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Abstract. We use a recently developed Lagrangian trans-
port tool, Lagrangian descriptors, to compare the trans-
port properties of data distributed by AVISO and numeri-
cal simulations obtained from the HYCOM model in the
Yucatán–Florida current system. Our data correspond to the
months from June through August 2010. Structures obtained
from HYCOM are noisier than those from AVISO; however,
both AVISO and HYCOM succeed in identifying Lagrangian
structures that influence the paths of drifters, such as eddies,
currents, lobes, etc. We find evidence in which AVISO gives
the positions of important hyperbolic trajectories in a manner
that is inconsistent with the trajectories of the drifters, while
for the same examples HYCOM succeeds to this end.

1 Introduction

This research is concerned with the use of theoretical and
computational techniques coming from dynamical systems
theory that are used to assess the performance of gridded
velocity fields originating from realistic ocean models and
data sets. The development of the Lagrangian aspects of
fluid transport in the context of oceanic flows has received
a great deal of motivation from the popularity and from the
successes of the dynamical systems approach to fluid trans-
port in the 1980s and 1990s. Background and reviews can be
found in Jones and Winkler(2002), Mancho et al.(2006b),
Wiggins (2005), andSamelson and Wiggins(2006). Hyper-
bolic trajectories and their stable and unstable manifolds pro-
vide a generalization to the time-dependent setting of saddle-
type stagnation points and their separatrices. In general, in-

variant manifolds are material curves (or surfaces in three di-
mensions; see for instanceBettencort et al., 2012; Froyland
et al., 2012) that form aLagrangian skeletonthat governs the
spatiotemporal evolution of the transport of fluid particles.
Methods for computing hyperbolic trajectories and their sta-
ble and unstable manifolds for velocity fields defined as finite
time data sets can be found inMiller et al. (1997), Malhotra
and Wiggins(1998), Haller (2000), Mancho et al.(2003),
Mancho et al.(2004), andBranicki and Wiggins(2009). Fi-
nite time Lyapunov exponents (FTLEs) and finite size Lya-
punov exponents (FSLEs) have proved useful for determin-
ing proxies for invariant manifolds (see, e.g.,Pierrehumbert,
1991; Haller and Yuan, 2000; Haller, 2001a; Haller, 2001b;
Shadden et al., 2005; Lekien et al., 2007; andd’Ovidio et al.,
2004). In this paper we use a recently developed Lagrangian
tool, referred to as aLagrangian descriptor(Mancho et al.,
2013), that is described in detail in Sect.5.

Nowadays, a huge amount of “realistic” ocean data sup-
plied by direct observations is available. Surface currents are
measured either through high-frequency coastal radars and
satellite altimeters or, alternatively, through measurements
with in situ devices (i.e., acoustic Doppler current profil-
ers, ADCPs, mounted on vessels, fixed moorings, gliders,
drifters). Many of these data are assimilated into numerical
oceanic models, which in turn provide outputs of velocity
and other scalar fields in full 3-D domains. Obtaining ac-
curate representations of oceanic currents is of tremendous
importance not only for a better management of catastrophic
events, such as, for instance, contaminant dispersion, but also
for their direct impact on marine life and fishing banks, for
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optimizing shipping routes, for search and rescue operations,
etc.

Lagrangian techniques have been applied to different
oceanic data sets for purposes related to the goals of this
work. For instance, the correlation between Lagrangian
structures obtained from radar data in different ocean areas
is discussed byShadden et al.(2009) andHaza et al.(2010).
Kuznetsov et al.(2002) have examined the role played by La-
grangian structures in the Gulf of Mexico. In particular, they
have analyzed data from the Colorado University Princeton
Ocean Model and have compared the geometry of the dy-
namics with simultaneous trajectories of drifters measured
in an independent way. Indirectly the agreement between the
drifter evolution and the Lagrangian patterns serves as a con-
firmation of the model quality. The ability of coastal models
to capture the true Lagrangian structure of ocean flows has
been discussed also inHaza et al.(2007) by using FSLEs,
and they concluded that this model-derived Lagrangian met-
ric was capable of predicting the general fate of observed
drifter pairs.Griffa et al. (2013) point out that accuracy of
Lagrangian diagnosis is directly tied to the accuracy of the
Eulerian velocity and perform experiments that prove that
the Lagrangian diagnosis relying on Eulerian fields from
accurate operational coastal models can successfully guide
real-time drifter launch strategies. In turn hyperbolic trajec-
tories detected by Lagrangian techniques have guided drifter
launch strategies for a better Lagrangian assimilation (Mol-
card et al., 2006).

Lagrangian techniques have been used to provide feedback
that improve numerical models. For instanceTitaud et al.
(2011) implement an assimilation method that uses corre-
spondence between advected passive scalars and FTLEs and
vectors.Nencioli et al.(2011) propose an iterative method
that uses satellite data, ADCP and drifters to improve the de-
tection of Lagrangian coherent structures (LCSs).Nencioli
et al.(2013) use FTLE to estimate horizontal eddy diffusiv-
ity, a parameter required by numerical simulations.

Lagrangian techniques have also been used in the past to
compare predictions based on different data sets.Beron-Vera
et al.(2010) evaluate the surface ocean mixing predicted by
two different altimetry AVISO products, REF and UPD, con-
structed with, respectively, two and four satellite altimeters.
Their analysis is based on a mixing characterization obtained
from statistics based on FTLE. They also compare the quality
of the data based on the agreement between a drifter trajec-
tory and the Lagrangian skeleton supplied by the FTLE. With
their analysis they improve the previous purely Eulerian anal-
ysis of the data (Pascual et al., 2006); however, a weakness
of their approach is that FTLEs develop spurious structures
that have no Lagrangian interpretation (Branicki and Wig-
gins, 2010; Mancho et al., 2013), and this could have biased
their mixing diagnosis.

In this article we analyze the correlation between drifter
trajectories and Lagrangian structures in the Gulf of Mex-
ico obtained from two data sets: one comes from a numer-

ical simulation and the second from satellite altimetry. The
ocean model that we have considered is the HYCOM model
(Bleck, 2002; Chassignet et al., 2007); as for altimeter data,
we consider the AVISO product UPD, which is reconstructed
from four satellites. In order to perform our analysis, we use a
recently developed Lagrangian tool (Mendoza and Mancho,
2010; Mendoza et al., 2010; Mancho et al., 2013), the so-
calledM function or Lagrangian descriptor. We expect that
the sharp outputs obtained from this tool as confirmed inde la
Cámara et al.(2012) andMancho et al.(2013) will help us
to obtain accurate conclusions from our analysis. The agree-
ment between the drifters and the obtained geometry serves
as a benchmark for the predictive capacity of the data sets.

This paper is organized as follows. Section2 describes the
data sets used to perform the analysis, which includes the
details of the drifters that we have considered. Section 3 pro-
vides a description of the ocean area under study. Section 4
describes the construction of a dynamical system from the
data set. Section5 describes the Lagrangian descriptors used
to reveal the geometry of the dynamics. Section6 describes
the results, and finally Sect.7 discusses the conclusions.

2 Data sets

In this section we give a brief description of the types of data
used to study the flow in the particular regions that we con-
sider.

2.1 HYCOM

The Hybrid Coordinate Ocean Model (HYCOM) (Bleck,
2002; Chassignet et al., 2007) is part of the US Global Ocean
Data Assimilation Experiment (GODAE) within the National
Ocean Partnership Program (NOPP). This model uses the
Navy Coupled Ocean Data Assimilation (NCODA) system:
satellite sea-surface height and temperature data are assim-
ilated, and the model is forced by surface winds and air–
sea fluxes. Specific details can be found athttp://hycom.org/
dataserver/goml0pt04. The output of this model has been
previously used to study transport processes in the Gulf of
Mexico by Olascoaga(2010), Mezic et al.(2010), andSul-
man et al.(2013).

In particular, we have used experiment 31.0 (http://hycom.
org/dataserver/goml0pt04/expt-31pt0), which provides data
from 2009 to the present. The experiment has 1/25 degree
equatorial resolution and latitudinal resolution of 1/25◦cos
(lat). This represents approximately a grid size at mid-
latitudes of 3.5 km. The experiment uses 20 layers along the
vertical coordinate and is carried out in a domain in which
latitudes range from 18.09 to 31.96◦ and the longitude ranges
from 98.0 to 76.4◦ W. The data are provided hourly.

Our calculations are performed in the fourth layer, which
corresponds to a depth of 30 m. This is an appropriate choice,
as it mitigates excess noise of the data in the surface layer.

Nonlin. Processes Geophys., 21, 677–689, 2014 www.nonlin-processes-geophys.net/21/677/2014/

http://hycom.org/dataserver/goml0pt04
http://hycom.org/dataserver/goml0pt04
http://hycom.org/dataserver/goml0pt04/expt-31pt0
http://hycom.org/dataserver/goml0pt04/expt-31pt0


C. Mendoza et al.: Assessment of the predictive capacity of oceanic data sets 679

A similar depth choice for this model is used, for instance,
in Sulman et al.(2013) or for CUPOM (Colorado Univer-
sity Princeton Ocean Model) inBranicki and Kirwan(2010).
In the latter work the authors show how the resulting La-
grangian structure is close to 2-D surfaces that extend nearly
vertically into the water column, thus confirming that the
choice of a deeper layer just affects the noise on the observed
structures. We also note that continent shapes at 30 m depth
are not the same as those at 0 m depth, for which we have
more experience.

2.2 AVISO

Surface velocity fields are obtained from satellite altimetry
and produced by Ssalto/Duacs and distributed by AVISO,
with support from Cnes (http://www.aviso.oceanobs.com/
duacs/).

The data are given on a spatial grid of 1080× 915
points (longitude/latitude). The latitude ranges from 82◦ S to
81.9746◦ N using a Mercator projection, and the longitude
ranges from 0 to 359.667◦ using a uniform grid. The spa-
tial precision is thus 1/3◦ at the Equator and is provided with
daily frequency.

AVISO data are nowadays a standard source for analysis
of transport processes in the ocean, not only in the area of
interest in our study in the Gulf of Mexico (Andrade-Canto
et al., 2013) but also in many other areas all around the world
(Prants et al., 2014).

2.3 Drifters

Surface drifter tracks are obtained from data distributed
by the Global Drifters Program (GDP), from the Na-
tional Oceanic and Atmospheric Administration (NOAA)
and Atlantic Oceanographic and Meteorological Labora-
tory (AOML) (http://www.aoml.noaa.gov/phod/dac/index.
php) for the time period and regions corresponding to our
simulations that we carry out with HYCOM and AVISO data.
Each drifter has an identification number having five digits,
which allows for the identification of different drifters in our
simulations. The sampling of the drifter position is once ev-
ery 6 hours.

3 The Gulf of Mexico

Our focus is the study of the Gulf of Mexico, in the area
between latitudes 22–28◦ N and longitudes 80–91◦ W, from
11 June through July to 7 August in the year 2010. This
choice corresponds to the months just after the Deepwater
Horizon oil spill in the year 2010, although this work does
not aim to achieve any conclusion regarding those events.

The Yucatán–Florida current system is in this region, also
known as the Loop Current (Forristall et al., 1992; Andrade-
Canto et al., 2013; Sulman et al., 2013). This current enters
the gulf through the Yucatán channel, then circulates clock-

wise and exits the gulf through the Straits of Florida, flow-
ing eventually into the Gulf Stream. During the period under
consideration, our data show that this current is pinched off
forming first a large anticyclonic loop, which survives un-
til 24 June. After this date, the big loop breaks into several
eddies, which become weaker and weaker by the end of the
period of interest.

Our study attempts to understand the consistency be-
tween the evolution of drifters during this period and the
Lagrangian features provided by the two data sets. In par-
ticular, agreement in the following aspects will be analyzed:
the role played by manifolds that represent barriers to trans-
port, drifter dispersion produced by hyperbolic trajectories,
drifter confinement produced by eddies, and material ejec-
tion through lobe dynamics.

4 The dynamical system

We are interested in the study of transport due solely to ad-
vection. In this case a particle evolves according to

dx

dt
= v(x, t),x ∈ Rn, t ∈ R. (1)

In our geophysical applications, we consider two-
dimensional motion of particles, i.e.,n = 2. We assume that
v(x, t) is Cr (r ≥ 1) in x and continuous int . In our study,
the velocity fieldv given in Eq. (1) is defined as a data
set, provided by observations or simulations and has been
described in the previous section.

The equations of motion that describe the horizontal evo-
lution of particle trajectories on a sphere are

dφ

dt
=

u(φ,λ, t)

Rcos(λ)
, (2)

dλ

dt
=

v(φ,λ, t)

R
. (3)

Here the variables (φ, λ) are longitude and latitude;u andv,
respectively, represent the eastward and northward compo-
nents of the velocity field. The particle trajectories must be
integrated using Eqs. (2)–(3); since information is provided
solely on a discrete space–time grid, the first issue to deal
with is that of interpolation. We have daily or hourly maps
of the velocity field, and these are too coarse of a time grid
to provide a time step for the integration of particle trajec-
tories. However, this frequency sampling is adequate in the
sense that changes of the velocity field below that resolution
are smooth enough to be adequately captured by an interpo-
lator. Days are a typical timescale for the system (Eqs.2–
3), and this is the unit of time in which results are reported.
A recent paper byMancho et al.(2006a) compares differ-
ent interpolation techniques for tracking particle trajectories.
Bicubic interpolation in space (Press et al., 1999) and third-
order Lagrange polynomials in time are shown to provide a
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computationally efficient and accurate method. In our calcu-
lations we replace the bicubic spatial interpolation in space
by the spline interpolation supplied by MATLAB as we have
verified that it provides similar accuracy.

5 Lagrangian descriptors

Solutions of dynamical systems are qualitatively described
according to Poincaré’s idea to seek geometrical structures
in the phase space that can be used to organize trajectories
schematically into distinct regions corresponding to qualita-
tively different types of trajectories.

In time-independent systems, i.e., those for which Eq. (1)
does not depend explicitly on time, fixed points are essential
for describing the solutions geometrically. This is so because
stable and unstable manifolds of hyperbolic fixed points act
as separatrices that divide the phase portrait into regions in
which particles have different dynamical fates. To achieve
this geometrical representation in time-dependent aperiodic
dynamical systems, special hyperbolic trajectories have been
distinguished, which have been called distinguished hyper-
bolic trajectories (Ide et al., 2002; Madrid and Mancho,
2009), and the stable and unstable manifolds of such trajecto-
ries have been successfully used to describe transport in geo-
physical flows (Mancho et al., 2008; Branicki et al., 2011;
Mendoza et al., 2010).

In this work our geometrical representation is built with
Lagrangian descriptors (LDs). LDs are based on a function
referred to asM that was proposed inMadrid and Mancho
(2009) as a building block of the definition ofdistinguished
trajectories. Later inMendoza and Mancho(2010), this func-
tion was introduced as a Lagrangian descriptor, i.e., a func-
tion that provides a global dynamical picture of the ge-
ometrical structures governing transport in arbitrary time-
dependent flows. Lagrangian descriptors were extended and
theoretically justified in simple examples inMancho et al.
(2013) andMendoza and Mancho(2012). In this article we
will focus on the first approach to LDs given by a functionM

that measures the Euclidean arc length of the curve outlined
by a trajectory passing throughx∗ at timet∗. The trajectory
is integrated fromt∗ − τ to t∗ + τ . This is mathematically
expressed as follows: for all initial conditionsx∗ in an open
setB ∈ Rn, at a given timet∗, the Lagrangian descriptor is a
functionM(x∗, t∗)v,τ : (B, t) → R given by

M(x∗, t∗)v,τ =

t∗+τ∫
t∗−τ

√√√√ n∑
i=1

(
dxi(t)

dt

)2

dt. (4)

Here x1(t),x2(t), . . .,xn(t) are the components inRn of a
trajectoryx(t). The functionM is defined for dynamical sys-
tems in arbitrary dimensionn, but for our current application
we will taken = 2. It depends onτ and also, of course, on
the velocity fieldv.

For smallτ the output provided byM is smooth, almost
without structure and resembling that of Eulerian currents.
This is confirmed from Fig.1a, which shows the evaluation
of M on AVISO in the Loop Current region in the Gulf of
Mexico for τ = 3 days. Figure1b and c confirm that for in-
creasingτ the functionM loses regularity along lines, which,
from the numerical point of view, have been systematically
confirmed to be aligned with the stable and unstable mani-
folds of hyperbolic trajectories (Mendoza and Mancho, 2010;
Mendoza et al., 2010; de la Cámara et al., 2012, 2013; Man-
cho et al., 2013). In Fig. 1b the lines aligned with the sta-
ble and unstable manifolds of a hyperbolic point are clearly
seen, and further details are distinguished in Fig.1c. The
Lagrangian features are not provided by the specific values
taken byM (M has length dimension and the units are those
of the plane on which the integration of the trajectory is per-
formed – see Eqs.2–3), but the Lagrangian information is
containedin the structureof M; for this reason the color
scale in the figures is not included. To make an interpreta-
tion of M, it is sufficient to know that the red color expresses
the maximum arc-length values, obtained for particles mov-
ing rapidly, as they are placed in jets, and blue color are min-
imum arc-length values obtained in regions where particles
move calmly.

There is no a priori knowledge on how long the time in-
tegration intervalτ should be taken in order to highlight La-
grangian structures. It has been observed that it depends on
the data set under study. On the other hand, the analytical ar-
guments given for a simple example inMancho et al.(2013)
suggest that, in hyperbolic regions with large expansion or
contraction rates, the formation of these singular features
could be achieved at shorterτ . Figure1 suggestsτ = 15 days
as an appropriate choice for the AVISO data.

The increasing complexity ofM versusτ is expected from
the nature ofM, since it is reflecting the history of initial con-
ditions on open sets, and in highly chaotic systems this his-
tory is expected to be more tangled for longer time intervals.
Thus τ values larger than 15 days could have been taken,
which would have made visible many details of the manifold
structure, as reported for instance inMendoza and Mancho
(2010) andMancho et al.(2013). This is consistent with what
is obtained from the direct computation of manifolds (Man-
cho et al., 2003, 2004) for which the longer the integration
time is, the larger the pieces of manifolds are. At the moment
there exist no formal proof that guarantees that these singular
features are truly advected by the flow, although some analyt-
ical arguments are discussed in this respect inMancho et al.
(2013).

Figure2 shows the output on the same region for the same
τ selection on the HYCOM data. Again it is observed that
for increasingτ more and more Lagrangian structure is ob-
served. The position of the hyperbolic point here is shifted
with respect to that observed in the AVISO data. Also the
manifold structure for a givenτ is much richer than in the
AVISO data. In fact forτ = 15 the mesoscale structure is
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Figure 1. Evaluation of theM function in the Gulf of Mexico for AVISO data.(a) τ = 3 days;(b) τ = 9 days;(c) τ = 15 days. The position
of the manifolds is highlighted in this figure.

Figure 2. Evaluation of theM function in the Gulf of Mexico for HYCOM data.(a) τ = 3 days;(b) τ = 9 days;(c) τ = 15 days.

rather blurred when compared toτ = 9. This confirms that
the appropriateτ , which allows the manifold visualization,
depends on the data. In the following sections we will pro-
duceM maps withτ = 9 days for the HYCOM data as that
is enough to highlight the mesoscale structure.

The absence of regularity ofM at largeτ highlights the po-
sition of invariant manifolds. These contrasts correspond to
transport barriers as confirmed in Fig.3. The direct computa-
tion of the stable and unstable manifolds is displayed side by
side with the structure ofM, and the coincidence is evident.
This calculation is done following the method developed by
Mancho et al.(2003, 2004, 2006b) andMendoza and Man-
cho(2012), and as explained this is done by integrating par-
ticle trajectories. In particular, stable and unstable manifolds
are, respectively, composed of particle trajectories that at a
given time are placed in a small segment along the stable or
unstable subspaces of a given distinguished hyperbolic tra-
jectory (DHT). Manifold structures displayed in Fig.3c have
been obtained after integrating backwards and forwards in
time using AVISO data for a period of 15 days, and those in
Fig. 3d have been obtained after integrating backwards and
forwards in time with HYCOM data for a period of 9 days.
The direct computation of manifolds displays a less com-
plex appearance than those obtained from theM function

because, as noted inMendoza and Mancho(2012), it is done
for selected DHTs that may leave out many other DHTs in
the neighborhood, whileM accounts for all all stable and
unstable manifolds from all possible DHTs in the vicinity.

The presence of a rich manifold structure for HYCOM
data when compared to AVISO is due to the presence of small
“noisy” structures in the velocity fields themselves for the
HYCOM output, which is absent in AVISO. “Noisy” struc-
tures in the HYCOM velocity field are possible due to the
smaller grid size used in this case. However, below the reso-
lution grid these “noisy” structures are assumed to follow the
bicubic interpolation, which is smooth within each cell and
C1 at boundaries of the grid. Figure4 confirms this point. In
this figure we show the eastwardsu and northwardsv veloc-
ity components along the longitude 86◦ W on 12 June 2010.
The AVISO velocity (in blue) is smoother than the HYCOM
velocity (in black).

Hernández-Carrasco et al.(2011) have discussed the relia-
bility and dependence on the grid size of a Lagrangian diag-
nosis based on FSLE. In particular they have considered two
types of grid sizes. One of the sizes is related to the grid in
which the velocity field is given (called the V-grid). This grid
is also present in our case. Changing the size here is related
to introducing slight modifications in the underlying velocity
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Fig. 3. Evaluation of the M function and visualization of the manifold structure on the 12th June 2010 at 12:00H. a) Evaluation of
M with AVISO for τ = 15 days; b) M on HYCOM for τ = 9 days; c) manifolds with AVISO computed for 15 days; d) manifolds
with HYCOM computed for 9 days.

20 22 24 26 28 30
−1

−0.5

0

0.5

1

Latitude

u 
(m

/s
)

 

 

hycom
aviso

20 22 24 26 28 30

−1

−0.5

0

0.5

1

1.5

Latitude

v 
(m

/s
)

 

 

hycom
aviso

Fig. 4. Velocity components along the longitude 86oW for HYCOM (black) and AVISO (blue) data on the 12th June 2010. a)
Eastwards velocity component; b) northwards velocity component.

Figure 3. Evaluation of theM function and visualization of the manifold structure on 12 June 2010 at 12:00 UTC.(a) Evaluation ofM with
AVISO for τ = 15 days;(b) M on HYCOM for τ = 9 days;(c) manifolds with AVISO computed for 15 days;(d) manifolds with HYCOM
computed for 9 days.

Figure 4. Velocity components along the longitude 86◦ W for HYCOM (black) and AVISO (blue) data on 12 June 2010:(a) eastwards
velocity component and(b) northwards velocity component.

field defining the system (Eqs.2–3), as this continuous dy-
namical system is produced from an interpolation that is not
identical for each grid choice. Lagrangian structures are ex-
pected to be robust versus slight perturbations to the velocity
field (see for instanceHaller, 2002) given that chaotic sad-
dles are structurally stable objects (although this has not been
proven for aperiodically time-dependent velocity fields, it is
a reasonable conjecture). Consistently Lagrangian descrip-

tors have been shown to produce similar outputs for slightly
modified velocity fields (Mendoza and Mancho, 2010, 2012).
A second grid size effect discussed byHernández-Carrasco
et al.(2011) – the F-grid – is related to the adjustment of a pa-
rameter,δ, that measures the initial separation of trajectories
on which FSLEs depend. However, this does not influence
our results as LDs do not depend on such a parameter.
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Figure 5. Sequence showing the evolution of the Lagrangian structures with AVISO data from(a) to (c) and with HYCOM data and from
(d) to (f) for 25, 27 and 30 July respectively. Time is given as Universal Coordinated Time (UTC). The drifter “98945” is overlapped with
these structures. It is observed how it is injected within the Gulf Stream through a lobe. The position of the hyperbolic trajectory is highlighted
in each frame with the arrow.

Mancho et al.(2013) have shown, in the context of simple
and controlled analytical examples, that Lagrangian descrip-
tors present numerous advantages versus other Lagrangian
tools common in the literature such as FTLEs or finite time
averages.Rempel et al.(2013) have extended the compari-
son with FTLE to the context of 3-D turbulent flows. Some
of the advantages found are listed next; LDs are computa-
tionally cheaper than FTLEs; on data sets the functionM is
less sensitive to the quality of the interpolation of the vector
field. LDs have not been reported to produce ghost structures
(i.e., false Lagrangian patterns), while there exists substan-
tial literature reporting these issues for FTLE (Branicki and
Wiggins, 2010; Farazmand and Haller, 2012; Rempel et al.,
2013; Mancho et al., 2013). LDs are easier to program be-
cause they do not require the adjustment of any parameter
exceptτ , which is directly related to the detail required in the
manifolds. The maps of LDs systematically display sharper
plots that facilitate the identification of Lagrangian coherent
structures and lobe dynamics. For instancede la Cámara et al.
(2012) identify routes of transport that cross the Antarctic

polar jet. This has not been possible to obtain from FTLEs
since they provide a blurred pattern, full of spurious struc-
tures. De la Cámara et al. (2013) provide a picture of the
Antarctic polar jet that finds Rossby wave breaking evidence
in the interior of the vortex, while these features have been
unnoticed with other Lagrangian approaches. All these rea-
sons justify our choice.

6 Results

In this section we describe the ocean Lagrangian skeleton
and correlate it with the paths of several drifters in the Gulf
of Mexico during the period under study. We compare side by
side the outputs obtained from the HYCOM model and the
AVISO data sets. At this point, it is not always clear which
data set is more representative of the state of the ocean. Our
analysis methodology is based on assuming that consistency
between different data sources is a good metric for data qual-
ity. In particular, a sign of consistency is the agreement be-
tween the Lagrangian features and the paths followed by the
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Fig. 6. Sequence that shows the evolution of the Lagrangian structures with AVISO –a) and b)– and HYCOM –c) and d)– data.
Drifters ’88532’, ’88547’, ’88590’, ’88579’ are overlapped with these structures. The left column displays results for the 11th June
and the right one for the 13th of June.
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this scenario is observed both from AVISO and HYCOM
data as observed from Figure 6. It is noted though that
the position of the main hyperbolic point is different at
each data set. Fig. 6 shows that the evolution of drifters
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tion of the hyperbolic trajectory in HYCOM but not in
AVISO. In this latter case if drifters had followed the La-
grangian features highlighted in the figure they should
have evolved bending towards the East without cross-
ing the invariant manifolds that intersect at that position.540

This inconsistency is not observed in the HYCOM data
as the hyperbolic trajectory is shifted towards the south
east. Other examples exist during the period under study,
that confirm the efficiency of HYCOM data to correctly
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fies drifter’s dispersion
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wise in the stream consistently with the pictures provided
both by HYCOM and AVISO. This is confirmed in Fig-550

ure 7. Drifters leave the loop, although without showing
a clear connection with hyperbolic trajectories or lobes.
This is so both for HYCOM and AVISO data.

The Loop Current, as explained in Section 3 and visi-
ble in figure 7, breaks into smaller eddies after the 24th555

of June in the HYCOM simulations and around the 25th
of June in AVISO. The number of eddies though are not
the same for both data. In particular at the northern part
of the Loop, AVISO displays clear eddy-like structures,
while HYCOM does not. Figure 7 confirms that the evo-560

lution of drifters 88562 and 88534 from 18 June through
28 June is consistent with Lagrangian structures from
both data, although Lagrangian structures are different in
each case. Figure 7 shows four snapshots from AVISO

Figure 6. Sequence that shows the evolution of the Lagrangian structures with AVISO –(a) and(b) – and HYCOM –(c) and(d) – data.
Drifters “88532”, “88547”, “88590”, and “88579” are overlapped with these structures. The left column displays results for 11 June and the
right one for 13 June.

drifters. Our focus is on this type of consistency because a
comparison of individual trajectories of in situ drifters with
the corresponding simulated trajectories of the respective ve-
locities is not going to be close. This something expected in
a chaotic system and has been reported for instance byMan-
cho et al.(2006a) and de la Cámara et al.(2010). Despite
the fact that individual trajectories do not evolve close to
each other, the underlying Lagrangian skeleton can be close
or similar. Chaotic saddles are structurally stable objects and
thus Lagrangian structures should be robust versus slight per-
turbations to the velocity field. For these reasons we base our
analysis on Lagrangian features and not on individual trajec-
tories.

During the period of interest, 36 drifters were tracked in
the region of study. Our focus is on analyzing the agreement
on typical dynamical features in the velocity field and the
drifter motion. In the period under study, some drifters leave
the domain under consideration rapidly, which is consistent
with the observed behavior of the Gulf Stream. This is so in
both HYCOM and AVISO data. In particular drifters 98944,
98934, 98942, 98904, 98936, 98941, 98910, and 98945 fol-
low this fate. Figure5 shows how the drifter 98945 is injected
into the main stream through a dynamical object referred to
as a “lobe”. Lobes are water masses surrounded by a piece of
a stable manifold and a piece of an unstable manifold. Close

to hyperbolic points, lobes evolve forming filaments as de-
scribed for instance inMancho et al.(2008). This elongating
structure is observed in Fig.5 both for HYCOM and AVISO
with the drifter inside it while it is swept along the current.
The presence of the hyperbolic point is highlighted in the se-
quence.

On the first day of our study, 11 June, the Loop Current
is pinched off forming a large anticyclonic Loop as reported
by Sulman et al.(2013). Consistently, this scenario is ob-
served both from AVISO and HYCOM data as observed from
Fig. 6. It is noted though that the position of the main hyper-
bolic point is different at each data set. Figure6 shows that
the evolution of drifters 88532, 88547, 88590, and 88579 is
consistent with the location of the hyperbolic trajectory in
HYCOM but not in AVISO. In this latter case if drifters had
followed the Lagrangian features highlighted in the figure,
they should have evolved bending towards the east without
crossing the invariant manifolds that intersect at that posi-
tion. This inconsistency is not observed in the HYCOM data
as the hyperbolic trajectory is shifted towards the southeast.
Other examples exist during the period under study that con-
firm the efficiency of HYCOM data to correctly position the
hyperbolic trajectory in a manner that justifies drifter’s dis-
persion.
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Figure 7. Sequence that shows the evolution of the Lagrangian structures with AVISO –(a) and(d) – and HYCOM –(e) and(h) – data.
Drifters “88532”, “88547”, “88590”, “88579”, already depicted in Fig.6, are represented without labels and in white as before. Drifters
“88562” and “88534” are overlapped in red and drifter “71866” in green. Drifters “88589”, “88533” and “88582” are in black. The first row
displays results for 18 June, the second for 21 June, the third row for 25 June and the fourth row for 28 June. An arrow highlights the position
of a hyperbolic trajectory in(g).
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Figure 8. Sequence that shows the evolution of the Eulerian velocities from AVISO data from(a) to (d) and from HYCOM data from(e) to
(h). Drifters of Fig.7 are depicted with the same color code but without identifiers. It is hard to understand drifter evolution directly from
these Eulerian fields.
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The above drifters, together with drifter 71866, that joins
the Loop Current from the south, circulate clockwise in the
stream consistently with the pictures provided both by HY-
COM and AVISO. This is confirmed in Fig.7. Drifters leave
the loop, although without showing a clear connection with
hyperbolic trajectories or lobes. This is so both for HYCOM
and AVISO data.

The Loop Current, as explained in Sect. 3 and visible in
Fig. 7, breaks into smaller eddies after 24 June in the HY-
COM simulations and around 25 June in AVISO. The num-
ber of eddies though is not the same for both data. In partic-
ular at the northern part of the loop, AVISO displays clear
eddy-like structures, while HYCOM does not. Figure7 con-
firms that the evolution of drifters 88562 and 88534 from
18 June through 28 June is consistent with Lagrangian struc-
tures from both data, although Lagrangian structures are dif-
ferent in each case. Figure7 shows four snapshots from
AVISO and HYCOM for these drifters. They are trapped into
the loop, and their position is displayed on 18 June, They
evolve in both cases close to a manifold highlighted in the
middle of the jet. On 25 June the drifter in AVISO seems to
be trapped in an upper eddy, while HYCOM suggests that
the drifter evolves within a lobe that elongates due to the
presence of a hyperbolic point marked in the figure, which
could cause the separation between drifters. Eventually, the
position on 28 June is marked. Drifters are clearly within an
eddy in the AVISO data, and this structure is unobserved in
HYCOM.

The Lagrangian descriptors truly help to make an inter-
pretation of the dynamics. Figure8 shows the Eulerian fields
that correspond to the same sequence of snapshots as seen in
Fig. 7. The AVISO data are not provided in hourly intervals
as is the case of the HYCOM data; thus what we show in this
figure is the interpolation in time on the grid nodes of the
velocity field supplied on a daily basis. First is observed that
from the Eulerian point of view both the HYCOM model and
AVISO present a similar structure, but the HYCOM model
has a much higher resolution. From these pictures the per-
ception of the eddy structures is much weaker, and the hy-
perbolic trajectories are not distinguished.

Many drifters, such as 88589 88582, 88533, 98905, 98938,
98909, 98914, 98945, 98916, 98915, 98911, and 98939 (see
some of them in black in Fig.7), follow approximate circular
motions that seem consistently linked to eddies observed in
AVISO data. However, there exist events for which the La-
grangian skeleton that connects the motions of drifters pass-
ing form one eddy to another is obscure. Sometimes it hap-
pens that the data do not provide clear Lagrangian patterns
that justify these transactions. Mesoscale eddies seem to be
more faded on HYCOM, as a lot of Lagrangian submesoscale
structures distort them. However, this does not imply that the
the motion of the drifters is inconsistent in this case.

From the point of view taken in this article, inconsisten-
cies would indicate that the velocity field deduced from the
altimetry or from mathematical models, despite being ac-

curate for describing some events, may be not be precise
enough for describing all of them. On the other hand, in-
consistencies could be caused by drifters that are not truly
Lagrangian tracers (Tallapragada and Ross, 2008), and thus
their dynamics would not be forced to follow that of au-
thentic Lagrangian tracers. We note however that this is not
the perspective adopted in most of the Lagrangian studies in
oceanic contexts (Griffa et al., 2013), in which drifter trajec-
tories are even assimilated into the model considering them
as the “truth” (Nencioli et al., 2011). A thorough revision of
these questions is of great interest but is beyond the scope of
this article.

7 Summary, conclusions, and outlook

In this article we have explored the ability of Lagrangian
tools to extract information from oceanic data and their role
in helping to interpret drifter paths on the ocean surface. We
have found that both AVISO and HYCOM data do a rea-
sonable job in revealing the Lagrangian mesoscale structures
that govern the drifter motion.

The Lagrangian analysis is shown to be very useful in or-
der to make an interpretation of drifter routes and highlight-
ing differences between HYCOM and AVISO. The velocity
fields are all rather “similar” based on an Eulerian compari-
son (i.e., just comparing the velocity fields). But they are dif-
ferent, based on Lagrangian diagnostics and the hidden struc-
tures, not displayed in the Eulerian fields, truly organize the
trajectories and help to characterize the quality of the data,
and their inaccuracies.

At a first look AVISO and HYCOM data are different in
that HYCOM has a higher resolution and presents a noisier
structure, which is also reflected in the Lagrangian patterns.
AVISO tends to provide clean eddy-like structures, which in
HYCOM are faded by overlapped features, though consis-
tency with respect to drifter motions seems to be present
in both cases. Both AVISO and HYCOM do well in pro-
viding Lagrangian structures that guide drifter motions, as
for instance within the Gulf Stream or circular motions
along the Loop Current. However, evidence is provided in
which AVISO fails to correctly locate hyperbolic trajectories,
while in HYCOM hyperbolic trajectories are consistent with
drifters trajectories.
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