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Abstract. Stochastic motion of relativistic electrons under
conditions of the nonlinear resonance interaction of parti-
cles with space plasma waves is studied. Particular atten-
tion is given to the problem of the stability and variability
of the Earth’s radiation belts. It is found that the interaction
between whistler-mode waves and radiation-belt electrons is
likely to involve the same mechanism that is responsible for
the dynamical balance between the accelerating process and
relativistic electron precipitation events. We have also con-
sidered the efficiency of the mechanism of stochastic surfing
acceleration of cosmic electrons at the supernova remnant
shock front, and the accelerating process driven by a Lang-
muir wave packet in producing cosmic ray electrons. The dy-
namics of cosmic electrons is formulated in terms of a dis-
sipative map involving the effect of synchrotron emission.
We present analytical and numerical methods for studying
Hamiltonian chaos and dissipative strange attractors, and for
determining the heating extent and energy spectra.

1 Introduction

In this study, we treat the stochastic motion of charged par-
ticles resonantly interacting with nonlinear electromagnetic
space plasma wave fields. Particular attention is given to
the problem of nonlinear interaction between whistler mode
waves and Earth’s radiation belt electrons. Another prob-
lem of interest is the stochastic acceleration of cosmic wave
electrons by space plasma waves at galactic shocks. We use
a Hamiltonian formalism to treat these two problems. The
Hamiltonian’s equations of multiperiodical motion are as-
signed a measure-preserving map, the explicit form of which
is defined by the closed set of nonlinear difference equations.
The map is parameterized by some quantity, the control pa-
rameter, having a hard dependence on the structure of the
wave packet and its power. Using topological arguments, we

determine the value of the control parameter at which the sys-
tem exhibits chaotic motion in the form of a strange attractor.
In this case, every particle can explore the entire phase space
energetically accessible to it; as a result, the upper bound
of the strange attractor can be put on a one-to-one corre-
spondence with the upper boundary of an energy spectrum
whose value depends parametrically on the spectral power of
the wave. The chaotic motion on the strange attractor is er-
godic with mixing and as a consequence, the evolution of
the distribution function and all means obeys the Fokker–
Planck–Kolmogorov equation. As the wave power increases
above some critical value, the phase space structure under-
goes a change in topology called intermittency. The behavior
is more complex, exhibiting random transitions between reg-
ular and stochastic motion. In this regime, diffusion in en-
ergy is realized through the drift of orbits in phase space.
The generic Hamiltonian model is extended to include the ef-
fect of dissipation of energy associated with the synchrotron
emission of relativistic electrons. It also proves possible to
represent the dynamics of the system in the form of a dissi-
pative map. For a dissipative system, the topology of attrac-
tors on which the motion appeared chaotic has the proper-
ties of fractional dimensionality. Another interesting effect
in the Hamiltonian system occurs when an extrinsic noise is
present. Numerical computations are presented to illustrate
the methods and to give insight, and, also, to verify analytical
results. We believe that acceleration mechanisms due to the
nonlinear wave-particle interactions are capable of produc-
ing relativistic radiation belt electrons and galactic cosmic
ray particles.

First, we will apply the model to the dynamics of Earth’s
radiation belts (RBs). It is suggested that wave-particle inter-
actions, which are well correlated with the solar wind, may
be responsible for the RB electrons. Energy diffusion due
to resonance with chorus waves can be a viable mechanism
for generating RB electrons, and the cyclotron resonances
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between electrons and chorus near the magnetic equator are
thought to result in particles being scattered into the loss
cone, forming bursts of precipitation. We show that signif-
icant heating rates and pitch angle diffusion occur for the RB
electrons with energies from a few keV up to a few MeV, and
the calculated timescales and the total energy input to the at-
mosphere from relativistic electrons are in reasonable agree-
ment with experimental data. This is the subject of Sect.4.
We deal with the problem of acceleration of cosmic rays in
Sect.5. High-energy particles observed in cosmic rays can
be regarded as tails of the particle distribution in space plas-
mas. The energy relations show that collective plasma pro-
cesses can play an important role in the evolution of the en-
ergy spectra of cosmic rays. The observations of synchrotron
emission from shell supernova remnants (SNRs) have shown
that most cosmic rays are produced by SNRs. We show that
electrons can be accelerated up to high energies by the Lang-
muir and upper-hybrid electrostatic waves at the foot of the
front of galactic shocks. We follow up by applying the model
to stochastic surfing electron acceleration at galactic shocks
to take into account the impact of synchrotron emission on
the dynamics and to interpret the synchrotron emission spec-
trum.

2 Dynamics of particles

We will consider the dynamics of a charged particle reso-
nantly interacting with space plasma wave fields. Hamilto-
nian formalism is applied to describe the dynamics in colli-
sionless space plasmas. As known, the Hamiltonian formal-
ism is based on the theory of smooth manifolds and differ-
ential geometry (Schutz, 1982; Arnold, 1988, 1989). In this
approach any state of a dynamic system is given by a point
in phase space. Let 2n-D (dimensional) smooth manifoldM

on which the Hamilton functionH(q,p) is defined,(
q1,q2, . . . ,qn,p1,p2, . . . ,pn

)
= (q,p), (1)

are canonical coordinates, be the phase space of a system.
Then dynamics is determined by the Hamiltonian vector field

v =
∂H

∂pµ

∂

∂qµ
−
∂H

∂qµ

∂

∂pµ
, (2)

where∂/∂q and∂/∂p are the basis vector fields, which act
as linear differential operators on smooth functions. Equa-
tions (2) are equivalent to the phase flow given by the differ-
ential equations

q̇µ =
[
qµ,H

]
= ∂H/∂pµ,

ṗµ =
[
pµ,H

]
= −∂H/∂qµ, (3)

H (q,p : t)=

√(
pµ−Aµ

)(
pµ−Aµ

)
+m2 +ϕ, (4)

wherep is the canonical momentum,A the vector poten-
tial, ϕ the scalar (electrostatic) potential of the wave field,H

is the Hamiltonian associated with the problem, and [ , ]
stand for the Poisson brackets. We have employed here, and
throughout this paper, the system of units in which the speed
of light c = 1 and the electron charge|e| = 1.

For the field variablesA andϕ, which are explicit func-
tions of coordinates and time, we have to specify the coordi-
nate system. We have chosen a Cartesian spatial coordinate
system whosez axis is directed along the external magnetic
field, and the plane perpendicular to the external magnetic
field direction is spanned by the orthogonal coordinatesx

andy. Now our manifold looks locally like a linear real space
R6, qµ = (x,y,z) ∈ R3, pµ = (px,py,pz) ∈ R3, i.e., the lo-
cal topology ofM is identical to that of the space. We make
use of the Lorentz gauge, assuming

divAw
t = 0, A = (−By−At,0,0) , (5)

B t = rotAt, Et = −∂At/∂t, El = −∇ϕ, (6)

where the subscripts t and l denote the transverse and lon-
gitudinal components of the electromagnetic wave field, and
−By is the vector potential for constant external magnetic
field B (Landau and Lifshitz, 1980). Then we write the
wave field in the form of a transverse longitudinal wave with
slowly varying amplitude(
At
ϕ

)
=

(
A(εt,εz)

U (εt,εz)

)
cos(kzz+ kty−ωt) . (7)

The functionsA(εt,εz) andU(εt,εz) describe the repeti-
tive space–time structure of the envelope of the wave. Let
the shape of the envelope be given by a smooth periodical
functionf (εt), such that

f (t + T ,z+L)= f (t,z), (8)

ε =
∂f

∂t
·

1

ωf
∼ (ωT )−1 ,

∂f

∂z
·

1

kf
∼ (kL)−1, (9)

whereε is a small parameter, the ratio of the oscillation pe-
riod 2π/ω (or 2π/k) to the time (space) scale (T , L), over
which the envelope varies. Thisε also serves as an ordering
parameter. Thus we assume the ambient magnetic field varies
slowly over one wavelengthε2

=
1
kz
∂ lnB/∂z, and the wave

field is sufficiently small,A/m, U/m= ε.
We now take into account the axial symmetry of the non-

perturbative problem, and introduce the new variables, an ac-
tion (I ), and an angle(θ), by the canonical transformation,

y = r sinθ,py = (mrωB)cosθ; (10)

r =

√
2mωBI/mωB ,ωB = B/m, (11)

where r is the gyroradius, andωB is the angular gy-
rofrequency, respectively (Sagdeev et al., 1988). The
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Hamiltonian (4) in this representation becomes

H (z,pz;θ,I ; t)=H0 (pz,I )

+

[√
2mωBIH

−1
0 A

∑
n

J ′
n(kt r)+U

∑
n

Jn(kt r)

]
cosψ, (12)

H0(pz,I )=

√
m2 +p2

z + 2mωBI , (13)

ψ = kzz+ nθ −ωt, (14)

whereH0(pz,I ) is the Hamiltonian of the non-perturbative
system, andψ is the phase of the particle in the wave field.
In deriving (12), the representation

eikt r cosθ
=

∑
n

Jn(kt r)e
inθ (15)

has been employed, whereJn(·) are Bessel functions,J ′
n are

their derivatives with respect to the argument, andn ∈ Z, Z
is the set of all integers. We consider the case of resonance
between the Doppler-shifted wave frequency and the gyro-
motion,

ψ̇ = kzż+ nθ̇ −ω = 0. (16)

Resonant wave-particle interaction occurs whenever Eq. (16)
holds, which is satisfied for a series ofn values for particles
with different momentum and energy. Sufficiently close to a
resonance,ψ is slowly varying; thereforepz andI are also
slowly varying variables:

ε = ψ̇/ωψ, İ/ωI, ṗz/ωpz. (17)

This condition means that the adiabatic approach to the
problem of resonant wave-particle interaction is applicable.
Choosing a particular resonance,n= s, we can transform the
Hamiltonian (12) as follows:

H (z,pz;θ,I ; t)=H0(pz,I )

+

[√
2mωBIH

−1
0 ·A(εt)J ′

s (kt r)+U(εt)Js(kt r)
]

cosψ, (18)

H0(pz,I )=

√
m2 +p2

z + 2mωBI , (19)

ψ = kzz+ sθ −ωt, (20)

where all of the perturbation terms average to zero except for
n= s. Accordingly, we write the equations associated with
the Hamiltonian (18) in the form

ṗz = kz

(√
2mωBIH

−1
0 ·AJ ′

s(kt r)+UJs(kt r)
)

sinψ, (21)

İ = s
(√

2mωBIH
−1
0 ·AJ ′

s(kt r)+UJs(kt r)
)

sinψ, (22)

ż= pz/H0, θ̇ = ωBm/H0. (23)

We retain in these equations only the leading terms, where
the small parameterε automatically keeps track of the or-
dering. Now our manifold looks locally like the real space

R2
×R×S, (pz,I ) ∈ R2, ż ∈ R, θ mod 2π ∈ S. Because of

the explicit symmetries of time translation and rotation of the
phase, the phase space representation offers significant sim-
plifications in treating the problem. Indeed, the Hamiltonian
(18) is invariant under the transformations (8) and (10),

H =H exp(iψ), H(t + T )=H(t), (24)

consequently, the phase flow conserves the invariant of mo-
tion,

spz − kzI = const., (25)

where const. is a constant independent of time, determined
by the initial condition. This leads to the restriction of dy-
namics onto a reduced phase space, acceptable coordinates
of which appear to be a canonically conjugated pair(ψ,u),
whereψ is the phase variable, andu is a new action vari-
able. With these simplifications we can reduce this motion
to quadratures only if the perturbation has a trivial form
of monochromatic wave propagating along the direction of
the ambient magnetic field. In the general case this non-
autonomous nonlinear dynamical system is non-integrable,
and the measure of its regular motions is equal to zero.

Consider the expanded phase space of the Hamiltonian
system. Such a space has a natural structure of the bundle,
the base of which is the discrete timetn = nT , n ∈ Z, and
the fiber is theR× S space (Schutz, 1982). In this case,
it is sufficient to describe the motion on some time inter-
val (t0, t0 + T ), for example,g1(ψ0,u0)= (ψ1,u1), where
(ψ0,u0) is the initial state of the system, andg1 is the map
at one period (Arnold, 1989). In this way we have defined
a map of the phase plane onto itselfgn: R× S → R× S.
The map is a diffeomorphism, which forms a one-parameter
groupgn = (g1)n of diffeomorphisms of the phase plane, and
preserves the phase volume. This statement follows from Li-
ouville’s theorem. This bundle and the groupgn acting on it
are shown in Fig.1.

For the Hamiltonian (18) and its invariant of motion (25),
this group can be written in the form of a set of nonlinear
difference equations,

un+1 = un+Qsinψn, ψn+1 = ψn+F(un+1) mod 2π, (26)

whereQ is the control parameter, which defines the intensity
of wave-particle interaction, and the functionF(un+1) de-
scribes the shift of phase acquired by a particle. The system
(26) exhibits a rich variety of chaotic phenomena in various
parameter regimes. This kind of dynamics is typically related
to the appearance of a strange attractor (SA), which repre-
sents persistent chaotic motion over a global domain of phase
space. In that sense, the SA is to be a paradigm for obtain-
ing some information about the dynamics. This information
is primarily geometrical and statistical, such as the fractal
dimensions, spectrum of Liapunov exponents of the under-
lying SA and the invariant distribution on the SA. Any SA

www.nonlin-processes-geophys.net/21/61/2014/ Nonlin. Processes Geophys., 21, 61–85, 2014



64 G. V. Khazanov et al.: Stochastic electron motion

tn

gn

g1

tn + T

Fig. 1.Map at one period (afterArnold, 1988).

is known to be both ergodic and mixing (Arnold and Avez,
1968), and for many dynamical systems of interest, the phase
variable randomizes much more rapidly than the action vari-
ableu, allowing kinetic description in terms of a standard
Fokker–Planck–Kolmogorov (FPK) equation for the distri-
butionw(u) alone. For area-preserving maps, the distribution
on any SA is trivially a constant. A common procedure for
findingw(u) consists of iterating an initial state, or of solv-
ing an FPK equation. Applying the invariant distribution, we
may replace time averages by phase-space averages in calcu-
lating the steady state value of a physical observable. IfG(u)

is an observable function in phase space, then the phase av-
erage

〈G〉 =

∫
duw(u)G(u) (27)

is independent ofu0 (for almost all initial valuesu0 in the
basin of a given SA). We are obliged to say strange attrac-
tor; now we should wish to prove that these kinds of objects
are common in the problem of interest, so we will try in the
subsequent sections to develop all the proofs as explicitly as
possible.

3 Dynamics of wave fields

We are going to inspect the problem of dynamics of parti-
cles in space plasma wave fields. The first question of course
is how to describe these wave fields. A common technique
in studying the behavior of wave fields is to Fourier analyze
transform into mode amplitudes, to obtain an equation of mo-
tion for each mode. If only theN most important modes are
kept, this motion is given by a set of ordinary differential
equations describing the evolution in time of the mode am-
plitude components. This procedure of Fourier analysis fol-
lowed by truncation is called the Galerkin approximation.
Any stationary nonlinear wave is known to be a strongly

exited state of a nonlinear medium, which emerges due to
the competition between dispersion and nonlinearity. Such a
wave represents in itself the bound state of a large number
of harmonics. It is worthwhile emphasizing that these are not
true modes of the nonlinear system, and thus interchange of
energy among these quasimodes will occur even in the ab-
sence of external noise. There exists a numberN that actu-
ally truncates the wave spectrum exponentially, and thisN

is, in fact, the constant of coupling for stationary nonlinear
waves (Sagdeev et al., 1988).

Another approach to describing wave fields consists of the
proper choice of basis wave models in the standard form
of nonlinear wave equations. For instance, the applicability
of the Korteweg–de Vriez equation for describing nonlinear
space plasma phenomena is well established. In that case, the
nonlinear dispersion relation, which includes the main part of
information about wave dynamics, is what we chiefly need
(Bernstein et al., 1957; Lutomirski and Sudan, 1966). A gen-
eral approach for deriving nonlinear dispersion relations has
been developed in different techniques, byWhitham(1974),
Karpman(1975), andKaup and Newell(1978). They have
shown that any nonlinear dispersion relation conserves its
own form even if the wave propagates in a weakly inho-
mogeneous and weakly nonstationary medium. This impor-
tant conclusion follows from the strong stability of a non-
linear wave packet. The basic model for modulated waves
in a dispersive medium appears to be the familiar nonlinear
Schrödinger (NLS) equation,

i
(
∂8/∂t + vg∂8/∂z

)
+µ∂28/∂z2

+
(
vg/2k0

)
4⊥8

−g|82
|8= 0, (28)

for the complex wave amplitude8 (Karpman, 1975). Here
the group velocityvg of the wave packet, and the parameters
of dispersionµ and nonlinearityg are determined entirely by
a nonlinear dispersion relationω = ω

(
k2, |8|

2
)

in the usual
way,

vg = (∂ω/∂k)k0
, µ=

1

2

(
∂vg/∂k

)
k0
, g =

(
∂ω/∂|8|

2
)
k0
. (29)

The subscript denotes that we have to put these values at
k = k0, wherek0 is the characteristic wavenumber. The ba-
sic nonlinear mechanism in this case is the ponderomotive
force that arises through the coupling of the high- and the
low-frequency oscillations, and numerous possibilities of the
parametric decay and the process of modulation instabilities
(Sagdeev et al., 1988). Equation (28), involving the effects
of self-focusing and self-compressing, describes specifically
the dynamics of Langmuir, upper-hybrid mode and whistler
mode waves, i.e., the very waves that usually are detected
(or inferred) in space plasmas and are likely to play a ma-
jor role in stochastic heating of particles. For application
purposes we discuss the relevance of the representations to
the whistler wave events in the Earth’s magnetosphere. The
spatio–temporal structure chorus will need to describe the
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interaction and compare obtained results with experimental
data. We will rely on the data represented by the CLUS-
TER mission (Santolik et al., 2003), which provided tem-
porally high-resolution measurements of the wave events. In
this work, chorus emissions have been measured at a radial
distance of 4.4 Earth radii within a 2000 km region located
close to the Equator. The wave vector direction in this re-
gion is nearly parallel to the field lines, and the waveforms
of the packet show a fine structure consisting of subpack-
ets with amplitudes above 300 pT. In each wave packet, the
frequency changes with a typical rate of a few kHzs−1, and
the spectrum is organized into two bands between 2 and
6 kHz. The spectral powerP of the wave has its peak value
P ∼ 10−4nT2Hz−1 at the frequency 3.8 kHz, close to the
half-gyrofrequencyωB/2. The chorus emission, being a co-
herent whistler mode, has a slowly varying amplitude (en-
velope), with the time periodT = 200ms determining the
repetitive temporal structure of the chorus.

In order to interpret these results, we will use solutions of
a nonlinear Schrödinger (NLS) equation, the applicability of
which to whistler mode waves is well grounded (Karpman,
1975). In the wave frame, Eq. (28), for quasi-plane waves,
takes the form

i8t +µ8zz − g|8|
28= 0, (30)

with 8= bexpiS, where b = Bw/B is the wave ampli-
tude, normalized to the external magnetic fieldB, andS is
the eikonal of the wave. It is known (Karpman, 1975) that
an NLS equation has several different classes of solutions.
Of these, the most stable solutions are the so-called two-
parameter envelope solitons

b(z− vt)= asch(Qz−F t), (31)

a2
= F 2/G, (32)

F =Qv, G= ω0g, (33)

which are parameterized by the soliton velocityv and by the
soliton spacescaleL= 1/Q. We will assume the value ofv
to be close tovg. These solutions describe a nonlinear wave
with a dispersion law

ω(k)= ω0(k)+ ga
2/2, (34)

whereω0(k) is the linear dispersion relation for whistlers

ω0(k)= ωBk
2c2/

(
ω2
p + k2c2

)
, (35)

andga2/2 is the nonlinear frequency shift. The NLS equa-
tion is completely integrable and possesses an entire set of
integrals of motion. One of them,

P =

∫
b2dt, (36)

is physically significant in virtue of the relation

P = (1/2π)
∫
b2(ω)dω, (37)

which determines the spectral powerb2(ω)/(2π). Substitut-
ing Eq. (31) in the expression (36), we obtain

P = 2a2/F = 2F/G, (38)

and, a Fourier transform of Eq. (31) gives

b2(ω)/(2π)= (πP/4F)sch2 (πω/2F). (39)

The spectral representation means that the nonlinear wave
can be interpreted as a nonlinear wave packet whose ampli-
tude and width1ω = 4F/π , unlike a usual wave packet, are
bound with the coupling. It is known that any spatially local-
ized perturbations to an NLS equation will convert eventually
into a set of solitons. This result has been proved by the tech-
nique of inverse scattering transform (IST) (Newell, 1985).
According to the IST, solitons of the NLS equations play the
role of harmonic waves in linear systems, and the representa-
tion of solutions in the form of a set of solitons corresponds
to a Fourier transform in linear equations. So theN -soliton
solution of the NLS equation is

b(z, t)=

Ns∑
i=1

aisch(Qiz−Fi t) , (40)

a2
i = F 2

i /G, (41)

whereNs determines the total number of solitons. The IST
involves quasi-classical quantization, and solutions (40) be-
long to the discrete spectrum of values ofa and F . The
solitons of the NLS equation conserve physically significant
properties, so the total spectral power is the sum of spectral
powers of the single solitons,

P =

∑
i

Pi = 21F/G, 1F =

∑
Fi, (42)

where1F is the half-width of a power spectrum. To inter-
pret the spatio–temporal wave structure measured bySanto-
lik et al. (2003), we apply the results of theoretical analy-
sis to these data. We have approximated the temporal struc-
ture of chorus presented bySantolik et al.(2003) in Fig. 2
by theN -soliton solution of the typeEw

=
∑
iEisch(t/Ti)

with Ti = (14.37,1.18,0.89,1.03,0.84)ms, whereTi are the
timescales of each subpacket. The fitted values of the wave-
forms were obtained from the CLUSTER data as shown in
Fig. 2. Figure2 has been added to identify the wave’s fine
structure. There is an apparent correspondence between the
waveforms described by the envelope soliton solutions and
the experimental data. This gives us confidence to assume
that those signals are at least close to the waveforms hav-
ing theN -soliton envelope. As a result, we will assume the
representation (40) is adequate for the waveform of a single
wave packet, where we have to accomplish the substitution
t → t − nT , to describe the quasi-periodical structure of the
chorus emission. The physical reason for the chirp effect is
supposed to be the nonlinear dispersion of phase velocity.
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(a)

(b)

Fig. 2. (a)Single wave packet with the envelope approximated by
N-soliton solution.(b) Smooth curve given by sch (t/1.18ms) cor-
responds to the 2th subpacket.

Indeed, it can be shown, any gradients of physical fields will
lead to the change of wave vector:∂k/∂t = −∂ω/∂z. Con-
sidering this expression and the nonlinear wave dispersion
(34), we can obtain the equation of transfer of wave informa-
tion(
∂

∂t
+ vg

∂

∂z

)
ω = 0. (43)

As a consequence, we conclude that the nonlinear dispersion
relation is always the same along the group velocity vector,
( ∂
∂t

, vg
∂
∂z
), even if the frequency (and wavenumber) changes

slowly over the time period of the wave, 2π/ω, such that

ω̇2π/ω� 1ω̇ = ∂ω/∂t. (44)

Then taking into account the nonlinear wave dispersion (34),
one computes the wave drift rate,ω̇ = (g/2)∂a2/∂t . Apply-
ing to this the soliton-like solution for an envelope, the de-
tailed evolution of the wave frequency (exponential growth
of frequency on the initial stage, nonlinear dependence on the
wave amplitude, etc.) can be studied. The mean and maximal
rates are evaluated asω̇ ∼ ga2/T ∼ F 2/(ωT ), andω̇max ∼

ga2F/3 ∼ F 3/(3ω). One calculatesF =

√
ga2ω, with the

help of Eq. (41), then puts together the empiric data (Santolik
et al., 2003); we evaluatega2/2 ∼ 200Hz,F ∼ 1,2kHz, and
therefore,〈ω̇〉 ∼ 2kHzs−1 and ω̇max ∼ 100kHzs−1. Thus
we explicitly show that the condition (44) holds. Note that
longitudinal inhomogeneities of the ambient magnetic field
B(z) and particle densityNe(z) do not influence the effect
because the fundamental modeω0 = ωBk

2c2/ω2
p is propor-

tional toB/Ne, and this ratio is in fact a constant along a
force line near the equatorial plane. The rising tone of cho-
rus is observed in the region of generation and formation of
waveforms due to self-modulation and, due to the propaga-
tion of waves away from this region when the modulation in-
stability is stabilized, this effect may vanish, as was noted by
Cully et al.(2008) andWilson et al.(2011). The spectral gap
is likely due to just the same competition between nonlin-
earity and dispersion under conditions of the exact cyclotron
and Landau resonance atω = ωB/2, vr = vp. Presumably
the chirp-effect and spectral gap are rather the manifestation
of intrinsic properties of the typical nonlinear whistler mode
wave rather than a new type of emission.

The effect of diffraction on wave propagation is described
by the third term of the NLS equation (28). Let AD be the
angle of diffraction, AD= 2/kd, whered is the perpendicu-
lar size of the region of wave generation, andk is the wave
number. In accordance with (Santolik et al., 2003), AD ∼ 0.1
and these waves propagate from their source nearly paral-
lel to the field line. Putting AD= 0.1, k = 0.25km−1, we
will have an estimate ofd, d ∼ 100km, and the lengthscale
of the wave field,ld = kd2/2, ld ≈ 2000km, which is com-
parable with the spacescale of the envelope. Atz= 0 the
wave beam has a plane phase front and a Gaussian distri-
bution of amplitudeb(r)= b(0)exp

(
−r2/d2

)
. The solution

of the equation shows that the width of the packet grows as
d2(z)= d2

(
1+ (z/ ld)

2
)
, and the radius of curvature grows

as R = z+ l2d/z. As z/ld � 1; the originally plane wave
becomes spherically divergent, its amplitude decreases as
kd2b(0)/2z, and its width grows asd(z)≈ 2z/kd. For ex-
ample, if the wave was generated at a largeL and traveled a
great distance to reach Polar, this effect will lead to a lower
intensity at Polar (Tsurutani et al., 2011).

As noted above, the impact of the inhomogeneity of the
ambient magnetic field and density fields on the wave prop-
agation is negligible because of a constancy of the ratio
B/Ne. The solutions of an NLS equation, in particular with
a parabolic profile of perturbations, are well known (Newell,
1985). According toNewell (1985), the wave power spec-
trum and shape remain unchanged if the envelope’s size (in-
trinsic spacescale) is less than the spacescale of an exter-
nal field. Typically, this condition is easy satisfied. Another
source of perturbations can be the spacecraft itself. As long
as the size of the spacecraft is much less than the wavelength,
the effect of imperfection of the wave can be described as
the scattering of a soliton-like packet on this defect. This ef-
fect is local, therefore it immediately appears in the wave

Nonlin. Processes Geophys., 21, 61–85, 2014 www.nonlin-processes-geophys.net/21/61/2014/



G. V. Khazanov et al.: Stochastic electron motion 67

measurements (Hastings and Garrett, 1996). It is possible
that it helps explain the modification of waveforms in wave
events (Santolik et al., 2003).

Another powerful tool, especially when the explicit shape
of a nonlinear wave is unknown, is spectral representation
in the so-called form of time- and space-like wave packets
(Sagdeev et al., 1988). Letf (t) be a periodic function,f (t+
T )= f (t), given by the convergent Fourier series

f (t)=

∑
n∈Z

fne
−iωnt , ωn = 2πn/T , (45)

whose coefficientsfn satisfy the Parceval identity,

∑
n

|fn|
2
= 〈f 2(t)〉, 〈f 2

〉 =
1

2T

T∫
−T

f 2(t)dt. (46)

Letf (t) correspond to a certain realization of a physical pro-
cess. Then the measurable quantity is〈f 2

〉, and/or its spec-
tral density

∑
n |fn|

2. One assumes this function character-
izes the intensity of a nonlinear wave packet. As mentioned
above, each packet is a bound state ofN quasimodes, and
N takes part a constant of coupling. The implication of this
is that as interchange of energy among these quasimodes
occurs, the constant wave power, proportional to〈f 2

〉, will
share evenly among the quasimodes. In virtue of Eq. (46),
we obtain

∑
n |fn|

2
∼Nf 2

r ∼ const., and consequently,fr =

f0/
√
N , where the value off0 would have to be extracted

from a measured physical quantity, for instance, the spectral
density. A more rigorous result, obtained in the theory of dis-
tributions, states the following (Richtmyer, 1978). Let f (t)
be a generalized function such that

f (τ + 1)= f (τ), ei2πτf (τ)= f (τ), τ = t/T , (47)

then, this function is found to be

f (τ)= const.
∑
n∈Z

δ(τ − n), const.= fr. (48)

The wide wavepacket approach follows from these state-
ments and the physical meaning of the theory of nonlinear
waves (Sagdeev et al., 1988). Taking the structure of a wide
wave packet to be of the form

A(εt,εz)=

∑
n

An sin(nδkz− nδωt) , (49)

where

δk = 2π/L, δω = 2π/T , (50)

L,T are the length and time scales of the problem. Then
we suppose that all spectral characteristicsAn are equal-
amplitude, and write the envelope of wave packet in the form

A(εt,εz)= Ar

∑
n

sin(nδkz− nδωt) ,

Ar = A0/
√
N, N =1νT, (51)

whereA0 is the characteristic amplitude of the wave, and1ν

is the width of the frequency spectrum. In the limitδk → 0,
expression (51) can be transformed into

A(εt,εz)= Ar

∑
n∈Z

δ(t/T − n). (52)

There is a time-like representation (TLR) of a wide wave
packet. In deriving it we have used the relation∑

einx
= 2π

∑
δ (x− 2πn), (53)

whereδ(·) is the Dirac delta function. Carrying out the same
procedure with respect to Eq. (51), in another limitδω→

0, the expression takes the form of a space-like (SL) wave
packet

A(εt,εz)= Ar

∑
n∈Z

δ (z/L− n) . (54)

4 Whistler-electron interaction in the Earth’s radiation
belts

Wave-particle interaction with chorus is believed to be the
main mechanism for the acceleration of 10–100 keV radia-
tion belt (RB) electrons to relativistic energies, a major topic
in space weather physics today. In the area of investigations,
progress is related to highly resolved wave measurements of
intensive chorus (Santolik et al., 2003; Tsurutani et al., 2011)
and oblique large amplitude whistlers (Cattell et al., 2008) as
well as observations of relativistic electron microburst pre-
cipitation events (Blake et al., 1997). These results show that
the usual quasilinear models of electron energizations and
scattering via small amplitude incoherent waves (Summers
et al., 2007) may be inadequate for understanding radiation
belt dynamics. There is a need to develop a new theory for
wave-particle interaction between RB electrons and coher-
ent whistler mode waves. Some aspects of the problem have
been treated byFaith et al.(1997), Roth et al.(1999), Wykes
et al. (2001), andAlbert (2002), who showed that the non-
linear coupling between a monochromatic whistler wave and
the bouncing motion of RB electrons may lead to a random
walk in energy and pitch angle. In this case, as shown by
Faith et al.(1997), an electron gains energy only chaotically,
when the wave field exceeds a threshold value. These results
hinted that this mechanism may be promising in the many ap-
plications where the efficiency of particle heating is of prime
importance. In particular, these resonant random processes
may contribute to the 10- to 100-fold increase in the rela-
tivistic electron fluxes in the RBs, as well as constitute an
interesting relation between wave activity and enhancements
in fluxes during geomagnetic storms and other active periods
(Roth et al., 1999). Finally, the concept of a strange attractor
(SA) was introduced byKhazanov et al.(2007) andKhaz-
anov et al.(2008a) in order to describe chaotic motion of RB
electrons under the conditions of nonlinear resonant interac-
tion with chorus. Strange attractors, which embody the idea
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of deterministic chaos, the statistical aspects of SAs have
come under explicit study. The method has proved fruitful in
describing the dynamics of electrons in the Earth and Jovian
radiation belts.

4.1 Chaotic motion of the RB electrons driven by chorus

We are concerned with the dynamics of nonrelativistic elec-
trons in the whistler mode chorus, which accelerates particles
to relativistic energies through the resonance

−kz|vz| +ωB −ω = 0. (55)

Taking into account the relationωBI =mv2
t /2, we write the

invariant of Hamiltonian flow (25) as

v2
t = 2(ωB/ω)vph(vr − |vz|) , (56)

where vr = vph(ωB −ω)/ω is the resonance speed of an
electron, andvt is the perpendicular (toB) velocity of an
electron. Then the equations of motion (21)–(23) can be rep-
resented in the form

v̇t =

(
ω2
B/2ω

)
vph

(
b/

√
N
)
T sinψ

∑
n∈Z

δ (t − nT ),

ψ̇ = ω(vt ,ω)= ωB −ω− kzvr +

(
k2/2ωB

)
v2
t . (57)

We have also employed the invariant of motion, the value of
the Bessel functionJ ′

1(0)= 1/2 and the relationships

A/m= (ωB/ω)vphb, b = Bt/B. (58)

After integrating these equations, the problem is formulated
in terms of aGn map, given by a closed pair of nonlinear
difference equations,

Gn :
un+1 = un+Qsinψn,
ψn+1 = ψn+

1
4ωT u

2
n+1signu mod 2π,

(59)

where the new variableu and the control parameterQ have
been introduced by the relations

u= vt/vr, Q=

(
ω2
B/2ω

)√
T P = ωBT

(ωB
2ω

) b
√
N
, (60)

andP is the wave power normalized toB2. The map (59)
acts as the groupGn = (G1)n of diffeomorphisms of phase
space, hence the pair(M,Gn), together with the invariant of
motion is equivalent to the periodic flow (21)–(23). Khaz-
anov et al.(2008a) andKhazanov et al.(2011) have shown
that the representation (52) is tantamount to that given by
a solution of nonlinear wave Eq. (40). The physical expla-
nation of this somewhat surprising result is quite clear. Any
periodic, nonlinear wave can be described as wave packet
consisting of some numberN of quasimodes with the fre-
quency spacingδω ∼ 1/T , whereT is the time period of the
envelope. In the situation to which we refer, the half-width

1ν is about 1 kHz,T is no less than 100 ms, and therefore
N ∼1νT (∼ 102). On the other hand,1ν ∼ ω, which indi-
cates that 1/N ∼ ε, the small parameter given by Eq. (9).
Thus we determine that the representation (52) is reasonable,
so the results obtained in these approaches either coincide or
differ only slightly.

To understand the physical nature of these results, we ex-
amine the dynamics of a particle resonantly interacting with
some quasimode of the wave packet. According to Eq. (57),
the motion is governed by the pair of closed equations

v̇t =

(
ω2
B/2ω

)
vph

(
b/

√
N
)

sinψ,

ψ̇ =

(
k2/2ωB

)
v2
t .

Settingvt = vc +1v, wherevc is the value ofvt in the reso-
nance state, and linearizing this equation, we derive the equa-
tions

ψ̈ +ω2
b sinψ = 0,

ω2
b = ωωBb/

√
N
(
vc/2vp

)
,

which describes the small (bounce) oscillations of the par-
ticle with the frequencyωb. Now we apply the overlapping
criterion (Chirikov, 1979), ωb ≥ δω

(
∼ T −1

)
, to obtain the

condition of the onset of stochasticity,(
vc/vp

)
≥ (2ω/ωb)

√
N/bω2T 2. (61)

Note that the criterion can be rewritten in the formTb ≤ T ,

whereTb

(
∼ ω−1

b

)
is the bounce period of the particle in

the wave field. In amplitude–time terms, this relation deter-
mines the condition for parametric resonance between the
slow variations in the wave field and the proper oscillations
of a particle in the field. Thus the basic resonances (55) and
their interaction through parametric resonance play a crucial
role in the appearance of stochastic motion.

Our interest now is to inspect the motion of relativistic
electrons, driven by chorus. By integrating Eqs. (21)–(23)
along with invariant of motion (25), we derive in the usual
way thegn map,

gn :
un+1 = un+Qsinψn,

ψn+1 = ψn+ (3/2)Ku−2/3
n+1 signu mod 2π,

(62)

written in the notations

pz/m= p,u= p3/2,andK = vgωBT . (63)

Here the control parameterQ is given by

Q= 3
(
ωBvph/2ω

)1/2
vgωB(PT )

1/2,

P = b2/1ν, b = Bt/B. (64)

Solutions of that map have been discussed in detail by the
authors (Khazanov et al., 2008a, 2011). Let us consider a
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pair (M,gn), whereM is a smooth manifold, andgn is a
diffeomorphism. Denote by

J =
∂ (un+1,ψn+1)

∂ (un,ψn)
(65)

the Jacobi matrix of the map, the eigenvalues of which are
given by the relations

detJ = λ1 · λ2 = 1,

trJ = λ1 + λ2 = 2+KQu−5/3, (66)

where detJ and trJ denote the determinant and the trace of
the matrix, respectively. The Jacobian of (65) is equal to one,
and thereforegn has the structure of a differentiable area-
preserving map and(ψ,u) is the canonical pair of variables.
It is known (Arnold and Avez, 1968) that the the geometri-
cal structure ofM and dynamics ofgn onM are intimately
closed, and that the condition

|trJ | = 3 (67)

corresponds to a topological modification at which the dy-
namics of the system becomes chaotic. In this situation, a sin-
gle phase trajectory investigates all accessible phase space,
which is called the strange attractor (SA). The strange attrac-
tor is the invariant setgnSA = SA,n→ ∞ tightly embed-
ded in phase space. The motion on any SA is random over
a wide range ofQ due to the global stability of the SA, on
which all means (observables) are stable indifferent of any
(reasonable) initial conditions. Then we apply the condition
of Eq. (67) to the relation (66) to obtain the upper bound of
{u}

ub = (KQ)3/5. (68)

Shown in Fig.3 is the strange attractor of the pair(M,gn).
Figure3 shows that the stochastic region extends to the val-
ues ofu predicted by Eq. (68).

Finally, using the relations (63) and (68) along with invari-
ant of motion (25), we find theQ dependence of the upper
boundary of energy spectrumEb,

Eb =m(KQ)2/5. (69)

At typical values of parameters,ωB/ω = 2, ωB/2π = 8×

103Hz, P = 10−4nT2Hz−1, B = 300nT, T = 2× 10−1s
(Santolik et al., 2003), the expression (69) yields Eb '

8MeV. In this way as above, we can say the same about the
pair (M,Gn), just changing the order of words a little. In-
deed, in this case, the condition (67) proves to determine the
lower bound of{u},

uc = 4/ω2
BT

√
PT , (70)

which is in good agreement with the numerical solutions and
results of qualitative analysis. With the values of the parame-
ters as given above, the expression (70) yieldsuc ≈ 1×10−3.

Fig. 3. Phase space for the mapgn after 2× 106 iterations with
(a)Q= 0.5 and(b) Q= 0.98.

The phase space of the mapGn is shown in Fig.4. The over-
all picture of the phase space is quite different foru < uc
andu > uc. In the first case, the motion is regular. Figure4
indicates the existence of a threshold for the initial particle
velocity above which the trajectory becomes chaotic. We as-
sume that nonlinear electron acceleration by a wave packet
of whistler mode waves is always a stochastic process.

Now using the invariant of motion (56) and resonance con-
dition (55), we have the relationship

e =

(
1+ u2/4

)2
, (71)

wheree = E/Er is the particle energy normalized to that at
exact resonance (Er ' 25keV). Putting in the expression (71)
u= uc andu0 =

√
2ωB/ω, we determine the range of heat-

ing e ∈ (ec,e0), where

ec ' 1+ u2
c/2, e0 = (1+ωB/2ω)

2 , (72)

and evaluate (72) asEc ∼ 25keV,E0 ∼ 100keV. Lastly, the
expression (72) is taken as a criterion that stochastic motion
occurs, making available reliable information about the in-
tensity of wave fields. Settinguc be vT/vr, wherevT is the
thermal velocity, and considering the lower bound (70) and
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 0

 0.01
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u

ψ(b)

Fig. 4. Phase space for the mapGn at Q= 2× 10−3. (a) A sin-
gle trajectory of length 2×105. The initial point (10−4, 3×10−1).
(b) A single trajectory of length 8× 103. The initial point (10−4,
10−5).

u2
c � 1, we evaluate the available wave intensity,

Pth ≥ 10−8nT2Hz−1, Bth ≥ 1pT. (73)

The equations from which the SA arises are usually parame-
terized by some control parameter, whose variation changes
the character of the dynamics. The control parameterQ,
as a rule, depends directly on the intensity of the wave
field. First, we consider the dynamics ofgn under condi-
tions when the wave perturbation is larger than that observed.
Figure 5 shows the evolution of the system over time at
Q= 5× 105. The picture indicates that the system demon-
strates both chaotic and regular dynamics, a so-called chaotic
intermittent behavior. This behavior is more complex, ex-
hibiting random transitions between regular and stochastic
motion. In this regime, stochastic diffusion governed by the
SA is realized through the drift of orbits in phase space and
can be expressed in terms of a FPK equation that describes
an increment in entropy rather than the diffusion in action
(Khazanov et al., 2008b). The phase modification is associ-
ated with the appearance of fixed elliptic points, which occur
when an initial saddle point of the attractor changes to a sta-
ble elliptic point as the control parameterQ increases above
the appropriate critical value,Qc. To determine these points,

−2

−1

0

1

2

−3 −2 −1  0  1  2  3

u
,

 1
07

ψ(a)

Fig. 5. Intermittent chaotic behavior of map (62) withQ= 5×105.
(a) t = 2× 103 and(b) t = 2 · 104 iterations of a single initial con-
dition.

we write

sinψ0 = 0,
(
3K/2u2/3

0

)
= 2π, u0 = ub, (74)

whereub is given by expression (68). These equations are
satisfied providedQ takes the value

Q=Qc, Qc = (3K/4π)5/2K−1. (75)

The test does predict the phase modification rather well. We
find this behavior numerically and can give an interpretation
in terms of the theory developed byKhazanov et al.(2008b).
SubstitutingQc in Eqs. (69) and (74), we obtainu0 ' 3×103,
and thereforeE0 ' 100MeV. Finally, Eq. (75) yieldsQc '

103, which is three orders of magnitude larger than typical
values ofQ(∼ 0.5− 1). The explicit expression forPc, the
value of the wave power at which pronounced intermittent
dynamics occur, results immediately from Eq. (64):

Pc = (2/9)(3/4π)5(ωT )2(B2/ω),Pc ∼ 103nT2Hz−1. (76)

The results show that the intermittent chaotic motion is possi-
ble only in extremely strong (Bw/B ∼ 1) wave fields. Under
typical conditions, the long-term evolution of the system is
dominated by diffusion induced by stochasticity.
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4.2 Statistical properties of the dynamics

The dynamics of the system exhibits a random walk, and all
points of the phase trajectory tend to a certain strange at-
tractor (SA) atn→ ∞. The appearance of such an SA repre-
sents persistent chaotic motion over a global domain of phase
space, as shown in Fig.6. There the joint probability density
ρ(ψ,u, t) is proportional to the number of phase points in the
element of phase space. We see that after a few iterations the
action distribution remains localized while phase randomiza-
tion occurs, and that the final distribution is random. Thus,
we have good evidence for statistical properties in the re-
gion for which the system exhibits chaotic motion. Once the
phase variable becomes rapidly varying, the evolution of the
coarse-graining function

w(u, t)=
1

2π

π∫
−π

ρ (ψ,u, t)dψ, (77)

obeys the Fokker–Planck–Kolmogorov (FPK) equation for
theu variable alone. In this case, the nature of the evolution
to the steady state is so-called deterministic diffusion (Licht-
enberg and Lieberman, 1992). As the canonical status of the
phase variables has been demonstrated above, the distribu-
tion function (probability density)w(u; t) is governed by the
FPK equation in the standard form

∂w(u; t)

∂t
=

1

2

∂

∂u
D
∂w

∂u
. (78)

HereD is the conventional diffusion coefficient in phase
space,

D =< (un+1 − un)
2 > T −1

=Q2/2T , (79)

where(un+1 − un) is substituted from eithergn orGn,<·>

denotes the phase average, andT is the timescale of the prob-
lem. The functionw(u, t) is a differentiable function sup-
ported in{U} with the norming∫
u∈{U}

w(u, t)du= 1, (80)

where{U} is a range of the variableu.
First, by means ofgn (or Gn) we calculate the diffusion

coefficient and evaluate the characteristic time for redistribu-
tion of u over the spectrum

td ' 2u2
m/D = T (2um/Q)

2. (81)

We exploit the FPK equation withw(u) and its derivative
∂w/∂u vanishing at the upper and lower boundaries. We in-
troduce the moment< u2 >=

∫ π
−π

duu2w(u), multiply equa-
tion (78) by u2, and integrate the resulting equation overu to
obtain

d< u2 > /dt =D, u ∈ {U |u≤ um}. (82)
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Fig. 6. Joint distributionρ(ψ,u) computed numerically viagn at
several different numbers of steps:(a) 102, (b) 103, and(c) 2×106.
The parameters are the same as in Fig.3a.

The restriction onu is needed because the spectrum is
bounded from above. Then, by means of Eq. (60) along with
Eq. (72), we calculate by formulas (79) and (81) the diffu-
sion coefficientDu ≈ 1s−1 and the time of diffusion inu,
td ∼ 16s. For the functionw(u) restricted to[uc,u0], the in-
variant distribution can be given by

w(u)= (u0 − uc)
−1 . (83)

This means that the random variableu is evenly distributed
on [uc,u0]. Now we evaluate the energy distribution func-
tion,w(ε), in the range of non-relativistic energies. Consid-
ering u2

= 4
(√
e− 1

)
, we note that the particle energyE

is a specified function ofu. Thus the measure-preserving
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transformationw(e)de = w(u)du determines this problem
completely, subject to appropriate boundary conditions. The
corresponding solution forw(e) is found to be

w(e)= w(u)/2
[
e
(√
e− 1

)]1/2
, e ∈ (ec,e0). (84)

By means of Eq. (84) we find the mean energy〈e〉 ∼ 0.5e0.
This solution relates directly to the behavior of the system
near the order–chaos bifurcation transition. Equation (82)
may be written as

d< vt
2 > /dt =Duv

2
r . (85)

Then considering Eq. (85) we find the rate of change of
magnetic momentµ, µ̇= v2

rDu/2B, and the heating rate
Ė ' E0/td

(
∼ 6keVs−1

)
. This result is nontrivial, because

chaotic motion in the (u,ψ)-phase space leads to nonadi-
abatic magnetic moment changes and stochastic heating of
plasma particles. The gyroradius is a direct measure of the
perpendicular electron velocity. Thus the stochastic heating
will be accompanied by a radial drift of particles in space.
Indeed, considering the relationr = vt/ωB , via (85), we get
the following expression

d< r2 >

dt
=Dt ,Dt =Duv

2
t /ω

2
B ,

(
∼ 1010cm2s−1

)
,

whereDt is the coefficient of collisionless diffusion across
the ambient magnetic field.

Now we describe the effects associated with stochastic
heating of high-energy particles. Due to one-to-one corre-
spondence,u= p3/2, and usingdp = 2du/3p1/2, one ob-
tains the coefficient of diffusion inp, Dp = 4Du/9p. Then
the measure-preserving transformationwp = wu|∂u/∂p| re-

sults in the probability density inp,wp = 3
√
p/2p3/2

b . There
is an important relationship,w2

pDp = w2
uDu. Furthermore,

one can easily prove the invariant relation

w2
vDv = w2

uDu = inv., inv. = 1/2td (86)

takes place for anyv(u), and depends smoothly onu, the co-
ordinate on the SA, whose distribution functionwv = w(v)

relates withwu through a measure-preserving transforma-
tion, withDv given by a quadratic form of its variation. We
see that the invariant is given by the rate of diffusion on the
SA. We come to know as well that the FPK equation for
w(v, t) can be written in divergent form

∂w(v, t)

∂t
=
∂

∂v
J (v), J (v)=

1

2

(
Dv

∂

∂v
+ dv

)
w(v, t), (87)

where the transport coefficients are given by

Dv =Du (∂v/∂u)
2 , dv =

1

2
Du∂/∂v (∂v/∂u)

2 . (88)

The above equations have important consequences in de-
termining the heating rate. Then, introducing the particle

energy distributionw(e, t), and taking into account the
invariant of motion and the relatione = E/m and E =√
m2 +p2

z + 2mωBI , we find, after appropriate transforma-

tions, that the following equation forw(e, t) results in

∂w(e, t)

∂t
=
∂

∂e
J (e), J (e)=

Du

2

(
4

9e

∂

∂e
−

2

9e2

)
w(e, t). (89)

Then it may be possible to find the heating rate

dE

dt
'

8

9

(eb

e

)2
·
Eb

td
, td =

(
4e3

b

Q2

)
T , (90)

wheretd is the relaxation time to the steady-state distribu-
tion. It is worth noting that the injection mechanism at low
energies, which may be intimately related to particle heating
is the important aspect of space physics. Since the rate of
electron cyclotron resonance heating is proportional toE−2

this is, indeed the case. We put the characteristic values of
these quantities at typical conditions,ωB/ω = 2, ωB/2π =

8×103Hz,P = 10−4nT2Hz−1,B = 300nT,T = 2×10−1s,
to determine, with the help of Eqs. (69) and (90), the upper
boundary energy spectrumEb ≈ 8MeV, the time of diffu-
siontd ≈ 2×103s, and the heating ratėE ≈ 4keVs−1, which
are all in reasonable agreement with experimental data (Se-
lesnick et al., 1997; Selesnick, 2006). These results lead to
two important observations:

1. Nonlinear electron acceleration by a whistler wave
is always a stochastic process when the wave power
of the wave exceeds the threshold value given by
Eq. (73).

2. In this case the related quantities have the following
dependencies on the wave power,

Eb ∝ P 1/5, td ∝ P−2/5, Ė ∝ P 3/5, (91)

with the power law indices determined by the type of
nonlinearity in the phase advance equation.

Bursty relativistic electron precipitation (REP) events dur-
ing geomagnetic storms appears to be the most striking
phenomenon in the dynamics of the Earth’s radiation belt.
The chorus–electron coupling has been closely identified
with REP events (Green et al., 2004; O’Brien et al., 2004),
andKhazanov et al.(2011) have shown that the process of
stochastic electron heating followed by the pitch-angle scat-
tering is actually a viable mechanism for these REP events.
The authors have investigated the problem, finding, in partic-
ular, that the energy flux in the Earth’s atmosphere is directly
proportional to the heating rate of a single electron. That is
why the enhancement of the flux is often observed during the
magnetospheric storm. The result (91) is telling in the Con-
clusions.
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4.3 Adaptability of the Fokker–Planck–Kolmogorov
equation

We have seen that diffusion on a strange attractor (SA)
is described by a Fokker–Planck–Kolmogorov (FPK) equa-
tion for theu variable alone, whereu is a canonical vari-
able on the SA, proper for a certain physical situation. The
FPK equation to which we refer indicates that an initialδ

function distribution diffuses to a random distribution. Any
measure-preserving transformation fromu to some new vari-
ablev(u) has been shown to preserve the invariant relation
w2(u)D(u)= 1/2td , with u replaced byv, indicating the
universal nature of the diffusion process on any SA. In this
case, the distributionf (v) can be found by a direct transfor-
mationf (v)= f (u)du/dv without solving a relative FPK
equation. However, if we are, for example, concerned with
the evolution of the energy spectrum, we should use the FPK
in divergent form.

Quasi-linear theory (QLT) does predict the long-time evo-
lution of RB electrons on the basis of an FPK equation.
However, in the standard formulation (Lyons and Williams,
1984; Summers et al., 2007), the wave field of whistlers is
treated as random, broadband and phase-incoherent. Thus,
this formalism can not be directly applied to the problem of
electron motion in the regular wave field of chorus. In the
nonlinear approach, we apply just the same FPK equation
in which phase averaging is made due to dynamics itself,
and all time means of observable functions are equal to the
phase space means. This approach corresponds to the stan-
dard FPK description in statistical mechanics and facilitates
the applicability of kinetic models in which the RB dynam-
ics is simulated (Khazanov, 2011). As it is known, QLTs are
based on some linearized equations of motion, and the char-
acteristic time of diffusion in energy is given bytd = E2/D

that depends on the wave powerP asP−1 in certain en-
ergy ranges. In the nonlinear theory (NLT), the rate of dif-
fusion hinges on the type of interaction, for instance, it obeys
the scalingtd ∼ P−2/5 for chorus-RB electron interaction.
Shown in Fig.7 is the time of diffusion as a function of wave
power. Since the inequalitytd/T � 1 is a condition for ap-
plying the FPK description, these dependencies have impor-
tant consequences in determining the range of values of wave
power for which the FPK formalism is valid. It is just the
same thing to evaluate the permissible values of chorus wave
fields, P1, P2 and susceptible to FPK description, in QLT
and NLT, respectively. Here,P1 andP2 are determined by
Eqs. (73) and (76), respectively. They yieldP1/P0 = 10−4,
andP2/P0 = 107, whereP0 = 10−4nT2Hz−1 is the typical
value of wave power (Santolik et al., 2003).

Although it is normally thought that the results from sim-
ple problems give qualitative predictions of the behavior of
more complicated physical systems, many questions con-
cerning the dynamics of the system still exist. A particularly
interesting aspect concerns the effects resulting from the res-
onance interaction with the quasi-coherent whistler waves.

1

Pc Pb

td /T

P

QLT

NLT

Fig. 7. Time of diffusion as a function of wave power. HereP1 and
P2 are the critical wave powers for the applicability of the FPK
equation in QLT and NLT, respectively.

The effect of a magnetic mirror in modifying the motion can
also play an essential role in certain physical situations.

Such a physical situation can emerge when RB electrons
interact with the so-called quasi-coherent chorus, whose fre-
quency spectrum contains low-intensity isotropic white noise
(Tsurutani et al., 2011). The physical explanation for these
wave events is quite clear. These are likely to relate to the
irregular nature of the Earth’s ring current injections, which
generate chorus (Liemohn, 2006).

The level of background noise is relatively small; conse-
quently, this effect can exhibit in the equations of motion
only as the fluctuations of parametersωB andQ. Thus the
control parameter is a function of the magnitude of wave
field b, and thereforeQ→Q(1+ξ),ωB → ωB(1+ξ). Here,
ξ = δb/b is the random variable having a Gaussian probabil-
ity density

p(ξ)=
1

√
2πσ

exp
(
−ξ2/2σ 2

)
,

the mean-square value of which is〈ξnξn′〉 = σ 2δnn′ , where
σ 2 is the intensity of noise, andδ is the Kronecker delta.

In order to understand how the extrinsic noise modifies
dynamics, we consider its influence on motion separately.
Thus, we include the additional noise inGn only in the
phase advance equation, to obtain the closed pair of nonlin-
ear stochastic equations

un+1 = un+Qsinψn,

ψn+1 = ψn+ ξn+ (1/4)ωT u2
n+1 mod 2π, (92)

where the termξn plays the role of a weak stochastic force.
Numeral investigation of a related quantity, the correlation

functionC(k),

C(k)= (1/N)
∑
n∈N

ψ(n)ψ(n+ k),
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wherek is the step lag, gives the results shown in Fig.8.
The motion has been shown to beδ-correlated, withC(k)= 0
for k 6= 0; this represents a very strong chaotic property, i.e.,
a complete decorrelation of the motion in one mapping pe-
riod. Note that FPK description is valid only when the func-
tion C(k) falls off rapidly with the number of mapping it-
erations. The effect of extrinsic noise manifests itself in the
FPK equation as an additional term in the coefficient of dif-
fusion,D/Du = 1σ 2/Q2. This effect does not significantly
affect diffusion induced by stochasticity, due to the global
stability of the SA.

The situation is quite different for ion cyclotron resonance
heating (ICRH) (Lichtenberg and Lieberman, 1992). In this
case the dynamics is intrinsically degenerate, and the non-
linearity arises from the finite gyroradius, which leads to a
spectrum of modes in the motion, and the term proportional
toQ occurs in the phase advance equation. This method has
been used by the authors in conjunction with the problem of
ICRH at the front of a shock (Khazanov et al., 2010).

Now we want to study how the Earth’s magnetic mirror
effects change the dynamics ofGn and how much impact it
has on the statistical properties and long-term evolution of
the system.

The drift equations for particle motion in a current-free
field are given bySchmidt(1979):

vd = v‖B/B + [F ,B] /B2,F = −

(
µ+mv2

‖
/B
)
,

dv‖/dt = −(µ/m)∂B/∂s, (93)

wherevd is the drift velocity,F the free force averaged over
a gyro-orbit,µ the magnetic moment, ands the coordinate
along the field line.

In the drift approximation,µ is an adiabatic invariant,
which is assumed to be well conserved. Since the energy
of a charged particle gyrating in the Earth’s magnetic mir-
ror is strictly conserved,v‖ is related to the constants of the
motionµ andE through the relationv‖ =

√
2(E−µB)/m,

which is easily calculated for a given functionB. In the
equations of motion, describing the resonant interaction with
high-frequency wave fields, the forces given by Eq. (93) aver-
age to zero, as do all other off-resonant terms. All the same,
residual effects are always present, which lead to the usual
distortions of the phase plane near resonances of the princi-
pal frequencies, and can be physically associated with the
loss of phase coherence from one passage along the field
line. To show how this occurs, we first write Eq. (10) as
y = yd + r cosθ , whereyd is the guiding center position of
the gyrating particle. Then, this dependence in theψ vari-
able gives rise to the termktyd , and as a consequence, the
term{ktvdT }n−{ktvdT }n+1 = {ktvdT }, where{·} is the frac-
tional part, occurs in the phase advance equation. We can
eliminate this term by a shift ofz or t ; however, small asym-
metries or time variations in the magnetic field exist, which
allow stochastic diffusion to occur. If these variations are ran-
dom, we would write an independent equation{ktvdT } = ξn,

 1.5
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Fig. 8. Dependence of the correlation functionC(k) on k, corre-
sponding (1) to the mapGn without noise and (2) with noise (92)
for calculations over 2000 points.

whereξn is a random variable. At last, assuming that these
fluctuations are white noise, we arrive at equations of motion
that are similar to the map (92). Hence, the system generates
diffusion analogous to that described above. Some numerical
experiments seem to verify that behavior (Faith et al., 1997;
Roth et al., 1999; Zheng et al., 2012, 2013). It is obvious that
the effect of bouncing on the dynamics may be investigated
in just the same way.

It should be noted that the termξn in the system acts with-
out significantly changing its statistical properties; moreover,
numerical investigations obviously reveal that the SA re-
mains in the sense such that we can’t tell the SA ofGn from
that of system (92) by whichever sign. However, if we re-
move the nonlinear term from the phase advance equation,
then the term dominates the behavior of the system fully.

Now, we examine the problem of energization of RB
electrons subject to resonant coupling with oblique large-
amplitude whistler waves. The existence of such waves is
confirmed by direct measurements (Cattell et al., 2008; Cully
et al., 2008; Kellogg et al., 2011; Kersten et al., 2011; Wil-
son et al., 2011). In our calculation, we will rely on the rel-
evant experimental data ofCattell et al.(2008) andWilson
et al. (2011). These waves have a broad range of wave nor-
mal anglesϑ with respect to the magnetic field (20–60◦) and
large peak-to-peak amplitudesEl ∼ (100− 200)mVm−1

with Bt ∼ 1nT,Et ∼ 100mVm−1. The timescale of the en-
velope is typicallyT ∼ 0.2s, and the mean value of the
frequency at peak wave power is (0.2–0.25)ωB(∼ 1.5kHz).
We have used this data, as well as the dispersion relation

ω = ωB

(
k2/ω2

p

)
cosϑ (Stix, 1992) whereωp is the elec-

tron plasma frequency (∼ 1.1× 105s−1), to estimate the
wavenumberk ∼ 2× 10−4m−1 and group velocityvg ∼ 5×

107ms−1.
From Hamiltonian (18) we see that the amplitude of

the interaction terms is proportional to Bessel functions,
and the Bessel coefficientsJs(kt r) give the fall-off of the
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Fourier amplitudes. Thus we will examine only the resonance
of driving with the fundamental of gyromotion,kzpz/E+

ωBm/E−ω = 0. Then, because the Bessel functions tend to
zero as 1/

√
kt r at kt r → ∞, we have to choosekt r ≈ 1− 3,

which corresponds to the values ofJ1(·) near a maximum
in the Bessel function. This choice automatically imposes
certain restrictions on the energy spectrum of particles. In-
deed, taking into account the invariant of motion (25), and
the relationskt r ∼ (1−3), ωB/kz ∼ 1, r =

√
2mωBI/mωB ,

we find, without much difficulty, the range of particle ener-
gies, in which the wave-particle interaction is most effective,
(kt/kz)

√
2E/m∼ (1− 3), E < 10MeV.

First we will study the problem provided the condi-
tion Bt/B �

(
J1(·)U0/J

′

1m
)√
E/m holds. By integrating

Eqs. (21)–(23) along with invariant of motion (25), we de-
rive, in the usual way, a map that is similar to thegn map de-
scribing the chorus–electron interaction, except that the con-
trol parameter contains the termJ ′

1(kt r)(∼ 0.1). This simi-
larity means that the given dynamical system manifests it-
self in just the same way as thegn map; as a consequence,
the heating rate is governed by the same Eq. (90). However,
the intensity of coupling, in this case, is determined by the
magnitude of the wave field multiplied by the factorJ ′

1(·). It
stands to reason that the expression (91) remains the same,
after appropriate modifications,

√
P →

√
PJ ′

1(·). So these
waves are about four times larger in magnitude than those
measured by SAMPEX (The Solar Anomalous and Magneto-
spheric Particle Explorer), and the heating rate of the process
is comparable to that caused by chorus–electron coupling.

Let the dynamics be dominated by interaction of the parti-
cle with the electrostatic (ES) component of a wave. Taking
the wave field to be in the form of a space-like (SL) wave
packet (54), we convert the equations of motion into the map,

un+1 = un+Qsinψn,ψn+1 = ψn+ 1/un+1, mod 2π, (94)

where the variableu and the control parameterQ are defined
by the relations,

u= (E/mωT ),Q= J1(·)U0/m
√
N, (95)

and the spectral characteristicN and the ES potential are
given by

N =1νT, U0 = El0/kz. (96)

The map (94) belongs to the class of Fermi mappings, there-
fore this map possesses an SA (Lichtenberg and Lieberman,
1992). Shown in Fig.9 is the SA of the system, whose upper
bound is defined by the equations

ub =

√
Q, Eb = ωT

√
Qm, (97)

which is borne out numerically.
The invariant distribution on the SA is a trivial constant,

and the time of diffusion in energy is found to be

td = (4/Q)T . (98)

Fig. 9.Phase spaceu−ψ for the map (94) atQ= 0.98× 10−4.

We see the extent and rate of heating at this wave-particle in-
teraction are proportional toU0J1(kt r), just as it is expected.
We extract from Eqs. (94) and (98) the following estimates of
Eb ' 5MeV andtd ' 104s. We have seen that generic, non-
linear behavior in the interaction with oblique waves restrict
the extent and rate of particle heating, which, to a certain ex-
tent, accounts for the nature of wave-particle interaction.

Electron acceleration in the radiation belts is a well-
established fact. Whistler-RB electron coupling ranks among
the most important accelerate mechanisms that are likely to
play a major role in maintaining the entire pool of RB elec-
trons. Acceleration of RB electrons, which are driven by
whistlers up to relativistic energies, can proceed in the very
short time of∼ 1h or less, and manifest itself in bursty rela-
tivistic electron precipitation events. We have used topolog-
ical arguments to determine the value of the control param-
eter at which the dynamical system exhibits chaotic motion,
in the form of a strange attractor. In this case, every particle
can explore the entire phase space energetically accessible to
it; as a result, the upper bound of the strange attractor can be
put on a one-to-one correspondence with the upper boundary
of an energy spectrum whose value depends parametrically
on the spectral power of the wave. The chaotic motion on
the strange attractor is ergodic with mixing, and as a con-
sequence the evolution of the distribution function and all
means obeys a FPK equation.

As it appears from our model, one thing is certain: the self-
consistent nonlinear approach to the RB electron dynamics
offers far more perspective than the QLT. There is every rea-
son to believe that an FPK description has turned out to be
a true one, after a fashion. The nonlinear approach suggests
that it may be possible to obtain theoretically a kind of scal-
ing law for the rate of diffusion that would be applicable to
most whistler wave events. Thus, studying the model of non-
linear diffusion can lead to important results, both from the
point of view of interpreting experimental data and of obtain-
ing reliable information from the approach.
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5 Stochastic acceleration of cosmic-ray electrons

It is well known that high-energy particles observed in cos-
mic rays can be regarded as tails of the particle distribution
in space plasmas. The energy relation (the energy per unit
volume of space plasma is approximately equal to the energy
per unit volume of cosmic rays) shows that collective pro-
cesses occurring in the plasma can play an important role in
the evolution of the energy spectra of cosmic rays. In this
connection, it becomes relevant to determine how the en-
ergy should be redistributed in cosmic rays so that the energy
spectra could contain particles with very high energies (Ka-
plan and Tsytovich, 1973; Ginzburg, 1989). Supernova rem-
nant shocks are thought to be the primary source of cosmic
rays, because supernova remnants (SNRs) are able to pro-
vide the energy necessary to maintain the observed cosmic
ray density. Synchrotron emission from SNRs indicates the
presence of 100 TeV electrons, and inverse Compton scat-
tering of background photons by ultrarelativistic (UR) elec-
trons is a very plausible explanation for TeVγ -ray emission
from young SNRs (Reynolds, 2001; Treumann and Tera-
sawa, 2001; Vink, 2004; Abdo et al., 2009).

The current description of cosmic ray acceleration up to
UR energies is the well-known first-order Fermi acceleration
at the SNR shock front (Bell, 1978; Blandford and Ostriker,
1978). In the first-order Fermi model, wave turbulence makes
the particle momenta isotropic, thus particles can cross the
shock front many times. Simulations show that the efficiency
of the mechanism depends on the spectra and amplitudes of
MHD fluctuations, and their fluctuation amplitudes, and rel-
ativistic particle distributions are a natural consequence of
the stochastic acceleration by turbulent plasma waves. As
the effect of energy loss through synchrotron emission is not
included in the model, the gradual high-energy cutoff has
been attributed to the balance between the acceleration and
escape processes, which leads to a steady-state distribution
(Liu et al., 2008; Muranushi and Inutsuka, 2009). In addition
to this, it should be noted, the wave-particle interactions in
the model are treated in the linear approximation.

There is also another treatment of the problem relating
Hamiltonian chaos to nonlinear interactions of particles with
plasma waves (Sagdeev et al., 1988; Horton and Ichikawa,
1996). A dynamical system that can be represented by a
measure-preserving map and that illustrates the nature of
stochasticity was proposed by Fermi as a model for cos-
mic ray acceleration. There are, as a matter of fact, vari-
ous versions of this model, all characterized by a phase ad-
vance equation that is inversely proportional to the velocity.
The review of the class of Fermi maps was made byLicht-
enberg and Lieberman(1992). Another important model is
the relativistic standard map (RSM), which was indepen-
dently proposed byChernikov et al.(1989) andNomura et al.
(1992). The RSM is the relativistic generalization of the stan-
dard map (SM), introduced byChirikov (1979). The standard
map is well known for application to a wide class of prob-

lems, including the confinement of particles in fusion de-
vices, radio-frequency heating, acceleration, and heating of
particles by nonlinear wave packets (Lichtenberg and Lieber-
man, 1992). Thus, it was natural to study in terms of the
RSM how relativistic effects modify the nonlinear motion
described by the SM. It is worth noting that these investi-
gations of RSM provide us with a more profound knowl-
edge of many general properties of relativistic chaotic sys-
tems. A possible mechanism for strong heating was proposed
by Papadopoulos, and the first simulation was performed by
Cargill and Papadopoulos(1988). It was shown that colli-
sionless shock waves propagating away from a supernova
may be directly responsible for the 10 keV X-ray emission
seen in SNRs. A sequence of plasma instabilities between
the reflected ions and the background electrons at the foot
of the shock front can give rise to rapid anomalous heating
of electrons. A somewhat different approach to the problem
was taken byDieckmann et al.(2004). A self-consistent sim-
ulation was performed by these authors to show that ions
reflected from SNR shocks can excite large-amplitude elec-
trostatic waves through the beam-plasma instability. Another
mechanism that has been investigated to explain the accel-
eration process includes the nonlinear coupling of the beam
of cosmic rays escaping away from a supernova, with back-
ground Langmuir waves. Estimates of the rate of instability
from this type of interaction were made byGinzburg(1989),
who found that the characteristic time of the instability would
be about a few years.

As a consequence of this, chaotic dynamics of relativistic
electrons is of particular interest. Thus, the nonlinear inter-
action of high-energy electrons with an extraordinary elec-
tromagnetic wave propagating across a given magnetic field
was investigated byZaslavsky et al.(1987). They estimated
the rate of the diffusion and found it to be sufficient to ac-
celerate an electron up to UR energies. Chaotic dynamics of
relativistic electrons in the spectrum of Langmuir waves has
been considered byKlimov and Tel’nikhin (1995) in terms
of a map given by the closed pair of nonlinear difference
equations. More complete calculations, including the gy-
roresonance effect were made byNagornykh and Tel’nikhin
(2003) who showed the role of the gyromotion in random-
izing the phase of particles. Finally,Krotov and Tel’nikhin
(1998) have shown that the stochastic heating of particles by
the nonlinear Langmuir wave packet in space plasmas can be
regarded as a possible mechanism for the formation of the
energy spectrum of cosmic rays.

5.1 Stochastic surfing electron acceleration at Galactic
shocks

Besides the Fermi model for cosmic ray acceleration, there
is another possible mechanism for the generation of cosmic
rays proposed byTeller (1971). In this approach, the shock
wave emerging at a supernova explosion is capable of ac-
celerating cosmic ions with the spectrum which quiet good
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corresponds to the empiric spectrum. However, this spectrum
of escaping relativistic ions turns out to be unstable in regard
to some plasma instabilities. The self-consistent simulation
of Dieckmann et al.(2004) showed that such a beam of rel-
ativistic ions can induce a collisionless shock. This shock
arises as a consequence of strong nonlinear upper-hybrid
(UH) solitary waves which are driven via the beam instabil-
ity by the ion beam. In this scenario, typical for collision-
less shock generation (Artsimovich and Sagdeev, 1979), the
shock front is formed by the dissipative process caused by
particle heating, and the tail of the wave manifests itself as
UH wave perturbations in the foot of the quasi-perpendicular
shock. The dispersion law of the electrostatic UH wave (its
wave potential is about 1 mc2) at the foot of shock front is

ω = kvf,vf ≤ vb,ω =

√
ω2
B +ω2

p, (99)

the dispersion law of which is a typical condition for plasma
modes induced by a beam (Artsimovich and Sagdeev, 1979),
whereωp is the electron plasma frequency, andvf , vb are
the speed of the front and beam respectively. In this situa-
tion electrons can be accelerated up to relativistic energies
through the mechanism of surfing (Sagdeev et al., 1988).
The model of surfing is in general similar to the Fermi–Ulam
model (Lichtenberg and Lieberman, 1992) of acceleration in
which the fixed wall plays the role of Lorentz force. This
force doesn’t change the particle energy and results only in
the drift of particles along the front (look at the picture in
Fig. 10). The way the electrons gain energy is by picking up
wave field energy in multiple encounters with the shock front
(Sagdeev et al., 1988).

Taking the original potential of the wave to be of the form

ϕ(y, t)= ϕ0cos(ky−ωt), (100)

then Eq. (22) can be written as

İ =

∑
n

ϕ0nJn(kr)sin(nθ −ωt), θ̇ = ωBm/E, (101)

E =

√
m2 + 2mωBI , ψ = nθ −ωt. (102)

In this case electron cyclotron resonance heating (ECRH) is
accomplished by resonance between the gyrofrequency and
the UH wave,

ψ̇ = sωBm/Er −ω = 0, s ∈ Zs ⊂ Z, (103)

which is satisfied for a series ofs-values for particles of dif-
ferent energies.

To begin with, let us consider the dynamics in a single
mode. Choosing a particle resonances = l, we can write
Eqs. (101)–(102) as

İ = ϕ0lJl(kr)sin(ψ), ψ̇ = lωBm/E−ω. (104)

Linearizing with Eqs. (104) in the vicinity of the exact res-
onance, putting of quantities at the resonance, we obtain the

y

x

r
v

B

vb

Fig. 10.Particle trajectory at the front of a shock.

equation of phase oscillations

ψ̈ +ω2
b sinψ = 0, ωb =

ωB

e

√(
ω

ωB

)5/3

e2/3U0,

e = E/m, U0 = ϕ0/m, (105)

whereωb is the bounce frequency in the wave field. In writ-
ing (105) we have taken advantage of the dispersion law (99),
the relation (kr)r = l, and used the asymptotic expression of
the Bessel functionJl(l)≈ 1/l1/3, which is valid forl � 1.
By requiringωb ≥ δω, whereδω = ωB/e is the spacing be-
tween adjacent modes, we obtain the overlap condition

ec ≥ (ωB/ω)
5/3/U

3/2
0 , (106)

which indicates the value of wave field at which electrons
with energye can be accelerated in random manner. At last,
we find from above the characteristic time of the variation
of I andψ is of order 2π/ωb ∼ (2π/ωB)e, which essen-
tially exceeds one period 2π/ω. The small parameterε =

ωB/ωe ≈ 1/s serves as the condition for the applicability of
the adiabatic approach, developed by the authors (Khazanov
et al., 2010).

The condition of adiabaticity,̇ψ � ωψ , İ � ωI allows us
to write Eqs. (101)–(102) in the form

ψ̇ = sωBe
−1

−ω, İ = 2sJs(s)ϕ0sinψT
∑

δ (t − nT ),

T = 2πe/ωB . (107)

We have carried out the following transformation here,∑
ϕ0nJn(·)e

inθ−iωt
= ϕ0sJs(s)e

isθ−iωt
∑
n 6=s

einωB t/e,

employed the identity
∑
einωB t/e = T

∑
n δ(t − nT ), and

taken into account that the wave-particle collisions occur
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twice during one gyroperiod. After integrating, Eqs. (107)
reduce to a map

en+1 = en+Qe
2/3
n sinψn, Q= 2(ω/ωB)

2/3U0,

ψn+1 = ψn+ 2π (ω/ωB)en+1 mod 2π, (108)

where s = (ω/ωB)e(� 1), Js(s)≈ 1/2πs1/3 have been
used.

Now we have to obtain the equations of motion under con-
ditions of strong energy losses due to synchrotron emission
and inverse Compton scattering, the rate of which is given by

ė = −βse
2,

whereβs ≈ 0.5× 10−19s−1 at B = 3µG (Ginzburg, 1989).
Calculating the loss of energy over the gyroperiod yields

1e = −αe3, α = βs/νB , νB = ωB/2π, (109)

which is valid if 1e/e� 1, e < 1010. Then we combine
Eq. (108) and Eq. (109), to obtain a dissipative map

en+1 = en

(
1−αe2

n

)
+Qe

2/3
n sinψn,

1ψ = 2π
ω

ωB
en+1 mod 2π. (110)

Then, lettingw(e,n) be the energy distribution, we write the
FPK equation corresponding to the map (110)

∂w(e,n)

∂n
=

1

2

∂2

∂e2 (D(e)w)+
∂

∂e

(
αe3

)
w,

D(e)=Q2e4/3/2, (111)

wheren is the iteration number. Now the evolution of ob-
servable functions can be described by the FPK equation for
the moments ofw(e,n),M(m)=

∫
emw(e,n)de. In this way

we have revealed the relaxation time to a stationary state with
the mean value

〈e〉 = e0 =

(
Q2/4α

)3/8
, (112)

which is equal totd = 1/Q3/4α5/8νB , and the mean rate of
ECRH is determined by

dE/dt =Q2νBm/e
2/3. (113)

It is worth noting that the injection mechanism at low ener-
gies, which may be intimately related to particle heating, is
the important aspect of cosmic-ray physics. Since the rate of
ECRH is proportional toE−2/3, this is indeed the case. This
stationary distribution, providedw, ∂w/∂e vanish at infinity,
is given by

J (e)=
Q2

4

(
e4/3∂w

∂e
+

4

3
e1/3f

)
+αe3w = 0, (114)

with solution

w(e)=
const

e4/3
exp

(
−

3

8

(
e

e0

)8/3
)
, (115)

wheree0 is a characteristic energy given by Eq. (112). This
equation predicts that the power law will depend onw(e)∝

e−4/3 at low energiese < e0.
Choosing the following values of quantities

B = 3µG, νB = 8Hz, and ωp = 2π · 8× 102s−1,
we evaluate e0 = 108(E0 = 50TeV, td ≈ 5× 103yr,
dE/dt ≈ 100/e2/3MeVs−1), and the parametersQ= 5−10,
α = 5× 10−21. Numerical investigations of Eqs. (110) at
these parameters gave the results shown in Fig.11. This fig-
ure indicates the spectrum is bounded both above and below
the values ofeb ≈ 4× 108(Eb ≈ 200TeV) andEc(≈ 14eV)
defined by Eq. (106). In Fig. 11b, the analytical expression
(115) is compared with the numerical results. The numerical
points of the spectrum in the main rangeE < E0 all fall
full on the curve w(e)= const·E−4/3 as predicted by
(115). Then when one takes into account the geometry of
problem (Fig.10) and assume the distribution along the line
of sight is isotropic, we can write the differential flux of
electrons as

dN/dEd�= (c/2π)Ne(Ec)(r(E0)/r)w(E) (116)

with the gyroradiusr proportional toE, w(E) given by
Eq. (115), and whereNe(Ec) is the density of resonant elec-
trons atE = Ec. If we substitutew(E) in Eq. (116), this ex-
pression becomes

dN/dEd�= const.E−7/3exp
[
−(3/8)(E/E0)

8/3
]
, (117)

with the spectral index∼ 2.33 in the range of low energies,
E < E0.

Since the electrons radiating their peak spectral power at
frequencyν have energiese =

√
ν/νs, νs = 1.26×106B, we

find that the spectral flux density of radiating electrons with
the energy spectrum (117) is

Pν = const.ν−2/3exp
[
−(3/8)(ν/ν0)

4/3
]
, (118)

whereν0 = νse
2
0 (≈ 4×1016Hz). Note, the mean radio spec-

tral index is about 0.5 (Reynolds, 2001), or 0.6 (Stevenson
and Green, 2002) with a spread of order 0.2.

Inverse Compton scattering of cosmic microwave back-
ground (CMB) photons by relativistic electrons is a plausible
explanation for TeVγ -ray emission from SNRs. We denote
by ep the energy of a primary CMB photon (ep ' 10−3eV),
and Eγ as the energy of aγ -photon. It is well known
(Ginzburg, 1989) that electrons with energiese�m/4ep can
scatter only soft photonsEγ = epe

2 that contribute to radio
and X-ray spectra, while high-energy electronse > m/4ep
will scatter photons with energiesEγ ≤ E, whose spectrum
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Fig. 11. (a)Phase spacee−ψ and(b) the energy distributionw(e)
for the map (110) with parametersQ= 9.2,α = 10−21,
andec = 102.

is similar to the energy spectrum of electrons. Note that
this characteristic energy (m/4ep ≈ 108) is comparable to the
mean energy of electrons. In this case, Compton losses in
fact are insensitive to the energy of electrons, and an electron
loses its energy with the rate de/dt = 5×10−4s−1 (Ginzburg,
1989). To find the spectrum of TeVγ -photons, we first mod-
ify this expression as it has been done above, then after sub-
stituting in the FPK equation, the following expression re-
sults:

Pν = const.ν−2/3exp
[
−(3/2)

(
Eγ /E0

)2/3]
.

The tail of the equation describes TeVγ -photon spectrum.
This spectrum is quite softer than that given by expres-
sion (118); the signature of the spectra observed in SNRs
(Reynolds, 2001; Vink, 2004).

Our results allow the inference of an efficiency of shock
acceleration of electrons via the electron cyclotron resonance
heating and indicate that stochastic surfing acceleration is
likely to play an important role in producing relativistic elec-
trons at an SNR shock.

5.2 Stochastic heating of cosmic-ray electrons by
a Langmuir wave packet

The interaction of relativistic particles with Langmuir waves
is thought to be an important mechanism for producing cos-
mic rays (Kaplan and Tsytovich, 1973; Ginzburg, 1989). Ac-
cording toGinzburg(1989), the rate of the Galactic beam-
plasma instability, which generates Langmuir waves with the
frequencyωp = 3× 104s−1 and minimal wavenumberk =

10−6cm−1 is about 10−8s−1. Thus the time–space scales of
such a Langmuir wave packet are likely to beT = 108s and
L= 3× 1018cm, respectively. As long as the group veloc-
ity of Langmuir waves is much more less than the speed of
light, we concern ourselves with the problem of the nonlin-
ear interaction of relativistic electrons with a spacelike (SL)
wave packet provided the Cherenkov resonance condition
kpz/E−ω = 0 is met. A particle moving in this wave field
is governed by the equations

ṗz =

(
kϕ0/

√
1kL

)
sinψL

∑
n

δ(z− nL),

ψ̇ = kpz/E−ωp. (119)

In the usual way we reduce these equations into the map

En+1 = En+

√
(k/1k)kLϕ2

0 sinψn,

ψn+1 = ψn+ kL

−ωpL

(
En+1/

√
E2
n+1 −m2

)
mod 2π, (120)

which was introduced byKlimov and Tel’nikhin(1995) and
Krotov and Tel’nikhin(1998).

In the nonrelativistic limit, these equations reduce to the
well-known map

En+1 = En+

√
(k/1k)kLϕ2

0 sinψn,

ψn+1 = ψn+ kL− const./
√
En+1, E = p2/2m,

which describes the heating of particles in an SL wave packet
of electrostatic waves (Sagdeev et al., 1988). In the con-
trary limit, (E/m)2 � 1, map (120) in terms of the variables
(ψ,u) becomes

gn :
un+1 = un+Qsinψn,
ψn+1 = ψn+ 1/2u2

n+1signu mod 2π,
(121)

u = Epz/|pz|m
√
kL, Q=

√
(k/1k)U2

0 ,

U0 = ϕ0/m. (122)

Numerical investigations of the map atQ� 1 indicated the
appearance of the strange attractor (SA), shown in Fig.12.
The upper bound of the SA is given by

ub =Q1/3, (123)
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Fig. 12.Strange attractor of the map (121) atQ= 1.1× 10−3.

which is borne out numerically. The energies over which
heating can occur are limited to those given byEb =

m
√
kLQ1/3 (∼ 100GeV atQ= 10−3).

The equations from which the SA arises are usually
parameterized by some control parameter whose variation
changes the character of the dynamics. When the control pa-
rameterQ becomes greater than a critical valueQc, the sys-
tem exhibits intermittent chaotic behavior shown in Fig.13.
We are already familiar with this kind of dynamics; how-
ever, we have never seen such a curious behavior before.
It appears that after a finite number of iterations the system
demonstrates an intermittent transition to regular unbounded
motion. Following the approach ofKhazanov et al.(2008b),
we describe the motion as the compositionGt ◦ gn (Arnold,
1989), wheregn is the map (121), andGt is the Hamiltonian
flow acting on a smooth manifoldM2. The goal is to find this
Gt . The action ofGt is associated with an adiabatic motion,
which is realized when the following relations

3K/4πu2/3
� 1, Q/u� 1, sinψ = 0 (124)

are valid. Now the evolution of the orbit’s phase flow is de-
scribed by the vector field

v =Qsinψ∂/∂u+ (1/2u2)∂/∂ψ, (125)

on which the family of invariant curves is given by

h=Qcosψ − 1/2u. (126)

This h serves also as a Hamiltonian function of dynamical
system (125), the proper values of which are defined by the
initial values of(ψ,u) on the SA. Because the behavior of
the system is completely determined by these proper values
of h, we can find the density of states in the space of param-
eters,ρ(h)= τ = d0/dh, whereτ = t/T is the time of mo-

tion along the orbit, and0(h)=

∮
Ch

u(h)dψ is the phase area

bounded by the invariant curveCh (Arnold, 1988). Invoking

Fig. 13.Phase spaceu,ψ for the map (121) atQ= 0.367. Number
of iterations increasing from(a)–(c)and(d) asN = 4.2× 104; 8×

104; 2.2× 105.
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Eq. (126), we obtain

ρ(h)= τ = 2π |h|

/(
h2

−Q2
)3/2

, |h| ≥Q. (127)

Arising singularity in distribution (127) at |h| =Q, we can
characterize itsε-vicinity. As the radius of theε-vicinity
tends to 0, it makes the mean density tends to infinity. As
a consequence, the states|h| =Q are the most likely states
of the system. In finding an explicit expression forQc, we
use Eq. (126) with |h| =Q to find |umin| = 1/4Q. So far as
all these orbits start from the SA, theumin belongs to the SA.
Then by equatingumin to theub given by Eq. (123), we ob-
tainQc = 1/2

√
2, which matches quite well to the numerical

values. If we substituteQc in (122), assumingk/1k = 100,
andk = 10−6cm−1, these required magnitudes of wave field
turn out to beUc ' 3× 10−2, and(El)c ∼ 10−2mVcm−1.

Now we formulate the problem of dynamics in terms of the
variables(u, u̇). These variables allow us to obtain more fine
information about the geometric structure of phase space.
Carrying out the procedure, we derive the following equa-
tions:

W =
1

2
u̇2

+w(u), w(u)= h/2u+ 1/8u2, (128)

whereW is an invariant of motion. To our surprise, we run
up against the old Kepler problem here. This can be seen di-
rectly from (128) by defining the effective potentialw(u). It
is worth noting that this problem, unlike the Kepler one, is
invariant under the transformation(−h,u)→ (h,−u). Until
the proper values ofW are less than 0, the system exhibits
bounded motion; in another case, which is realized for ex-
ample, ath= −Q and umin = 1/4Q, the motion becomes
unbounded. Strange as it may appear, the singularity in dis-
tribution (127) leads to a topological modification of phase
space. At first, changes in topology emerge provided the con-
ditionsQ>Qc but |h|>Q hold. In this case, the topolog-
ical space is a direct sum of the strange attractor and torus.
There is another change in topology at|h| =Q. As it appears
from Eqs. (125)–(126), the trajectory approaches infinity at
ψ = 0, or±π , and the vector field vanishes. It is known, on
the other side, any vector field on a torus vanishes nowhere
(Arnold, 1989); consequently this kind of dynamics is asso-
ciated with a metamorphism of phase space.

Now we consider the dynamics of the system in the off-
resonant case, i.e., when the phase velocities of the waves
in the packet differ from the speed of light. Setting(ωpT −

kL)mod2π =�, �> 0, to be the phase shift in the phase
advance equation (121), we numerically investigate the be-
havior of the system. Shown in Fig.14 is the phase space
evolution of the system. We cannot resist the fascination of
the strange behavior. Trying to understand it, we write the
phase flow associated with the Hamiltonian,

h=Qcosψ − 1/2u−�, (129)

Fig. 14.Dynamics of the system (121) in the off-resonant case. Here
Q= 0.367 andw = π/2× 10−4. (a) 2 · 104, (b) 3.5× 104, and
(c) 8× 104 iterations of a single initial condition.

in the form

u̇=Qsinψ,ψ̇ = −�+ 1/2u2. (130)

The proper values ofh in turn determine a family of invariant
curves on the vector field

v =Qsinψ∂/∂u+

(
1/2u2

−�
)
∂/∂ψ. (131)

It is easily seen that the functionh changes its sign, vector
field (131) is invariant under the transformation

u→ −u, ψ ′
→ ψ +π, (132)
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and the fixed points of the vector field are given by

ψ0 = 0, |u0| = 1/
√

2�. (133)

One considers these dynamics in a configuration space pro-
ceeding to the variable(u, u̇). The procedure for deriving the
invariant of motion

W =
1

2
u̇2

+w(u), w(u)= h/2u+ 1/8u2
+h�u+�2u2/2, (134)

is the same at that used for obtaining (128). This poten-
tial is symmetric with respect to(−h,u)→ (h,−u), and the
turning points are situated next to|umin| = 1/4Q, |umax| =

2Q/�. Theseumax determine a monochromatic energy state
Emax = 2m

√
kLQ/� with different directions ofpz mo-

mentum. The potentialw(u) has a local maximum at the
fixed points, and the motion near these points obeys the equa-
tion ψ̈ + (Q/u3

0)sinψ = 0, which shows just the same in-
variance (132), and the tangent vector at a point of fixed
points changes its direction. Thus there are two allowable
local coordinate systems(ψ ′, u′) and (ψ,u), whose deter-
minant of the transformation matrix from one to another,∣∣∣∣ ∂ψ ′/∂ψ 0

0 ∂u′/∂u

∣∣∣∣, is equal to−1. There is very good reason

to believe that this manifold is a direct sum of the strange at-
tractor and the Mobius strip. In the resonant case, the width
of this strip approach infinity. Therefore, the off-resonant ef-
fect eliminates a possibility of unbounded motion. To de-
scribe the effect of synchrotron emission and inverse Comp-
ton scattering on the dynamics, we again apply the method
developed above (Sect. 4.1, formula (109)). In this way we
derive the following equations

un+1 = un (1−α|un|)+Qsinψn,

ψn+1 = 1/2u2
n+1signu(mod2π), (135)

whereα = βsT
√
kL
(
∼ 8× 10−6

)
, and all another variables

and the parameterQ remain the same. When the wave per-
turbation is small,Q∼ 10−3, the system exhibits chaotic
behavior on a strange attractor. For the dissipative system
the phase space volume contracts as the motion proceeds.
In virtue of it, the topology of the SA is quite remark-
able, showing the property of fractional dimensionality,d '

2− 2αQ1/3/3hk, wherehk is the Kolmogorov entropy of
the original Hamiltonian system. For the parameter range of
interest, numerical investigations of the system motion are
shown in Fig.15. The figure displays the emphatic intermit-
tent behavior. It also proves possible to represent the phase
flow as

u̇= −αu2
+Qsinψ,

ψ̇ = 1/2u2,

the fixed points of which are given by the equation

αu2
0 =Qsinψ0. (136)

Fig. 15. Phase space for dissipative map (135) with Q= 0.4 and
α = 8× 10−6.

Equation (136) defines the phase shift away from the res-
onance, and in implicit form determines the range of ac-
cessible proper values ofu, u <

√
Q/α (∼ 200) in virtue

of Eq. (122); the upper value of energy should be about
100 TeV. The estimates seem to verify this inference.

We propound the model of the stochastic dynamics of
relativistic electrons driven by the Langmuir wave packet.
Whether or not a model like this can be applied to the cosmic-
ray electron acceleration, seemingly, will be a problem for
future research, when such a kind of model will need to be
compared with data at this level of precision to give confi-
dence in the results (Reynolds, 2001).

6 Conclusions

We study the motion of relativistic electrons interacting reso-
nantly with space-plasma waves. The nonlinear resonant in-
teraction is shown to originate electron chaotic motion re-
lated to the profound change in topology of phase space, and
the appearance of the strange attractor. In this case, every par-
ticle can explore the entire area of phase space energetically
accessible to it; as a result, the upper bound of the strange
attractor can be put on a one-to-one correspondence with the
upper boundary of an energy spectrum whose value depends
parametrically on the spectral power of the wave. The chaotic
motion on the strange attractor is ergodic with mixing, and as
a consequence, the evolution of the distribution function and
all means obeys a FPK equation. In nonlinear theory, the rate
of diffusion as a function of wave power energy hinges on the
type of interaction. These dependencies have important con-
sequences in determining the range of values of wave power
for which the FPK formalism is valid. The results are ap-
plied to the problem of acceleration of cosmic-ray electrons
and the Earth’s radiation belt electrons.
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