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Abstract. Internal wave beams generated by oceanic tidal
flows propagate upward and interact with the increasing
stratification found at the pycnocline. The nonlinear gener-
ation of harmonic modes by internal wave beams incident
on a pycnocline has recently been demonstrated by labora-
tory experiments and numerical simulations. In these pre-
vious studies, the harmonic modes were trapped within the
pycnocline because their frequencies exceeded that of the
stratified fluid below. Here, two-dimensional numerical sim-
ulations are used to explore the effect of incidence angle on
harmonic generation at a thin pycnocline. At incidence an-
gles less than 30 degrees (typical of oceanic beams), the low-
est harmonic mode freely radiates in the form of an internal
wave beam rather than being trapped within the pycnocline.
The results indicate that nonlinear refraction is the primary
mechanism for harmonic generation at incidence angles ex-
ceeding 30 degrees, but that interaction of the incident and
reflected beams is more important at smaller incidence an-
gles. The simulations are compared to weakly nonlinear the-
ory based on refraction at the pycnocline. The results yield
good agreement for trapped harmonics, but weakly nonlin-
ear theory substantially underpredicts the amplitude of the
radiated harmonics.

1 Introduction

Internal waves in a continuously stratified fluid are ubiqui-
tous in geophysical fluid dynamics. In the oceans, a broad
spectrum of internal wave frequencies and wave numbers is
observed (Garrett and Munk, 1979; Holloway, 1980; Garrett,
2003; Garrett and Kunze, 2007), bounded by the Coriolis
and buoyancy frequencies. Energy is injected at the lowest

frequencies, and nonlinear effects transfer energy to higher
frequencies, establishing the observed spectrum. Oceanic in-
ternal wave beams are formed by tidal flow over topogra-
phy (Bell, 1975; Lien and Gregg, 2001; Llewellyn-Smith and
Young, 2003; Petrelis et al., 2006; Martin et al., 2006; Cole et
al., 2009; Balmforth and Peacock, 2009; Echeverri and Pea-
cock, 2010; Zhao et al., 2011; Gayen and Sarkar, 2011) and
propagate upward toward the ocean surface, where they in-
teract with the ocean pycnocline and mixed layer. Here, we
investigate the nonlinear interaction of internal wave beams
with a thin pycnocline, which results in the formation of har-
monic modes. This effect may be relevant both to the evo-
lution of internal wave beams and the transfer of energy be-
tween internal wave modes more generally.

There are many possible nonlinear effects which may be
important for oceanic internal waves. Among known nonlin-
ear effects is the excitation of harmonic modes which occurs
during internal wave beam reflection from a solid surface
(Peacock and Tabaei, 2005; Tabaei et al., 2005; Gerkema et
al., 2006; Rodenborn et al., 2011; Gostiaux et al., 2013). The
mechanism for harmonic generation is the nonlinear inter-
action between different wave numbers in the overlapping
incident and reflected beams. A similar effect has been ob-
served in numerical simulations during beam reflection from
a free surface or a mixed layer (Zhou and Diamessis, 2013).
Colliding beams with different frequencies can also exhibit
nonlinear generation of internal wave beams with frequen-
cies equal to the sum and difference of the original frequen-
cies, as has been shown theoretically by Tabaei et al. (2005)
and in the laboratory by Smith and Crockett (2014). The
parametric subharmonic instability is a nonlinear instability
leading to the creation of two subharmonic waves whose fre-
quencies are about half the original wave frequency, and has
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been observed in oceanic internal wave beams (Gerkema et
al., 2006; Koudella and Staquet, 2006; Bourget et al., 2013;
Gayen and Sarkar, 2013).

For a plane wave incident on a thin pycnocline (a thin,
strongly stratified layer), Thorpe (1998) suggested that non-
linear effects would result in a harmonic mode with double
the frequency and wave number of the incident wave. Re-
cently, the nonlinear generation of harmonic modes by an
internal wave beam incident on a pycnocline was demon-
strated experimentally (Mercier et al., 2012; Wunsch and
Brandt, 2012). Both experiments reported a series of har-
monic modes, while Wunsch and Brandt also confirmed
the approximate doubling of the incident wave number pre-
dicted by Thorpe (1998). Several recent numerical studies
(Grisouard and Staquet, 2010; Grisouard et al., 2011; Gayen
and Sarkar, 2013; Dossmann et al., 2013; Diamessis et al.,
2014) have also demonstrated harmonic generation at a pyc-
nocline, although not all of these studies were primarily con-
cerned with harmonics. In most of these previous experimen-
tal and numerical results, the frequency of the observed har-
monic modes exceeded the buoyancy frequency of the strati-
fied fluid below the pycnocline. The harmonics were unable
to propagate into the lower stratified layer and were therefore
trapped within the pycnocline. The exception is a single ex-
periment reported by Mercier et al. (2012) showing a radiated
harmonic wave for an incidence angle of 15 degrees. Recent
numerical simulations (Diamessis et al., 2014) with thicker
pycnoclines also suggested that the harmonics formed due to
nonlinear refraction through the rapidly increasing stratifica-
tion at the pycnocline base, rather than due to overlap of in-
cident and reflecting beams at the top of the pycnocline. The
physical mechanism for harmonic generation might plausi-
bly differ from that observed in previous studies of harmon-
ics formed during reflection from a solid surface. Although
harmonics have not been reported in ocean observations of
internal wave beams, a recent study in the South China Sea
demonstrated the presence of harmonics of the semi-diurnal
tide in the vicinity of the pycnocline (Xie et al., 2013).

In the present work, fully nonlinear two-dimensional nu-
merical simulations of internal wave beams incident on a
thin pycnocline were performed for two incidence angles and
various stratification profiles. One incidence angle is small
enough to allow the lowest harmonic to re-radiate into the
lower stratified layer. Hence both trapped and radiated har-
monics are seen, depending on the angle of incidence. Rota-
tion is not considered.

The outline of the present work is as follows: Sect. 2 re-
views the weakly nonlinear theory for plane wave refraction
at a thin pycnocline, and provides a straightforward exten-
sion to small incidence angles. Section 3 outlines the numer-
ical method used. Section 4 presents results and comparisons
with the weakly nonlinear theory of Sect. 2. Section 5 sum-
marizes the conclusions and possible extensions for future
work.

2 Weakly nonlinear internal wave refraction

No comprehensive theory of harmonic generation at a pycno-
cline presently exists. Treating the pycnocline as a thin inter-
face in a two-layer fluid, Thorpe (1998) proposed that nonlin-
ear effects due to the displacement of the interface by an inci-
dent plane wave results in the formation of a harmonic mode.
A more general theoretical framework for nonlinear effects
in two dimensions (Tabaei and Akylas, 2003; Tabaei et al.,
2005) has recently been adapted to investigate the genera-
tion of trapped harmonics during refraction by the pycnocline
(Diamessis et al., 2014). Here, this approach is generalized to
include radiated harmonics. Although a number of simplify-
ing assumptions are made, the analysis illustrates the basic
physical processes involved during harmonic formation. An
idealized stratification profile consisting of piece-wise linear
segments is used. In this method, plane wave solutions for the
primary frequency and lowest harmonic are constructed. De-
pending on the incident internal wave beam frequencyω and
the lower layer buoyancy frequencyNo, the lowest harmonic
mode takes the form of either an interfacial wave trapped
within the pycnocline (2ω>No) or a re-radiated plane wave
(2ω<No).

In two-dimensional, inviscid, Boussinesq flow, internal
wave motions are governed by Tabaei et al. (2005):

∂tδρ+
ρ

g
N2ψx + J (δρ,ψ)= 0 (1a)

∂t∇
2ψ −

g

ρ
δρx + J

(
∇

2ψ,ψ
)

= 0 (1b)

J (a,b)≡ axbz − azbx (1c)

N2
= −

g

ρ

dρ

dz
, (1d)

where the stream functionψ(x,z, t) is the solenoidal (rota-
tional) part of the velocity field, with the velocity compo-
nents given byu= −ψz andw = ψx . The fluid density is
ρ, the buoyancy frequency isN , and the gravitational ac-
celeration isg. The density fluctuationδρ(x,z, t) is the dif-
ference between the local density and the mean background
stratification profile. The Jacobian (J ) terms represent the
nonlinear effects. In uniform stratification, nonlinear effects
do not exist for single-frequency internal wave beam solu-
tions of Eq. (1), as the Jacobian terms vanish (Tabaei et al.,
2005). In strongly varying stratification, as is found at the
ocean pycnocline, nonlinear refraction effects are possible. In
the present weakly nonlinear analysis, a plane internal wave
with frequencyω and horizontal wave numberk (wavelength
2π /k) is incident on the pycnocline, and the nonlinear Jaco-
bian terms calculated from this wave provide the forcing for
a harmonic mode with frequency 2ω and wave number 2k.
The wave stream functionψ and density perturbationδρ are

Nonlin. Processes Geophys., 21, 855–868, 2014 www.nonlin-processes-geophys.net/21/855/2014/



S. Wunsch et al.: Simulations of nonlinear harmonic generation 857

expressed as

ψ (x,z, t)= ψ1 (z)e
i(kx−ωt)

+ψ∗

1 (z)e
−i(kx−ωt)

+ψ2 (z)e
2i(kx−ωt)

+ψ∗

2 (z)e
−2i(kx−ωt) (2a)

δρ (x,z, t)= δρ1 (z)e
i(kx−ωt)

+ δρ∗

1 (z)e
−i(kx−ωt)

+ δρ2 (z)e
2i(kx−ωt)

+ δρ∗

2 (z)e
−2i(kx−ωt), (2b)

where∗ denotes complex conjugation (so that the solutions
are real). Hereψ1 andδρ1 represent the internal wave of fre-
quencyω incident on the pycnocline, andψ2 and δρ2 rep-
resent the harmonic correction to the solution, which is as-
sumed to be small. Inserting Eq. (2) into Eq. (1) and keeping
only the lowest order terms proportional to exp(-iωt) yields
the Taylor–Goldstein equation (Drazin and Reid, 1981) for
the stream function of plane internal waves:

∂2
zψ1 + k2

(
N

ω2

2

− 1

)
ψ1 = 0 (3a)

δρ1 =
ρk

gω
N2ψ1. (3b)

The terms proportional to exp(iωt) give the complex conju-
gate of Eq. (3). Higher order terms (proportional toψ1ψ2)

are assumed small and neglected in Eq. (3), so that the har-
monic has no effect on the primary wave beam (the weakly
nonlinear assumption). In the absence of any variation in the
background stratification profileN , the nonlinear terms van-
ish and solutions which obey the Taylor–Goldstein equation
(Eq. 3) are exact solutions of Eq. (1) (Tabaei and Akylas,
2005). In variable stratification, the nonlinear Jacobian terms
are nonzero and oscillate in time and space with the harmonic
frequency and wave number, as they are quadratic functions
of the incident beam stream function. Combining these non-
linear terms with the harmonic correction terms in Eq. (2),
which have the same dependence onkx−ωt , yields

∂2
zψ2 + (2k)2

((
N

2ω

)2

− 1

)
ψ2 =

k3

ω3

(
∂zN

2
)
ψ2

1 (4a)

δρ2 =
ρk

gω
N2ψ2 −

ρk2

2gω2

(
∂zN

2
)
ψ2

1 . (4b)

In constant stratification, Eq. (4) reduces to the Taylor–
Goldstein equation (Eq. 3) for a plane internal wave with fre-
quency 2ω and wave number 2k. The right-hand sides are the
nonlinear source terms due to refraction of the primary in-
ternal waveψ1 in variable stratification. Equation (4) shows
that internal wave refraction through any vertically varying
stratification profile (non-zero dN2/dz) would be expected to
generate harmonic modes with amplitude proportional to the
gradient ofN2.

For the specific case of a thin pycnocline below a mixed
layer with an incidence angle greater than 30◦, Diamessis et
al. (2014) found solutions to Eq. (4) using piecewise constant
N , with matching conditions at the boundaries between each

piecewise constant region (Drazin and Reid, 1981). Here this
solution is generalized to include smaller incidence angles
for comparison with numerical simulations. The pycnocline
consists of a sharp density change1ρ located at depthz= 0,
with constant buoyancy frequencyNo below the pycnocline
(z < 0) and zero stratification in the mixed layer above the
pycnocline (z > 0). The stratified and mixed layers are both
assumed to be semi-infinite.

A plane internal wave with frequencyω < No and hori-
zontal wave numberk is assumed to be incident on the pycn-
ocline from below. The stream function for the primary mode
is given by

ψ1=

{
A1exp(−ikzcotθ)+B1exp(ikzcotθ) z<0

C1exp(−kz) z>0
(5a)

sinθ ≡
ω

No
. (5b)

HereA1 is the amplitude of the incident wave andθ is its
incidence angle. Solutions for the reflected wave amplitude
B1 and evanescent wave amplitudeC1 have been computed
by Mathur and Peacock (2009) for1ρ = 0 and generalized
to include a density jump by Wunsch and Keller (2013) and
Diamessis et al. (2014).

The solution for the harmonic modeψ2 with wave number
2k and frequency 2ω for the case 2ω > No (incidence angles
θ > 30◦) was found by Diamessis et al. (2014):

ψ2 =

{
B2exp(2αkz) z < 0
C2exp(−2kz) z > 0

(6a)

B2 = C2 =
4k2A2

1

ω

 1− 2γ +
γ 2

sin2 θ

2(1+α)sin2θ − γ


1(

1− i tanθ
(
1−

γ

sin2 θ

))2
(6b)

α2
≡ 1−

(
No

2ω

)2

(6c)

γ ≡
gk1ρ

ρN2
o

. (6d)

This solution corresponds to an interfacial wave with ampli-
tudeB2 confined to the pycnocline. As is typical for weakly
nonlinear theories, the harmonic mode amplitudeB2 is pro-
portional to the square of the incident wave amplitudeA1,
which is assumed to be small. The constant of proportional-
ity is a function of the parameterγ, which gives the dimen-
sionless strength of the pycnocline in terms of the incident
wave number and the underlying buoyancy frequency. A sim-
ilar parameter was proposed to govern the coupling between
incident internal waves and interfacial waves in Akylas et
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al. (2007) and Mercier et al. (2012). The amplitudeB2 is in-
finite (a singularity) atγ = 2 (1+α) sin2θ , where the denom-
inator of Eq. (6b) vanishes. The singularity occurs when the
harmonic mode lies on the dispersion curve for freely prop-
agating interfacial waves on the pycnocline. Thorpe (1998)
found a slightly different expression for the harmonic am-
plitude, but it also had a singularity at the same value of
γ . Grisouard et al. (2011) offers a qualitatively similar ex-
planation based on phase-speed matching for trapped pycno-
cline modes. Very close to the singularity, weakly nonlinear
theory predicts arbitrarily large harmonic amplitudes, but its
assumptions clearly fail in this case due to wave-breaking
or other strongly nonlinear effects. In the simulations of Di-
amessis et al. (2014), the largest harmonic amplitudes were
found for incident waves with values ofγ in the vicinity of
the singularity. In this work, results for numerical simulations
with incidence anglesθ = 40◦ will be compared to Eq. (6).

For incidence anglesθ less than 30◦ (2ω < No), the so-
lution is an internal wave which propagates into the lower
stratified layer:

ψ2 =

{
B2exp(2ikzcotϕ) z < 0
C2exp(−2kz) z > 0

(7a)

B2 = C2 =
4k2A2

1

ω

(
1− 2γ + γ 2csc2θ

2(1+ i cotϕ)sin2θ − γ

)
1(

1− i tanθ
(
1− γ csc2θ

))2 (7b)

sinϕ ≡
2ω

No
= 2sinθ. (7c)

This case has not been explored in previous numerical or lab-
oratory studies. There is no singularity in the amplitude of the
harmonic mode, which is always finite. In this work, results
for numerical simulations with incidence anglesθ = 25◦ will
be compared to the predictions of Eq. (7).

3 Numerical simulation method

Fully nonlinear two-dimensional numerical simulations were
performed for two internal wave beam incidence angles and
a variety of pycnocline characteristics. The two-dimensional
equations of motion used in the simulations are

ρ

(
∂u

∂t
+ u

∂u

∂x
+w

∂u

∂z

)
= −

∂p

∂x
+ ρν

(
∂2u

∂x2
+
∂2u

∂z2

)
(8a)

ρ

(
∂w

∂t
+u

∂w

∂x
+w

∂w

∂z

)
=−

∂p

∂z
−gδρ+ρν

(
∂2w

∂x2
+
∂2w

∂z2

)
(8b)

∂δρ

∂t
+ u

∂δρ

∂x
+w

∂δρ

∂z
= w

ρN2

g
+ κ

(
∂2δρ

∂x2
+
∂2δρ

∂z2
+
d2ρo

dz2

)
(8c)

∂u

∂x
+
∂w

∂z
= 0. (8d)

Herex andz are the horizontal and vertical coordinates, re-
spectively;u andw are the horizontal and vertical veloci-
ties; p is the pressure perturbation (deviation from hydro-
static); andν and κ are the fluid kinematic viscosity and
mass diffusivity, respectively. The total densityρ consists
of three distinct components: a mean valueρo, an imposed
vertically varying stratification profile determined byN(z),
and a density perturbationδρ which is advected according to
Eq. (8c). These three density constituents obey the Boussi-
nesq approximation, with the background variations due to
N(z) being a few percent of the mean, and the fluctuations
δρ/ρo no greater than 10−5.

Spatial discretization of Eq. (8) is carried out via a pseudo-
spectral element method using Chebyshev polynomials, with
time advancement executed via a third-order Runge–Kutta
marching scheme (Ku et al., 1987, 1989). Details of the
numerical method can be found in the Appendix. Like all
simulations, it frequently produces nonphysical oscillations
when confronted with the steep density gradients that oc-
cur inside the pycnocline. To control such oscillations, En-
gquist et al. (1989) devised a nonlinear filtering algorithm
for equally spaced grid points so that the desired portions
(low frequency) are retained while the undesired (oscillatory
high frequency) portions are eliminated. It locates local ex-
trema and adjusts adjacent points, subject to the constraint
that the summation of each field variable remains the same
before and after the filtering. A modified version of the En-
gquist et al. (1989) filtering algorithm was applied here. The
modification not only allows the scheme to be applied for
unequally spaced allocation points, but also enforces a to-
tal variation diminished (TVD) scheme. The TVD-enforcing
filter suppresses small-amplitude spurious oscillations near
sharp boundaries and has been successfully implemented in
Ku and Sibeck (1997). Here, the nonlinear filter was applied
once every 60 time steps to the perturbed densityδρ and ve-
locity componentsu, w along a rectangular stripe enclosing
the thin pycnocline to eliminate any nonphysical oscillations,
if they exist.

The background buoyancy frequency profile (Eq. 1d) used
here is given by

N (z)

No
≡

 0
r

1

z >−λ+h

−λ < z <−λ+h

z <−λ

, (9)

whereh is the thickness of the pycnocline andλ is the in-
ternal wave beam width. The pycnocline has a buoyancy fre-
quency that is larger than that of the lower stratified layer by
a factor ofr. Above it is an unstratified mixed layer, with
thicknessλ−h, sufficient to avoid any finite depth effects
on pycnocline oscillations. At the pycnocline boundaries, the
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Figure 1. Layout of the numerical simulations.

buoyancy frequency changes linearly over a short distance
(0.1h) so thatN(z) is continuous at the grid scale. The den-
sity change across the pycnocline is found by integrating
Eq. (9):

g1ρ

ρN2
o

= r2h. (10)

Figure 1 is a schematic of the simulations. An internal wave
source with oscillation frequencyωf and thicknessλ is lo-
cated at the left edge of the simulation domain, in the range
−4λ < z <−3λ. It generates a beam which travels upward
through a uniformly stratified layer of fluid with buoyancy
frequencyNo until it passes through the pycnocline and re-
flects from the base of the mixed layer. The simulations used
two different frequencies to give incidence anglesθ of 25
and 40◦. The domain depth is 7.5λ, while its length is 21λ for
theθ = 40◦ simulations and 25λ for theθ = 25◦ simulations.
For the 40◦ incidence angle simulations, 79×54 elements (6
points per element) are used, while the 25◦ simulations use
93× 54 elements. The vertical resolution varies with depth;
to resolve the large density gradient in the pycnocline, there
are eight elements within the pycnocline and two more on
each pycnocline boundary. The horizontal resolution is uni-
form except in the vicinity of the beam source, where the res-
olution is more refined. Simulations were run for 20 internal
wave beam forcing periods to reach a steady state.

The internal wave beam is generated by imposing the os-
cillating boundary condition

u|x=0=Afωf cos
[
2π
( z
λ

+4
)

+ωf t
][

1− 4
( z
λ

+3.5
)2
]

(11a)

∂δρ

∂x

∣∣∣∣
x=0

= 0 (11b)

at the left (x = 0) boundary, within the range−4λ < z <
−3λ. This boundary condition is intended to mimic the oscil-
lating plate wave source with frequencyωf and amplitudeAf

Table 1.Simulation parameters.

θ (degrees) r ko (cm−1) γ (ko)

25 2 0.27 0.5
25 3 0.27 1.2
25 5 0.27 3.4
25 10 0.27 13.5
25 15 0.27 30.4
40 1.5 0.42 0.5
40 2.5 0.42 1.3
40 4 0.42 3.4
40 5 0.42 5.2
40 6 0.42 7.6
40 8 0.42 13.4

which is commonly used in laboratory experiments (Gosti-
aux et al., 2007; Mercier et al., 2012). The source velocity is
Afωf at the center of the source aperture (z= −3.5λ) and is
reduced quadratically toward the edge. Elsewhere on the side
and bottom boundaries, no slip boundary conditions are ap-
plied. Free slip boundary conditions are applied to the upper
boundary.

At the bottom and right edges of the simulation domain,
Rayleigh absorbing layers (Klemp and Durran, 1983) prevent
internal wave reflections from the boundaries. Within these
absorbing layers, an artificial damping term is added to the
right-hand side of equations of motion and mass:

τx = −βζ sin2
[
π

2

(
x− xd

xL− xd

)]
ζ ≡ ρu or δρ (12a)

τz = −βζ sin2
[
π

2

(
z− zd

zL− zd

)]
ζ = ρw or δρ. (12b)

Equation (12a) applies in the right damping layer (xd < x <

xL), and Eq. (12b) applies in the lower damping layer (zL <

z < zd). Hereβ = 28Afωf/λ is a damping coefficient. The
right damping layer thickness is 1.2λ, and the lower damping
layer thickness is 3.3λ.

Simulation parameters were selected to represent
laboratory-scale flows, such as those reported in Wunsch
and Brandt (2012) and Mercier et al. (2012). Parameters
common to all simulations areλ= 10 cm, h= 0.5 cm,
No = 0.7 rad s−1, Af = 0.25 cm, ν = 10−2 cm2 s−1,
κ = 10−4 cm2 s−1, and ρ = 1 g cm−3 at the top of the
domain. The only parameters which vary are the beam
incidence angleθ and the pycnocline buoyancy frequency
ratio r. These are listed in Table 1. The incident beam
contains a continuum of horizontal wave numbers, but the
wave number where the kinetic energy spectrum peaks
is listed asko in Table 1. The corresponding pycnocline
parameter (Eq. 6d) for this wave number is also given,
although the incident beam consists of a spectrum of wave
numbers, each associated with a different value ofγ (k).

Figure 2 shows an example image of the horizontal ve-
locity u(x,z) at the end of the simulation withθ = 25◦ and
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Figure 2.Example image of the horizontal velocityu(x,z) from the
simulation withθ = 25◦ andr = 5.

r = 5. To extract the incident beam amplitude and wave num-
ber spectrum, a cross section of the beam was extracted at a
depthz= −27 cm. An example power spectrum of the ki-
netic energy in the incident beam as a function of the cross-
beam wave numberkη and the frequencyω is presented in
Fig. 3 (left). The spectrum is nearly monochromatic in fre-
quency but has significant power for wave numbers up to
∼ 1.5 cm−1. The absence of harmonic content in the incident
beam is important, since harmonic generation is the focus
of the present study. Wave number spectra filtered to isolate
the frequencyωf and its lowest harmonics are presented in
Fig. 3 (right). These incident spectra are nearly identical for
all simulations. The crossbeam wave numberkη where the
forcing frequency spectrum peaks (0.65 cm−1) is converted
to a horizontal wave number using the relationk = kη sinθ
to compute the peak wave numberko listed in Table 1. Us-
ing the observed horizontal velocity and peak wave number,
the wave steepness (Diamessis et al., 2014), defined here as
max(ukη/2πNo), was 0.01 for all simulations.

The numerical simulations have been designed to explore
the thin pycnocline configuration described in the weakly
nonlinear refraction section. The piece-wise linear buoyancy
frequency profile is less realistic than the continually vary-
ing profiles of Grisouard et al. (2011) and Diamessis et
al. (2014), but it allows for precise definitions of the pyc-
nocline thicknessh and density change1ρ. To satisfy the
assumptions of the previous weakly nonlinear calculation,
the pycnocline characteristics must satisfy the conditions
koh� 1 andr2

� 1 (Diamessis et al., 2014). In the simu-
lations, the dimensionless thickness of the pycnoclinekoh

is 0.13 and 0.21 for theθ = 25◦ andθ = 40◦ cases, respec-
tively. With the possible exception of the smallestr values
in Table 1, the simulations presented here should satisfy the
thin pycnocline assumptions.

4 Results

Simulations were performed to elucidate how harmonic gen-
eration varies with beam incidence angle and pycnocline
characteristics for a thin pycnocline. Two harmonic gener-
ation mechanisms were expected to contribute: refraction
through the pycnocline, as described in Sect. 2 and in the
previous simulations of Diamessis et al. (2014), and over-
lap of the incident and reflected beams below the pycno-
cline, as in the harmonic generation at solid surfaces stud-
ied by Peacock and Tabaei (2005), Tabaei et al. (2005),
Gerkema et al. (2006), Rodenborn et al. (2011), and Gostiaux
et al. (2013). Both effects were observed here.

4.1 Overall flow behavior

Figure 4 illustrates the results typical for simulations with an
incidence angleθ of 25 degrees andr = 5. It shows the am-
plitude of the kinetic energy per unit mass in the incident
wave frequency (ωf , left) and lowest harmonic frequency
(2ωf , right) modes. These were computed by Fourier trans-
forming the time series of the velocities at each point in space
and keeping only the frequencies within 10 % of the fre-
quency of interest (0.9ωf < ω < 1.1ωf for the primary mode,
and 1.8ωf < ω < 2.2ωf for the harmonic). To avoid tran-
sient phenomena, the first eight wave periods were excluded.
The magnitude of the kinetic energy (|u|2 + |w|

2)/2 for each
band is presented on a logarithmic scale in Fig. 4. The path
of the incident and reflected beams are clearly exhibited in
red/orange in the left panel of Fig. 4. The right panel shows
the generation of a harmonic beam (orange/yellow) which
propagates downward from the pycnocline with angleϕ, as
given by Eq. (7c). The harmonic mode appears strongest
(orange) at two distinct generation sites. One is located at
the pycnocline (z∼ −10 cm) and is presumably associated
with refraction. The other is located in the stratified layer
(z∼ −15 cm) where the buoyancy frequency is constant but
the incident and reflected beams overlap. Here the harmonic
generation is presumably analogous to that observed in re-
flections from solid surfaces. Since both sites lie along the
harmonic beam path, they may both contribute to its ampli-
tude. Other simulations with different values of the pycno-
cline buoyancy frequency ratior exhibit results very similar
to Fig. 4. The amplitude of the harmonic beam varies only
slightly when the value ofr is changed.

Figure 5 shows the filtered kinetic energy per unit mass
from a simulation withθ = 40 degrees andr = 4. The pri-
mary frequency band (left) is very similar to theθ = 25◦

case (Fig. 4), apart from the steeper beam angle. The har-
monic band (right) exhibits generation (red/orange) at ap-
proximately the same locations as theθ = 25◦ case (Fig. 5),
namely atz∼ −10 cm due to refraction, and atz∼ −15 cm
due to beam overlap. However, because the harmonic fre-
quency 2ωf exceeds the buoyancy frequencyNo in the lower
layer, no propagating harmonic beam is able to form. Instead,
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Figure 3. An example incident internal wave beam 2-D kinetic energy (log scale) spectrum (left), which is strongly peaked at the forcing
frequency, and the spectrum filtered for primary and harmonic frequencies (right). Results from the simulation withθ = 40◦ andr = 4.

Figure 4. Kinetic energy amplitude in the incident frequency (ωf , left) and lowest harmonic (2ωf , right) bands for the simulation withθ = 25
degrees andr = 5, illustrating the radiated harmonic beam.

an interfacial wave is seen propagating along the pycnocline
(z∼ −10 cm) away from the refraction generation region.
The beam overlap generation site is not spatially connected
to the pycnocline interfacial wave and may not contribute
significantly to its formation. Results for other values ofr
exhibit interfacial waves with different amplitudes; Fig. 5
shows one of the strongest cases. However, all of the sim-
ulations exhibit two distinct harmonic generation sites, with
only the pycnocline refraction site appearing to be connected
to the interfacial wave.

To further illustrate the characteristics of the harmonic
mode, Fig. 6 presents the vertical velocity at the end of sim-
ulation with θ = 25◦ and r = 5. In addition, time-filtered
velocity fields for the primary and harmonic modes are
shown in the middle and lower panels, respectively. These
were computed using the same Fourier band-pass method as
Figs. 4 and 5. A harmonic beam originating from the pycn-
ocline incidence region is clearly seen in the bottom panel.
The harmonic velocity amplitude is about 10 % of the in-
cident beam amplitude, while its horizontal wavelength is

smaller. Results for other values ofr with θ = 25◦ are very
similar to Fig. 6.

Figure 7 presents the total and filtered vertical velocities
(as in Fig. 6) for the case withθ = 40◦ andr = 2.5. In this
case, the harmonic mode is confined to the vicinity of the
pycnocline, originating in the primary beam incidence region
and propagating to the right. The maximum amplitude of the
harmonic velocity field is about 10 % of the primary beam.

Figure 8 compares the trapped pycnocline harmonic mode
for θ = 40◦ and r = 2.5, 4.0, and 5.0. The filtered vertical
velocity (as in the bottom panel of Figs. 6 and 7) is shown
on a domain which is restricted to focus on the pycnocline.
The vertical velocity is largest within the pycnocline (z=

−9.5 to −10 cm) and propagates horizontally. The observed
modes lack significant vertical structure within the pycno-
cline, unlike the simulations of Diamessis et al. (2014) with
thicker pycnoclines. The horizontal wavelength of the har-
monic increases withr, consistent with the weakly nonlinear
result that the preferred harmonic interfacial wave number
is inversely proportional to the pycnocline density jump1ρ
(Eq. 6) for fixedθ . This preferred wave number lies on the
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Figure 5. Kinetic energy amplitude in the incident frequency (ωf , left) and lowest harmonic (2ωf , right) bands for the simulation withθ = 40
degrees andr = 4, illustrating the trapped harmonic mode.

Figure 6.Snapshot of the vertical velocity field (top) for the simula-
tion with θ = 25 degrees andr = 5. Time-filtered velocity fields for
theωf (middle) and 2ωf (bottom) bands show the radiated harmonic
wave beam.

dispersion curve for an interfacial wave with a frequency that
is twice the incident wave frequency. The amplitude is also
smaller for larger values ofr (note the different color scales).
The trapped harmonics decay with distance from the inci-
dence region, presumably due to viscous dissipation. This
effect appears strongest for the shortest wavelength modes
(r = 2.5).

4.2 Comparison with weakly nonlinear theory

For incidence angles exceeding 30 degrees, the weakly non-
linear refraction calculation suggests that the amplitude of
the trapped harmonic will be largest for the wave number
which lies on the interfacial wave dispersion curve for the
given harmonic frequency. To evaluate this conjecture, two-
dimensional spectra of kinetic energy were computed along

Figure 7. Snapshot of the vertical velocity field (top) for the simu-
lation withθ = 40 degrees andr = 2.5. Time-filtered velocity fields
for theωf (middle) and 2ωf (bottom) bands show the trapped har-
monic mode.

the pycnocline downstream of the internal wave beam in-
cidence location. The sampled depth interval was fromz=

−10.5 cm toz= −10.0 cm (just below the pycnocline). The
selected horizontal interval extended fromx = 20 cm (near
beam incidence) downstream tox = 60 cm for the smallest
value of r and tox = 200 cm for the largest. Longer hori-
zontal intervals were used for larger values ofr to capture
the longer wavelengths (as shown in Fig. 8), while shorter
values were used for smallerr to minimize the effect of
viscous dissipation on the shorter wavelengths. The first 10
wave periods were excluded, to allow time for the interfacial
wave to form and reach a steady state, and Welch windowing
was used.

Figure 9 presents the results for three different values of
r. The dispersion relation of an interfacial wave is shown
by dotted white lines in Fig. 9, which crossesω = 2ωf at
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Figure 8.The trapped harmonic mode forr = 2.5 (top),r = 4 (mid-
dle), andr = 5 (bottom). Asr increases, the wavelength of the pre-
ferred pycnocline mode increases and the amplitude decreases.

wave number 0.9 cm−1 for r = 2.5, 0.4 cm−1 for r = 4, and
0.2 cm−1 for r = 6. These wave numbers correspond to the
value ofγ resulting in a singularity in the harmonic ampli-
tude in Eq. (6). (Forθ = 40◦, γ ∼ 1.35.) The harmonic am-
plitude is also proportional to the square of the incident beam
amplitude, so formation of a strong harmonic at the natural
interfacial wave number requires significant incident energy
at half this wave number. The incident beam kinetic energy
spectrum peaks at 2ko ∼ 0.85 cm−1, which lies closest to the
natural interfacial wave forr = 2.5 (0.9 cm−1). As expected,
the strongest harmonic amplitude was observed forr = 2.5,
with weaker harmonics for larger values ofr. The harmonic
spectrum peaks near the white curves forr = 2.5 andr = 4,
which lie within the band of significant incident energy. For
r = 6, the white curve has moved far outside this band, and
no peak is found at the natural interfacial wave number due
to the lack of incident energy. All of these observations are
consistent with the selection of the trapped harmonic wave
number predicted by the weakly nonlinear theory.

Figure 10 presents a more quantitative comparison of the
harmonic amplitudes observed in the numerical simulations
and the weakly nonlinear refraction calculation. The black
(θ = 40◦) and blue (θ = 25◦) lines show the weakly non-
linear prediction for the harmonic kinetic energy of a plane
wave as a function ofγ (k)= r2 kh, normalized by the inci-
dent beam kinetic energy. These are computed from Eqs. (6b)
and (7b) using the definition of the stream function, yielding

|KEH|ω2
f

|KEinc|
2k2

=

(
1− 2γ + γ 2csc2θ

2(1+α)sin2θ − γ

)2

(13a)(
8sin2θ

1+ tan2θ
(
1− γ csc2θ

)2
)2

2
(
1+α2

)
e4αkz θ ≥ 300

|KEH|ω2
f

|KEinc|
2k2

=

 1− 2γ + γ 2csc2θ√
sin2θ (1− 4γ )+ γ 2

2

(13b)

(
8sin2θ

1+ tan2θ
(
1− γ csc2θ

)2
)2

2
(
1+ cot2ϕ

)
θ ≤ 300.

Comparable simulation results for the normalized kinetic en-
ergy are shown by symbols in Fig. 10. The value ofγ for
each simulation is based on the wave numberko of the peak
in the incident energy spectrum (Table 1), and is equal to
r2koh. The incident wave beam kinetic energy was found by
applying the same algorithm to the crossbeam spectra, such
as those shown in Fig. 3. The incident beam amplitude was
the same for all simulations with the same incidence angle
(7.0× 10−5 cm2 s−2 for θ = 25◦ and 1.6× 10−4 cm2 s−2 for
θ = 40◦), so the dependence onγ (ko) in Fig. 10 is due en-
tirely to changes in the harmonic amplitude. For theθ = 40◦

cases (black circles), the harmonic amplitude was computed
from the spectra shown in Fig. 9 by filtering to keep fre-
quencies within 10 % of the harmonic 2ωf and then integrat-
ing over all wave numbers to obtain a total kinetic energy
amplitude for the harmonic frequency. For simulations with
θ = 40◦, the normalized harmonic amplitude is in reasonable
agreement with the weakly nonlinear result (Eq. 13a). This
is in spite of the fact that Eq. (13a) assumes a plane wave
with a single wave number, while the numerical simulations
have an incident beam with a wave number spectrum peaked
at ko. The strongest harmonic interfacial wave is found for
γ (ko)= 1.3, which corresponds to the approximate location
of the singularity in the weakly nonlinear refraction result
(Eq. 13a). The actual amplitude in the numerical simulation
result is finite, as the weakly nonlinear calculation neglects
fully nonlinear effects that are important at this wave number.
The harmonic amplitude decreases for other values ofγ (ko)

as the harmonic of the incident wave number peak moves
away from the interfacial wave dispersion curve.

For θ = 25◦, the kinetic energy in the harmonic beam
was computed from a cross-beam profile in the stratified
lower layer, analogous to the calculation of the incident beam
kinetic energy. The normalized results are shown by blue
squares in Fig. 10. Except for the smallest value ofγ (ko), the
harmonic amplitude is independent of the pycnocline buoy-
ancy frequency and much larger than the weakly nonlinear
prediction of Eq. (13b). This suggests that, in these cases,
nonlinear harmonic generation in the beam overlap region
(which is not accounted for in the plane wave calculation
leading to Eq. 13b) dominates over refraction in forming the
radiated harmonic beam. Hence the natural extension of the
weakly nonlinear theory in Diamessis et al. (2014), which
yields good agreement with simulations of trapped harmon-
ics, fails to explain the large harmonic amplitudes found here
for radiated harmonics.
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Figure 9. Kinetic energy spectra in the pycnocline for simulations withθ = 40 degrees and three values ofr. The white line shows the
dispersion curve for interfacial waves in each case.

Figure 10.Comparison of the kinetic energy amplitudes in the har-
monic mode between the simulations (symbols) and Eq. (13) (dot-
ted lines) from the weakly nonlinear refraction calculation.

5 Discussion and future work

The fully nonlinear simulations of an internal wave beam in-
cident on a thin pycnocline presented here demonstrate two
distinct mechanisms of harmonic generation. For beam inci-
dence angles exceeding 30 degrees, refraction at the pycno-
cline generates a harmonic interfacial wave which is trapped
within the pycnocline. The harmonic mode is strongest when
the incident beam kinetic energy spectrum peaks at a wave
numberko such that its harmonic (2ω, 2ko) lies on the dis-
persion curve for a freely propagating interfacial wave. The
numerical results approximately agree with a weakly nonlin-
ear calculation for plane wave refraction at the pycnocline.
For smaller incidence angles, a harmonic beam is radiated
into the lower stratified layer. The overlap of the incident and
reflected beams below the pycnocline appears to be the dom-
inant mechanism for the generation of the harmonic beam.
Although pycnocline refraction is also capable of generat-
ing a harmonic beam, this mechanism appeared to be less
important than beam overlap for an incidence angle of 25

degrees. Hence the weakly nonlinear theory of trapped har-
monics (Diamessis et al., 2014) fails to extend to smaller in-
cidence angles with radiated harmonics.

Oceanic internal wave beams generally have incidence
angles much less than 30 degrees. Nonlinear energy trans-
fer to higher frequency radiated harmonics may play a
role in the degradation of such beams as well as to the
observed spectrum of internal waves in the oceans. For
very small incidence angles, the normalized kinetic en-
ergy of the harmonic in Eq. (13b) reduces to a constant
(|KEH|/|KEinc|

2
= 32k2/ω2), independent of incidence an-

gle or pycnocline characteristics. This is comparable to the
harmonic amplitude attributed to beam overlap in the sim-
ulations. An oceanic internal wave beam might have a ve-
locity scale of 0.1 m s−1, as observed in the Hawaii Ocean
Mixing Experiment (Cole et al., 2009), a wave numberk ∼

10−4 m−1, and frequencyω ∼ 2×10−4 s−1. In this example,
both the weakly nonlinear analysis and the extrapolation of
the simulation results yield a harmonic kinetic energy that is
∼ 10 % of the incident kinetic energy. This estimate suggests
that harmonic generation might be significant in the oceans.
Whether refraction or beam overlap is more important for
small incidence angles is a topic of future work.

Excitation of a pycnocline interfacial wave by the lowest
harmonic is only possible for incidence angles greater than
30 degrees, which is generally not the case for oceanic inter-
nal wave beams. Although the lowest harmonic will be ra-
diated for smaller incidence angles, higher harmonics might
be trapped within the pycnocline if their frequency exceeds
the buoyancy frequency below the pycnocline. If a higher
harmonic matched the dispersion relation for an interfacial
wave, analogous to the weakly nonlinear analysis presented
here for the lowest harmonic, it might attain significant am-
plitude. As in the simulations presented here, pycnocline re-
fraction may be the dominant mechanism for generation of
higher harmonic interfacial waves. Trapped harmonic modes
have been conjectured to play a role in the local genera-
tion of internal solitary waves on the pycnocline (New and
Pingree, 1990, 1992; da Silva et al., 2007, 2009; Grisouard
and Staquet, 2010; Grisouard et al., 2011). Estimation of the
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amplitudes of harmonics beyond the lowest for small inci-
dence angles is left to future work.

Harmonics of the semi-diurnal tides have recently been
observed near the pycnocline in the South China Sea (Xie et
al., 2013). Tidal oscillations differ from internal wave beams,
but refraction at the pycnocline would still be expected to
generate harmonics according to Eq. (4). Future studies of
semi-diurnal tides in the presence of a pycnocline are needed
to evaluate the magnitude of harmonic generation by refrac-
tion in this case. Rotation may also be important here, so
three-dimensional simulations would likely be needed for
quantitative understanding of this effect.
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Appendix A: Numerical method

A Runge–Kutta third-order time-marching scheme is applied
to solve the equations of motion (Eq. 8a), which are rewritten
in tensor form

∂δρ

∂t
=H

∂ui

∂t
+

1

ρ

∂p

∂xi
= Fi, (A1)

whereH = −uj
∂δρ
∂xj

+ w
ρN2

g
+ κ

∂2δρ

∂x2
j

,

Fi =
1
ρ

(
−uj

∂ui
∂xj

− gδρδjz + ρν
∂2ui
∂x2
j

)
and i,j = 1,2.δjz =

1 whenj = z.
At each intermediate step, we first predict the velocity

field without the pressure gradient, and then correct the ve-
locity field by imposing the incompressibility constraint in
terms of the pressure Poisson equation. The solution from
time steptn to time steptn+1 proceeds in sequence with
three steps according to the Runge–Kutta third-order time-
marching scheme. For simplicity, we only address the third
step in detail.

Third step: predicted velocity

δρ(3) = δρn+
1t
6(

H
(
δρn,uni

)
+ 4H

(
δρ(1),u

(1)
i

)
+H(δρ(2),u

(2)
i )
)

ρ(3) = ρ̄o + δρ(3)

u
(3)
i = uni +

1t
6(

Fi(δρ
n,uni )+ 4Fi

(
δρ(1),u

(1)
i

)
+Fi

(
δρ(2),u

(2)
i

))
,

(A2)

whereδρ(k),u(k)i , k = 1,2 stands for the perturbed density
and corrected velocity components at step 1 and 2.

Third step: corrected velocity

un+1
i = u

(3)
i −1t 1

ρ(3)
∂p
∂xi

∂un+1
i

∂xi
= 0

(A3)

In order to satisfy the incompressibility constraint (Eq. 8d),
an equation for the pressure at the third step can be obtained
by taking the divergence of Eq. (A3). Thus

∂

∂xi

(
1

ρ(3)

∂p

∂xi

)
=

1

1t

∂u
(3)
i

∂xi
. (A4)

If p satisfies Eq. (A4), thenun+1
i does indeed satisfy the in-

compressibility constraint. The solution of the pressure Pois-
son equation, Eq. (A4), is the most computationally expen-
sive step, but in Cartesian coordinates it can be iteratively
solved numerically by separation variables due to the weakly
nonlinear operator of Eq. (A4).

Equation (A4) is of the general form

Lp = S. (A5)

Instead of solving Eq. (A5), we iteratively solve

L̃−1Lp = L̃−1S. (A6)

The approximate operator̃L can be rationally constructed
from the linearized operator ofL via

L̃p =
∂

∂xi

(
1

ρ̄o(z)

∂p

∂xi

)
. (A7)

Since the approximate operatorL̃ is linear, the inverse of̃L
can be easily obtained through the separation of variables
(Ku et al., 1989). Usually 1∼ 2 iterations should be sufficient
to have an accurate solution of the pressure field.

We use the method of selected points (collocation) to carry
out the spacial discretization of the dependent variables in
terms of smooth functions (here Chebyshev polynomials).
This global pseudospectral method with a single element is
particularly attractive for problems which exhibit a bound-
ary layer structure. While the resolution of a problem with
a boundary layer of thicknessε requiresO(1/ε) uniformly
spaced points, onlyO(1/

√
ε) terms of the Chebyshev ex-

pansion are needed for the pseudospectral method.
With the collocation points selected as the extrema

of Chebyshev polynomialsxj = cos(πj/N)(0 ≤ j ≤N),
a smooth functionf (x) defined in x ∈ [−1,1] can be
expanded in Chebyshev polynomials; that isf (xj )=∑N
n=0anTn(xj ), wherean are the expansion coefficients and

Tn(xj )= cos(πnj/N) are thenth-order Chebyshev polyno-
mials. In discrete form the first and second derivatives of
f (x) at the collocation pointxj can be viewed in detail in Ku
et al. (1987). When the domain of interest isx ∈ [x1,x2], the
above expressions are modified by a coordinate transform.
Therefore, the derivatives are multiplied by 2/(x2 − x1)

q ,
whereq = 1,2.

The pseudospectral element method of Ku et al. (1989)
provides even more flexibility than the global pseudospec-
tral method. According to this scheme, the spatial domain
is divided into NE elements, each of which containsN + 1
collocation points. The only requirement for calculating the
derivatives is that the function(c0) be continuous across the
interface between two adjacent elements. The element lay-
out can be arbitrary but should be clustered in the vicinity of
the steep gradients accompanying shocks and thin boundary
layers.

Nonlin. Processes Geophys., 21, 855–868, 2014 www.nonlin-processes-geophys.net/21/855/2014/



S. Wunsch et al.: Simulations of nonlinear harmonic generation 867

Acknowledgements.We are grateful to Pete Diamessis and Nicolas
Grisouard, Alan Brandt, and Matthew Paoletti for numerous
suggestions and enlightening and stimulating conversations. This
work was supported by the Johns Hopkins University Applied
Physics Laboratory (JHU/APL) Independent Research and De-
velopment program. Computational resources were provided by
the US Department of Defense High Performance Computing
Modernization Program.

Edited by: V. I. Vlasenko
Reviewed by: two anonymous referees

References

Balmforth, N. J. and Peacock, T.: Tidal conversion by supercritical
topography, J. Phys. Oceanogr., 39, 1965–1974, 2009.

Bell, T. H.: Topographically generated internal waves in the open
ocean, J. Geophys. Res., 80, 320–327, 1975.

Bourget, B., Dauxois, T., Joubaud, S., and Odier, P.: Experimen-
tal study of parametric subharmonic instability for plane internal
waves, J. Fluid Mech., 723, 1–20, 2013.

Cole, S. T., Rudnick, D. L., Hodges, B. A., and Martin, J. P.: Obser-
vations of tidal internal wave beams at Kauai Channel, Hawaii,
J. Phys. Oceanogr., 39, 421–436, 2009.

da Silva, J. C. B., New, A. L., and Azevedo, A.: On the role of SAR
for observing “local generation” of internal solitary waves off the
Iberian Peninsula, Can. J. Remote Sens., 33, 388–403, 2007.

da Silva, J. C. B., New, A. L., and Magalhaes, J. M.: In-
ternal solitary waves in the Mozambique Channel: Obser-
vations and interpretation, J. Geophys. Res., 114, C05001,
doi:10.1029/2008JC005125, 2009.

Diamessis, P. J., Wunsch, S., Delwiche, I., and Richter, M. P.: Non-
linear generation of harmonics through the interaction of an inter-
nal wave beam with a model oceanic pycnocline, Dynam. Atmos.
Oceans, 66, 110–137, 2014.

Dossmann, Y., Auclair, F., and Paci, A.: Topographically in-
duced internal solitary waves in a pycnocline: Secondary
generation and selection criteria, Phys. Fluids, 25, 086603,
doi:10.1063/1.4817373, 2013.

Drazin, P. G. and Reid, W. H.: Hydrodynamic Stability, Cambridge
University Press, Cambridge, 1981.

Echeveri, P. and Peacock, T.: Internal tide generation by arbi-
trary two-dimensional topography, J. Fluid Mech., 659, 247–266,
2010.

Engquist, B. P., Lotstedt, P., and Sjogreen, B.: Nonlinear filters for
efficient shock computation, Math. Comput., 52, 509–537, 1989.

Garrett, C.: Internal tides and ocean mixing, Science, 308, 1858–
1859, 2003.

Garrett, C. and Kunze, E.: Internal tide generation in the deep ocean,
Ann. Rev. Fluid Mech., 39, 57–87, 2007.

Garrett, C. and Munk. W.: Internal waves in the ocean, Ann. Rev.
Fluid Mech. , 11, 339–369, 1979.

Gayen, B. and Sarkar, S.: Direct and large-eddy simulations of in-
ternal tide generation at a near-critical slope, J. Fluid Mech., 681,
48–79, 2011.

Gayen, B. and Sarkar, S.: Degradation of an internal wave beam by
parametric subharmonic instability in an upper ocean pycnocline,
J. Geophys. Res. Oceans, 118, doi:10.1002/jgrc.20321, 2013.

Gerkema, T., Staquet, C., and Bouruet-Aubertot, P.: Nonlinear ef-
fects in internal tide beams and mixing, Ocean Modell., 12, 302–
318, 2006.

Gostiaux, L., Didelle, H., Mercier, S., and Dauxois, T.: A novel in-
ternal wave generator, Exp. Fluids , 42, 123–130, 2007.

Gostiaux, L., Grisouard, N., Leclair, M., and Staquet, C.: Mean
currents induced by reflecting internal gravity waves, Euromech
Colloquium 552, Berlin, Germany, 2013.

Grisouard, N. and Staquet, C.: Numerical simulations of the local
generation of internal solitary waves in the Bay of Biscay, Non-
lin. Processes Geophys., 17, 575–584, doi:10.5194/npg-17-575-
2010, 2010.

Grisouard, N., Staquet, C., and Gerkema, T.: Generation of inter-
nal solitary waves in a pycnocline by an internal wave beam: a
numerical study, J. Fluid Mech. , 676, 491–513, 2011.

Holloway, G.: Oceanic Internal Waves Are Not Weak Waves, J.
Phys. Oceanogr., 10, 906–914, 1980.

Klemp, J. B. and Durran, D. R.: An upper boundary condition per-
mitting internal gravity wave radiation in numerical mesoscale
models, Mon. Weather Rev., 111, 430–444, 1983.

Koudella, C. R. and Staquet, C.: Instability mechanisms of a two-
dimensional progressive internal gravity wave, J. Fluid Mech. ,
548, 165–196, 2006.

Ku, H. C. and Sibeck, D. G.: Internal structure of flux transfer events
produced by the onset of merging at a single X line, J. Geophys.
Res., 102, 2243–2260, 1997.

Ku, H. C., Hirch, R. S., and Taylor, T. D.: A pseudospectral method
for solution of the three-dimensional incompressible Navier-
Stokes equations, J. Comput. Phys., 70, 439–462, 1987.

Ku, H. C., Hirch, R. S., Taylor, T. D., and Rosenberg, A. P.: A
pseudospectral matrix element method for solution of three-
dimensional incompressible flows and its parallel implementa-
tion, J. Comput. Phys., 83, 260–291, 1989.

Llewellyn-Smith, S. G. and Young, W. R.: Tidal conversion at a very
steep ridge, J. Fluid Mech., 495, 175–191, 2003.

Lien, R.-C. and Gregg, M. C.: Observations of turbulence in a tidal
beam and across a coastal ridge, J. Geophys. Res., 106, 4575–
4591, 2001.

Martin, J. P., Rudnick, D. L., and Pinkel, R.: Spatially broad ob-
servations of internal waves in the upper ocean at the Hawaiian
ridge, J. Phys. Oceanog., 36, 1085–1103, 2006.

Mathur, M. and Peacock, T.: Internal wave propagation in non-
uniform stratifications, J. Fluid Mech., 639, 133–152, 2009.

Mercier, M. J., Mathur, M., Gostiaux, L., Gerkema, T., Magalhaes,
J. M., da Silva, J. C. B., and Dauxois, T.: Soliton generation by
internal tidal beams impinging on a pycnocline: laboratory ex-
periments, J. Fluid Mech., 704, 37–60, 2012.

New, A. L. and Pingree, R. D.: Large-amplitude internal soliton
packets in the central Bay of Biscay, Deep-Sea Res., 37, 513–
524, 1990.

New, A. L. and Pingree, R. D.: Local generation of internal soliton
packets in the central Bay of Biscay, Deep-Sea Res., 39, 1521–
1534, 1992.

Peacock, T. and Tabaei, A.: Visualization of nonlinear effects
in reflecting internal wave beams, Phys. Fluids, 17, 061702,
doi:10.1063/1.1932309, 2005.

Petrelis, F., Llewellyn-Smith, S. G., and Young, W. R.: Tidal con-
version at a submarine ridge, J. Phys. Oceanogr., 36, 1053–1071,
2006.

www.nonlin-processes-geophys.net/21/855/2014/ Nonlin. Processes Geophys., 21, 855–868, 2014

http://dx.doi.org/10.1029/2008JC005125
http://dx.doi.org/10.1063/1.4817373
http://dx.doi.org/10.1002/jgrc.20321
http://dx.doi.org/10.5194/npg-17-575-2010
http://dx.doi.org/10.5194/npg-17-575-2010
http://dx.doi.org/10.1063/1.1932309


868 S. Wunsch et al.: Simulations of nonlinear harmonic generation

Rodenborn, B., Kiefer, D., Zhang, H. P., and Swinney, H. L.: Har-
monic generation by reflecting internal waves, Phys. Fluids, 23,
026601, doi:10.1063/1.3553294, 2011.

Smith, S. and Crockett, J.: Experiments on nonlinear harmonic gen-
eration from colliding internal wave beams, Exp. Fluids and
Thermal Sci., 54, 93–101, 2014.

Tabaei, A. and Akylas, T. R.: Nonlinear internal gravity beams, J.
Fluid Mech., 482, 141–161, 2003.

Tabaei, A., Akylas, T. R., and Lamb, K. G.: Nonlinear effects in
reflecting and colliding internal wave beams, J. Fluid Mech., 526,
217–243, 2005.

Thorpe, S. A.: Nonlinear reflection of internal waves at a density
discontinuity at the base of a mixed layer, J. Phys. Oceanogr.,
28, 1853–1860, 1998.

Wunsch, S. and Brandt, A.: Laboratory experiments on internal
wave interactions with a pycnocline, Exp. Fluids, 53, 1663–1679,
2012.

Wunsch, S. and Keller, K.: Unstable modes of a sheared pycnocline
above a stratified layer, Dynam. Atmos. Oceans, 60, 1–27, 2013.

Xie, X., Shang, X., van Haren, H., and Chen, G.: Observations of
enhanced nonlinear instability in the surface reflection of internal
tides, Geophys. Res. Lett., 40, 1580–1586, 2013.

Zhao, Z. X., Alford, M. H., Girton, J., Johnston, T. M. S., and
Carter, G.: Internal tides around the Hawaiian Ridge estimated
from multisatellite altimetry, J. Geophys. Res., 116, C12039,
doi:10.1029/2011JC007045, 2011.

Zhou, Q. and Diamessis, P. J.: Reflection of an internal gravity wave
beam off a horizontal free-slip surface, Phys. Fluids, 25, 036601,
doi:10.1063/1.4795407, 2013.

Nonlin. Processes Geophys., 21, 855–868, 2014 www.nonlin-processes-geophys.net/21/855/2014/

http://dx.doi.org/10.1063/1.3553294
http://dx.doi.org/10.1029/2011JC007045
http://dx.doi.org/10.1063/1.4795407

