of the MRHFs

ically balanced solution, assuming that the noise added tdncreases dramatically. In the strongly nonlinear case (bot-
each particle during the resampling step is prescribed smafl®™ panel), the MRHFs perform better than the EnKF and

enough not to affect this balance significantly. For a givenRHF for any ensemble size and are only outperformed by the
assimilation method, a small KL divergence guarantees thap'R Particle filter for very large ensemble sizeé ¢ 256).

the solution is physically balanced. For a perfect computatiordn @ny case, the SIR particle filter performs better than the
of the KL divergence, the joint probability densities should Others for large ensembles.

be used. To limit the problematic effects of subsampling, es- )

pecially when the ensemble sizes are small, we stick to thé-2 Bimodal case Z observed

marginal densities of the first Lorenz variabie,UsingY or )

Z provides very similar results. The marginal densitieiof 4-2-1 Experimental setup

are recovered from the updated ensembles of each filter b

using rank histograms. ¥he L63 attractor is characterized by two lobes centered on

points of attraction and connected to each other at their bot-
4.1.2 Results tom (where the minimal values &f are encountered). Fig-

ure 10 displays horizontal slices through the L63 attractor
When Ar =0.10, Fig.8, upper panel, shows that the EnKF represented in its phase space. The two lobes are easily iden-
outperforms all the other methods fa¥e <128. This is tified in the regionZ > 24 (bottom row), exhibiting two or
because the system is fully and accurately observed, antbur distinct modes. In a data assimilation framework with-
frequently enough to make the analysis problem close toout any prior information other than the whole attractor itself,
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Figure 8. Time-averaged analysis root mean square error (RMSE)Figure 9. Same as Fig8 but for the mean Kullback-Leibler di-
for the EnKF (thick black line with crosses), the RHF (thin black Vergence on theX variable (results are similar on the and
line with open circles), the SIR particle filter (thick blue line with Z variables).

crosses), the full MRHF (thick red line with crosses), and the mean-

field approximated MRHF (thin red line with open circles); for ex-

periments on the fully observed Lorenz 63 with observation time . . .
intervals Ar =0.10 (upper panel)Ar = 0.25 (center panel), and argued in Sect4.2.2below, the RMSE is not a meaningful

A =0.50 (bottom panel). The thin blue line with open circles rep- didgnostic in this case, making it difficult to verify that the

resents the time-averaged analysis RMSE for the SIR particle filte#096-SIR particle filter provides an accurate solution. How-
with 2048 particles, which can be considered as a target score. ~ €Ver, the objective of that test relies on the fact that an appro-

priate data assimilation method should be able to maintain
the representation of the bimodality in this particular case.
The SIR particle filter, given a substantial number of par-

a single observation df does not enable us to determine the ) X )
mode where the truth actually is. The dynamics often help toliCl€S: might generate overly dispersive ensembles but does

determine whether it is in an ascending branch or a descendn@ntain the bimodality (FigL2). It has been checked that it

ing branch of the attractor so we expect bimodal posteriors!S trué for the whole integration period. Hence, a small KL

Itis thus a strongly non-Gaussian data assimilation problemdivergence between the methods and the 4096-SIR particle
In the following experiment, observations & are ex- filter will confirm that the bimodality is respected.

tracted from a “true” trajectory, perturbed with a white Gaus-

sian noise of variance 1, and assimilated every 40 time step4.2.2 Results

(At =0.40). The assimilation is conducted oveP Hhalysis

cycles after a burn-in period of 1000 time steps. The time-averaged RMSE is a classical performance diag-
The evaluation of the MRHF performance is strictly simi- nostic in data assimilation. However, when the solution is bi-

lar to the previous experiments, except that the reference sanodal, the RMSE does not tell much. Here, the RMSE vary

lution to compute the KL divergence comes from the SIR between 3 and 7, whatever the method and the ensemble size

particle filter with 4096 patrticles, instead of 2048. As it is are, and they do not decrease with increasing ensemble sizes.
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2 / 20 / ol X variable for the EnKF (thick black line with crosses), the RHF

. s (thin black line with open circles), the SIR particle filter (thick blue

line with crosses), the full MRHF (thick red line with crosses),

Figure 10. Horizontal slices (inX—Y planes,Z intervals indicated ~ and the mean-field approximated MRHF (thin red line with open

on tops) through L63 attractor. In the two bottom left graphs, the €ircles); for the experiment on Lorenz 63 when only the third
two modes in the center are parts of the descending branches of théiriable ¢) is observed every 40 time steps during® Hhalysis

lobes ¢ decreases with time), while the modes in the corners arecycles. The thin blue line with open circles represents the time-
the ascending branches. averaged Kullback-Leibler divergence for the SIR particle filter

with 2048 particles, which can be considered as a target score.

>
> ©
< ©|

Sincg they provide no relevant information, the RMSE arealong theX (resp.Y) direction without switching along the
not discussed further.

h - ) h i ) (resp.X) direction. These particles appear in unrealistic re-
. T € KL dlvergencells amuch more ap.proprlate' Q'agnos'gions of the model phase space (regions that cannot be visited
tic in this case, especially using the marginal densitie¥ of by the attractor, neaX = —10,Y =10 or X = 10, ¥ = —10).

since bimodality is expected in the direction. Figurell s strates the limitation of the MRHF with mean-field
displays the KL divergences as a function of ensemble sizey o imation to deal with bimodal distribution. Mode leak-
for the 5 methods considered in the previous setup. The RHE,

: . : : X age of this kind is significantly reduced by the deterministic
with 8 particles proved to be unstable with any inflation fac- resampling method used in the MRHF, in comparison with
tor. The ﬂ_my non-parametric methods (SIR particle filter, a stochastic method (result not shown). This is because the
MRHFs) yield much better scores than the others (EnKF anq,pie method, described in Se&2, preserves the relative
RHF). The KL divergence _Of the EnKF and RHF does not ank of particles at the analysis step. Also, the Lorenz 63
depend on the ensemble size, confirming that these methocL@S,[em does not seem affected by a few outliers, and the KL

are not designed to deal with such multimodal problems. Thedivergence scores of the MRHF with mean-field approxima-
SIR particle filter needs at leadk = 128 particles to obtain tion are good.

a smaller KL divergence than the MRHFs.

To illustrate the differences in the behaviors of the various
methods, Figl2 depicts scatter plots of the analysis ensem-5  ap, illustration of density estimation
bles at the 389th cycle, given by the reference SIR patrticle

filter (with 4096 particles), and the other five methods with we next consider the analysis step for each scheme in a more
256 particles. The scatter plots are drawn in X' plane,  complex model, with no forecast loop. The interest of this

and the true state is shown by the red squares and red dashgghstration is to observe their behavior in a first realistic
lines. The 389th cycle has been chosen arbitrarily for this il-cgntext.

lustration. Similar behavior of the filters is observed through-
out the experiment. 5.1 The marine biogeochemical context

While the correct posterior distribution is bimodal, the
EnKF and the RHF tend to create particles between the twd'he interactions between ocean dynamics and biogeochem-
modes. This explains their large KL divergences with re-istry are complex. The variations of the mixed layer depth
spect to the reference solution. The SIR particle filter and thg MLD) strongly influences the nutrient supply, hence the
MRHF, on the other hand, provide visually correct, bimodal phytoplankton production in the euphotic lay&utkiewicz
solutions in this case (but they can be subject to mode leakaget al, 2001). MLD variations are themselves controlled, at
too, at other cycles). The MRHF with mean-field approxima- least for a large part, by variations in the wind forcing.
tion is again broadly similar to the full MRHF. Because the With the growing interest in understanding ocean biogeo-
correction toY is independent of the correction 20, how- chemical cycles and thanks to the increasing amount of ded-
ever, a few particles can switch from one mode to the othericated satellite missions (SeaWiFS, MERIS, MODIS), the
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Figure 12. Scatter plots of the analysis ensembles with 256 particles (except upper-left) at the 389th analysis cyclé-in ptene of

Lorenz 63 model phase space: 4096-SIR particle filter (considered as the reference solution) (upper left panel); Particle filter (upper center
panel); EnKF (upper right panel); RHF (bottom left panel); MRHF (bottom center panel); Mean-field approximation MRHF (bottom right
panel). The red dashed lines indicate the truth from which the observatiomsgiroduced.

assimilation of ocean color data, a proxy of chlorophyll con- biogeochemical detritus (DET)—mixed layer depth (MLD)
centration, has taken off in the last few yea@régg et al. plane. Each green dot represents an ensemble particle and
2009. A better estimation of the dynamical variables, in- the blue dot shows the values from a reference model run.
cluding wind forcing, appears as an interesting by-product.A chlorophyll observation is created by perturbing the value
Because of the nonlinear relationships of biogeochemicafrom this reference with a Gaussian white noise with vari-
variables between each other and with dynamical variablesances, = 0.001.

ocean biogeochemical data assimilation is a fundamentally Each of the assimilation schemes from the previous sec-
non-Gaussian problem. This is well demonstratecBigal tion is applied, at a fixed time step and a fixed grid point, to
etal.(2010. They use a three-dimensional coupled physical-the seven-variable control vector. The control vector is com-
biogeochemical model of the North Atlantic with a 1Hori- posed of seven prognostic variables of the model: one dy-
zontal resolution. A 200-particle ensemble simulation is run,namical variable (MLD) and six biological variables (chloro-
perturbing the wind forcing, during the 1998 North Atlantic phyll, detritus, dissolved organic matter, BHNOs and phy-
spring bloom. The nonlinear model response, expressed itoplankton). The 200-particle forecast ensemble is used as a
the non-Gaussianity of the bivariate distributions of the en-prior distribution to test various analysis schemes using the

semble variables, is clearly demonstrated. chlorophyll observation. The other panels of Fig8, 14,
and 15 display the estimated ensembles, with red triangles,
5.2 The density estimation experiment on, respectively, the chlorophyll (CHL)-mixed layer depth

(MLD) plane, the chlorophyll (CHL)-biogeochemical detri-

The data used for the illustration below comes from the en-tus (DET) plane and the biogeochemical detritus (DET)-
semble simulation oBéal et al.(2010. We focus on the Mixed layer depth (MLD) plane, obtained using the EnKF
1 day forecast at the Gulf Stream station9¥V, 40° N). (upper right graphs), the RHF of Anderson (center left

The upper-left graphs of Figsl3, 14, and 15 re-  graphs), the full MRHF (center right graphs), the mean-
spectively show the forecast ensemble in the chloro-field approximation MRHF (bottom-left graphs), and the
phyll (CHL)-mixed layer depth (MLD) plane, the chloro- SIR particle filter (bottom right graphs) analysis steps. The
phyll (CHL)-biogeochemical detritus (DET) plane and the chlorophyll observation is represented by the blue full line;
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Figure 13.Prior forecast ensemble (upper left panel) and posterior analysis ensembles (red triangles), on the chlorophyll (CHL)—mixed layer
depth (MLD) plane, produced by the EnKF (upper right panel), the RHF (center left panel), the full MRHF (center right panel), the mean-
field approximation MRHF (bottom-left), and the SIR particle filter (bottom right panel). Only chlorophyll is observed with the valge CHL
indicated by the blue line on each panel. The two dashed blue lines represent the intervgH@Hg, CHLo + 200, Whereagzo.001

is the observation error standard deviation. The blue dot represents the true state, from which the chlorophyll value has been extracted anc
perturbed to form the observation ChlL

the blue dashed lines are at a distance »f@® from the blue  both the observation and the prior ensemble. Nevertheless,
full line. it clearly appears in Figl5 that the curse of dimensionality

A data assimilation method is obviously expected to movestriking during the particle selection process (as discussed
the prior particles close to the observations. However, a main Sect.3.3) degrades the correction on the second unob-
jor requirement for those methods, especially in the non-served variable. The mean-field approximation discussed in
Gaussian context, is also to maintain the information on theSect.3.3, appears to overcome this issue and produces a pos-
model attractor contained in the shape of the prior ensemterior distribution very similar to the SIR patrticle filter.
ble dispersion. In Figsl3and14, the prior ensemble clearly Figure 15 displays the posterior ensembles in the mixed
says that the observed variable (CHL) and the unobservethyer depth (MLD)-biogeochemical detritus (DET) plane.
variables (i.e., MLD and DET) have an obvious statistical Those graphs allow us to observe the bivariate densities be-
connection, but this connection is not linear. Thus, the methtween two unobserved state variables. It is known that the
ods using a linear regression in the physical space to corredEnKF and the RHF appropriately maintain the covariances
the unobserved variable, that is, EnKF and RHF, fail to main-between all pairs of variables in a linear and Gaussian con-
tain the non-Gaussian shape of the prior density. The SIRext. However, in a non-Gaussian case such as this one,
particle filter analysis step is a very good approximated im-Fig. 15 shows that both filters do not provide an appropriate
plementation of Bayes’ theorem (modulo sampling errors).ensemble update (in the sense of Bayes’ rule). Meanwhile,
Hence, with a sufficiently large ensemble, it provides a pos-the MRHF and the SIR patrticle filter, provide an estimated
terior ensemble consistent with the observation and the prioensemble taking into accout the relationship between all pairs
ensemble. In comparison the full MRHF analysis step alsoof variables by respecting the information contained in the
manages to produce a posterior distribution consistent wittprior distribution.
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Figure 14. Same as Figl3 but on the chlorophyll (CHL)-biogeochemical detritus (DET) plane.

6 Discussion and conclusions methods when given a sufficiently large number of parti-
cles (Ve > 64). The MRHF with mean-field approximation

This paper has introduced the multivariate rank histogrameXhlbltS very similar performance. Experiments in the most

. : . nonlinear regime, characterized by the bimodality of the state
filter (MRHF), a fully non-Gaussian analysis scheme for en- . . .

S L ; . density, confirm the ability of the MRHF to handle strong
semble data assimilation. This filter is an extension of the

rank histogram filter introduced b&nderson(2010. In or- nqn—Gaussmnmes (Sect.2). me”l”y’ an experlme_nt with
der to set the MRHF in the wider context of non-GaussianP. 2" datg from a coupled physmal—blogeochemlcal .mo.del
analysis methods, the behavior of some of these method%SECt'5) |IIustrates_ the behavior of the MRHF analysis (in
has been examined in idealized, bivariate frameworks wherd saLuS!ISie;r;]d :é)rﬁ)srg;grsn?;eg fr?r]rg::) ;,\;(h(lairc;ifﬁ C'”SOStrZOQ%ZI ncoonr;-
the variables were jointly Gaussian, weakly non-Gaussian phicitly geophy

or strongly non-Gaussian (Se@). The MRHF clearly falls text. This |IIust.rat|on is r_10t a full data assimilation problem.
. . but the posterior densities produced by the MRHF analysis
into the category of methods able to deal with strong non-

Gaussianity, along with the patrticle filters. An approximated fs:rm“tgt?énBayes theorem is correctly approximated in this

version of the MRHF, based on the mean-field approximation Aside from documenting the performance of the MRHF.

(Cotter and Remj‘QQl&, IS aIsp proposed. . _ the experiments in this paper show the importance of match-
Numerical experiments with the Lorenz 63 model, in a . L .
T . ing the assimilation method to the level of non-Gaussianity

data assimilation problem with fully observed state vector,

: S . in the problem at hand. Even though a general method such
but for different observation time intervals corresponding to as the MRHE should perform well in anv situation. the fact
different levels of nonlinearity (Sec#.1), confirm that the P y y

MRHF does not perform better than the EnKF in quasi- is that the EnKF (or other linear methods) are perfectly ad-

) . . . equate in many applications and often much less expensive
linear context with small ensemble sizes. Nevertheless, I Smputationallv. An advantage of the MRHE in this respect
this context, the MRHF performs slightly better with larger . P - 9 P

ensembles e > 256). When nonlinearity is stronger, the is that it is easily hybridized with other serial transform

) ethods, such as the EnKF, because such schemes process
MRHF considerably reduces the root mean square error an X ;
. . . . : Observations serially and update observed and unobserved
the Kullback—Leibler divergence in comparison with other
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Figure 15. Same as Figl3 but on the biogeochemical detritus (DET)-mixed layer depth (MLD) plane.

variables serially. One can then consider, for example, upensemble sizes of 64, 128, and 256, respectively. The MRHF
dating wind components with the EnKF but the more non-might then be best suited for rather specific problems with
Gaussian humidity with the MRHF. strong non-Gaussianity and few observations or as part of
Relative to Kalman filters, the MRHF's deterministic hybrid schemes where the MRHF is used only for certain
scheme has assets to preserve physical balances during tkiariables. Nevertheless, spatial localization and a more effi-
analysis. Relative to particle filters, the MRHF also has ad-cient implementation of the mean-field approximation have
vantages in addressing the curse of dimensionality. As exthe potential to greatly reduce computation cost and expand
plained in Sect3.5, spatial localization of the update step the range of problems for which the MRHF is feasible. Both
comes naturally with the MRHF, although it has not beenaspects need to be investigated before the application of the
tested here. Also, effects of the curse of dimensionality on theMRHF to realistic problems and these are the next steps of
MRHF can be greatly reduced using the mean-field approxithis work.
mation, as illustrated in Se@&.3. In fact, use of this approx-
imation is likely necessary for successful implementation of
the MRHF in many realistic problems. Finally, it is relatively AcknowledgementsThis work was supported by the Région
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